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1 | Some Set Theory

A topological space is a set equipped with some additional structure which, roughly speaking, specifies
which elements of the set are close to each other. This lets us define what it means that a function
between topological spaces is continuous: intuitively, such function maps elements which are close
in one space to elements which are close in the other space. Before we start discussing topological
spaces and continuous functions in detail it will be worth go over the basics notions related to sets
and functions between sets. This chapter is intended as a quick review of this material. We will also
fix here some notation and terminology.

Sets. In general sets will be denoted by capital letters: A, B, C,... We will also use the following
notation for sets that will be of a particularly interest:

@ = the empty set (i.e. the set that contains no elements)

N=1{0,1,2,...} the set of natural numbers

Z* ={1,2,3,...} the set of positive integers

Z={..,-2,-1,0,1,2,...} the set of integers

Q = the set of rational numbers

R = the set of real numbers

We will write a € B to denote that a is an element of the set B and a ¢ B to indicate that a is not
an element of B. For example, 5 € Z, % ¢ 7.

1.1 Definition. A set B is a subset of a set A if every element of B is in A. In such case we write
BCA

A set B is a proper subset of Aif BC Aand B+ A
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1.2 Example. 9 CZTCNCZCQCR

1.3 Example. Here are some often used subsets of R:

1) an open interval:
(a,b)={xeR|a<x<b}

R

2 Q

b

2) a closed interval:
[a,b]={xeR | a<x<b}
R
L @
a b

3) a half open interval:
(a,b]={x €eR | a<x<b}

R
O @
a b

1.4 Definition. The union of sets A and B is the set AU B that consists of all elements that belong to
either A or B:
AUB={x|xe€Aorx e B}

The intersection of sets A and B is the set AN B that consists of all elements that belong to both A
and B:
ANB={x|x€Aand x € B}

1.5 Example. If A={a,b,c,d}, B={c,d,e,f} then AUB={a,b,c,d, e f} and AN B = {c, d}.

1.6 Example. If A= {a,b,c,d} and C = {e,f,g} then ANC = 2.

1.7 Definition. If AN B = @ then we say that A and B are disjoint sets.



1. Some Set Theory 5

Definition 1.4 can be extended to unions and intersections of arbitrary families of sets. If {A;}¢/ is a
family of sets then

UAi:{x|xeAiforsomeiEl}
iel
(A ={x|x€Aforallic I}
iel
1.8 Example. For n € Z let A, =[n,n +1]. Then
JAr=...u[-2-1u[-1,00uU[01U[,2]u.. =R

nez

1.9 Example. Forn =1,2,3,... let B, = (=1, 1). Then

n-n

(Bi=(=1.1) N (=3.3) N (=35 n...={0}

1.10 Definition. The difference of sets A and B is the set A\ B consisting of the elements of A that

do not belong to B:
ANB={x|xeAand x ¢ B}

1.11 Example. A= {a,b,c,d}, B={c,d, e, f}
AN B ={a, b}
B~ A={e f}

1.12 Definition. If A C B then the set B\ A is called the complement of A in B.

1.13 Properties of the algebra of sets. Here are some basic formulas involving the operations of sets
defined above. We will use them very often.

Distributivity:
(ANnB)UC=(AUC)N(BU ()
(AuUB)NC=(ANC)uU (BN ()
De Morgan'’s Laws:
AN(BUC)=(ANB)N(AN Q)
AN(BNC)=ANB)U (AN ()
1.14 Definition. The Cartesian product of sets A, B is the set consisting of all ordered pairs of elements

of A and B:
Ax B={(a,b)|a€eA beB}



1. Some Set Theory 6

1.15 Example. A= {1,2,3}, B={2,3,4}

Ax B=1{(1,2),(1,3),(1,4),(2.2),(2,3),(2,4),3,2),3.3). 3. 4}

1.16 Notation. Given a set A by A” we will denote the n-fold Cartesian product of A:

AT=AxAx - ---xA
~—_——

n times

1.17 Example.

R? ={(x1,x2) | x1,x2 € R}

R3 :{(X1'X21X3) | X1,X2,X3 € ]R}

1.18 Infinite products. Let As,..., A, be a collection of n sets. Notice that elements of the product
A1 X --- x A, can be identified with functions f: {1,2,...,n} — Uf:1 A; such that f(i) € A;. Indeed,
every such function defines an element (f(1), f(2),...,f(n)) € A1 x --- x A,. Conversely, every element
(a1,...,ap) € Ay x --+ x A, defines a function f: {1,2,...,n} - |J_, A; given by f(i) = a;. We can
use this observation to define products of an arbitrary (finite or infinite) families of sets. If {A;}ic/ is a

family of sets then [ ], A; is the set consisting of all functions f: | — | J;c; Ai such that f(i) € A;.
1.19 Example. for r € R let A, = [r,r + 1] Then [],cg A is the set consisting all functions
f: R — U, eplr, r +1] = R such that f(r) € [r,r + 1] for all r € R.

