6 Continuous Functions

6.1 Proposition. Let X, Y be topological spaces. A function $f: X \to Y$ is continuous if and only if for every closed set $A \subseteq Y$ the set $f^{-1}(A) \subseteq X$ is closed.

6.2 Proposition. Let (X, ϱ) be a metric space, let Y be a topological space, and let $f: X \to Y$ be a function. The following conditions are equivalent:

- 1) f is continuous.
- 2) For any sequence $\{x_n\} \subseteq X$ if $x_n \to y$ for some $y \in X$ then $f(x_n) \to f(y)$.

6.3 Proposition. Let $f: X \to Y$ be a continuous function of topological spaces. If $\{x_n\} \subseteq X$ is a sequence and $x_n \to x$ for some $x \in X$ then $f(x_n) \to f(x)$.

Proof. Exercise.

6.5 Proposition. If $f: X \to Y$ and $g: Y \to Z$ are continuous functions then the function $gf: X \to Z$ is also continuous.

Proof. Exercise.

6.6 Open Pasting Lemma. Let X, Y be topological spaces and let $\{U_i\}_{i \in I}$ be a family of open sets in X such that $\bigcup_{i \in I} U_i = X$. Assume that for $i \in I$ we have a continuous function $f_i: U_i \to Y$ such that $f_i(x) = f_j(x)$ if $x \in U_i \cap U_j$. Then the function $f: X \to Y$ given by $f(x) = f_i(x)$ for $x \in U_i$ is continuous.

6.7 Closed Pasting Lemma. Let X, Y be topological spaces and let $A_1, A_2 \subseteq X$ be closed sets such that $A_1 \cup A_2 = X$. Assume that for i = 1, 2 we have a continuous function $f_i: A_i \to Y$ such that $f_1(x) = f_2(x)$ if $x \in A_1 \cap A_2$. Then the function $f: X \to Y$ given by $f(x) = f_i(x)$ for $x \in A_i$ is continuous.

Proof. Exercise.

6.10 Definition. A *homeomorphism* is a continuous function $f: X \to Y$ such that f is a bijection and the inverse function $f^{-1}: Y \to X$ is continuous.

6.11 Proposition. 1) For any topological space the identify function $id_X : X \to X$ given by $id_X(x) = x$ is a homeomorphism.

2) If $f: X \to Y$ and $g: Y \to Z$ are homeomorphisms then the function $gf: X \to Z$ is also a homeomorphism.

3) If $f: X \to Y$ is a homeomorphism then the inverse function $f^{-1}: Y \to X$ is also a homeomorphism.

4) If $f: X \to Y$ is a homeomorphism and $Z \subseteq X$ then the function $f|_Z: Z \to f(Z)$ is also a homeomorphism.

Proof. Exercise.

6.13 Proposition. Let $f: X \to Y$ be a continuous bijection. The following conditions are equivalent:

- (i) The function f is a homeomorphism.
- (ii) For each open set $U \subseteq X$ the set $f(U) \subseteq Y$ is open.
- (iii) For each closed set $A \subseteq X$ the set $f(A) \subseteq Y$ is closed.

Proof. Exercise.

6.14 Example. Recall that S^1 denotes the unit circle:

$$S^1 = \{(x_1, x_2) \in \mathbb{R}^2 \mid x_1^2 + x_2^2 = 1\}$$

The function $f: [0, 1) \to S^1$ given by $f(x) = (\cos 2\pi x, \sin 2\pi x)$ is a continuous bijection, but it is not a homeomorphism since the set $U = [0, \frac{1}{2})$ is open in [0, 1), but f(U) is not open in S^1 .

6.15 Definition. We say that topological spaces X, Y are *homeomorphic* if there exists a homeomorphism $f: X \to Y$. In such case we write: $X \cong Y$.

6.17 Example. For any a < b and c < d the open intervals $(a, b), (c, d) \subseteq \mathbb{R}$ are homeomorphic. To see this take e.g. the function $f: (a, b) \rightarrow (c, d)$ defined by

$$f(x) = \left(\frac{c-d}{a-b}\right)x + \left(\frac{ad-bc}{a-b}\right)$$

This function is a continuous bijection. Its inverse function f^{-1} : $(c, d) \rightarrow (a, b)$ is given by

$$f^{-1}(x) = \left(\frac{a-b}{c-d}\right)x + \left(\frac{cb-da}{c-d}\right)$$

so it is also continuous. By the same argument for any a < b and c < d the closed intervals $[a, b], [c, d] \subseteq \mathbb{R}$ are homeomorphic.

6.19 Example. We will show that for any a < b the open interval (a, b) is homeomorphic to \mathbb{R} . Since $(a, b) \cong (-1, 1)$ it will be enough to check that $\mathbb{R} \cong (-1, 1)$. Take the function $f : \mathbb{R} \to (-1, 1)$ given by

$$f(x) = \frac{x}{1+|x|}$$

This function is a continuous bijection with the inverse function $f^{-1}: (-1, 1) \rightarrow \mathbb{R}$ is given by

$$f^{-1}(x) = \frac{x}{1 - |x|}$$

Since f^{-1} is continuous we obtain that f is a homeomorphism.

y = f(x)

b

С

а

6.21 Example. We will show that for any point $x_0 \in S^1$ there is a homeomorphism $S^1 \setminus \{x_0\} \cong \mathbb{R}$.