1.20 Note. We will usually denote elements of |_|iE,A,- by (ai)ies. This notation indicates the element
defined by the function f: | — | J,-, A given by (i) = a;.

iel

In many cases given a set A we are interested in describing a relation satisfied by some pairs of
elements of the set. Here are some examples of such relations:

1.21 Example. In the set R of real numbers we can consider the relation “<”. Numbers a,b € R
satisfy this relation if b — a is a positive number. We write then a < b.

1.22 Example. In the set Z of integers we can consider the divisibility relation “|". Integers a,b € Z
satisfy this relation if b = an for some n € Z. In such case we write a|b.

1.23 Example. In any set A we can define the equality relation “=" which is satisfied by elements
a,b € Aonly if a and b are the same element.

Formally we define binary relations as follows:
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1.24 Definition. A binary relation on a set A is a subset R C A x A. If (a, b) € R then we write aRb.

1.25 Example. The divisibility relation on the set of integers is the subset R C Z x Z given by

R={(a,b) € ZxZ | b= an for some n € Z}

1.26 Example. The equality relation on a set A is the subset of R C A x A where

R={(a,a) e AxA|aeA}

1.27 Definition. Let A, B be sets
1) A function f: A — Bis 1-1 if f(x) = f(x) only if x = X".

not 1-1 1-1

2) A function f: A — B is onto if for every y € B there is x € A such that f(x) =y

f f
/ /
I
\
not onto onto

3) A function f: A — B is a bijection if f is both 1-1 and onto.

bijection
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1.28 Note. 1) If f: A — B is a bijection then the inverse function f~': B — A exists and it is also a
bijection.
2)Iff: A— Band g: B— C are bijections then the function gf: A — C is also a bijection.

1.29 Definition. Sets A, B have the same cardinality if there exists a bijection f: A — B. In such case
we write |A| = |B|.

1.30 Definition. A set A is finite if either A = @ or A has the same cardinality as the set {1,..., n}
for some n > 1.

1.31 Definition. A set A is infinitely countable if it is has the same cardinality as the set Z*t =
{1,2,3,...}

1.32 Definition. A set A is countable if it is either finite or infinitely countable.

1.33 Example. The set of natural numbers N = {0,1,2,...} is countable since we have a bijection
f: Z* — N given by f(k) = k — 1.

1.34 Example. The set of integers Z = {...,—2,-1,0,1,2,...} is countable since we have a bijection
f: Z* — Z given by
F(K) = k/2 :lf k :lS even
(1—k)/2 if kis odd

In other words:
fM =0, f(2)=1, f3)=-1, f(4 =2, fB)=-2, f(6)=3, ...

1.35 Example. The set of rational numbers Q is countable. A bijection f: Z* — Q can be constructed
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as follows:

Of I M 2 =2h 3 =3 - o = f(1)
0 = On = £(1)
02 12 2 22 =22 32 32 --- h = f(2)
O3 15 =13 23 —2/3 33 33 --- —11//1 = ;g;
2 =
0/ 1fa —a" 24 —2/4 3[4 3[4 --- 03 = 0 = f(1)
04 = O = (1)
O5 15 —1fs 2/s —2/5 35 =35 --- 113 = £(5)
% 6 -6 2/6 —26 36 —36 --- —21//12 = ;ES;

07 7 7 27 =27 37 =37 ---

Here are some properties of countable sets:

1.36 Theorem. 1) If A is a countable set and B C A then B is countable.

2) If {A1, A2, ... } is a collection of countably many countable sets then the set | J72, A; is countable.
3) If {A1, Az, ..., An} is a collection of finitely many countable sets then the set Ay X -+ X A, is
countable.

1.37 Example. The set of all real numbers in the interval (0, 1) is not countable. Indeed, assume by
contradiction that there exists a bijection f: Z* — (0,1). Then we would have:

f(1)y=0.dd3d} ...
f(2) = 0.d7d3d3 . ..
f(3) = 0.d3d3d3 . ..

where d¥, d, dX, ... are digits in the decimal expansion of the number f(k) € (0,1). Let x € (0,1) be
the number defined as follows:
x = 0.x1x0x3. ..

where

1 ifdi#1
Xi = .
2 ifdi=
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For example, if we have

f(1) =0.31415

f(2) = 0.12345

f(3) = 0.75149

f(4) = 0.00032

f(5) = 0.11111
then

x=011212...

Notice that:
x # f(1) since xq # d]
x # f(2) since xo # d%
x # f(3) since x3 # d3

In general x # f(k) for all k € Z*, and so f is not onto.

1.38 Example. The function f: (0,1) — R given by f(x) = tan (JTX — g) is a bijection. It follows that
|R| = |(0, 1)]. In particular R is an uncountable set.

1.39 Notation. 1) If A is a finite set of n elements then we write |A| = n.

2) If |JA| = |Z*| (ie. Ais an infinitely countable set) then we say that A has the cardinality aleph
naught and we write |A| = Ry.

3) If |A] = |R| then we say that A has the cardinality of the continuum and we write |A| = c.

Infima and Suprema. In the following chapters we will often work with the set R of real numbers. In
particular, we will often use suprema and infima of subsets of R. We conclude this chapter with a quick
review of these notions.

1.40 Definition. Let A C R. The set A is bounded below if there exists a number b such that b < x
for all x € A. The set A is bounded above if there exists a number ¢ such that x < ¢ for all x € A.
The set A is bounded if it is both bounded below and bounded above.

1.41 Definition. Let A C R. If the set A is bounded below then the greatest lower bound of A (or
infinum of A) is a number ag € R such that:
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1) ap < xforallxe A
2) it b< xforall x € Athen b < ag

A R
—@ L
b aop
We write: ag = inf A.
If the set A is not bounded below then we set inf A := —o0.

1.42 Example.
1) If A=10,1] then infA = 0.
2) If B=(0,1) then inf B = 0.
3)infZ = -0

1.43 Theorem. For any non-empty bounded below subset A C R the number inf A exists.

1.44 Definition. Let A C R. If the set A is bounded above then the least upper bound of A (or
supremum of A) is a number ag € R such that:

1) x<agforallxe A
2) if x < bforall x € Athenag < b

We write: ag = sup A.

If the set A is not bounded above then we set sup A := +oc.
1.45 Example.
1) If A=10,1] then supA = 1.

2) If B=(0,1) then supB =1.
3) supZ = +o0

1.46 Theorem. For any non-empty bounded above subset A C R the number sup A exists.
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Recall that a function f: R — R is continuous at a point xo € R if for each € > 0 there exists 0 > 0
such that if [xo — x| < d then |f(x0) — f(X)| < &

o = T - . :

X0 f(XO)

A function is continuous if it is continuous at every point xg € R.

Continuity of functions of several variables f: R” — R"” is defined in a similar way. Recall that
R":={(x1,....,x) | i € R}. lf x = (x1,...,x,) and y = (y1,...,y,) are two points in R" then the
distance between x and y is given by

dix, y) =\ (i = 912+ - + (0 — )2

The number d(x, y) is the length of the straight line segment joining the points x and y:

2.1 Definition. A function f: R" — R™ is continuous at xy € R if for each € > 0 there exists 0 > 0
such that if d(xp, x) < 0 then d(f(xo), f(x)) < €.

12
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AR?

Y

ARW

Y

The above picture motivates the following, more geometric reformulation of continuity:

2.2 Definition. Let xg € R” and let r > 0. An open ball with radius r and with center at xp is the set
B(xo,r) = {x € R" | d(x0,x) < r}

A

A R7

Using this terminology we can say that a function f: R” — R™ is continuous at xp if for each € > 0
there is a 8 > 0 such f(B(xo, 0)) C B(f(x0), €):

AR?
B(xo, 0)

-

f
7

ARM
B(f(xo). €)

\-1(Bxo, 0)

Here is one more way of rephrasing the definition of continuity: f: R” — R™ is continuous at xq if for
each € > 0 there exists 6 > 0 such that B(xp, 6) C f~1(B(f(x0), €)):

AR?

B(xo, 0)

/ .

- F1(B(f(x). €))

f
7

ARM

B(f(xo), €)

\/
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Notice that in order to define continuity of functions R” — R” we used only the fact the for any two
points in R"” or R™ we can compute the distance between these points. This suggests that we could
define similarly what is means that a function f: X — Y is continuous where X and Y are any sets,
provided that we have some way of measuring distances between points in these sets. This observation
leads to the notion of a metric space:

2.3 Definition. A metric space is a pair (X, g) where X is a set and g is a function
0: X xX—->R

that satisfies the following conditions:
1) o(x,y) >0 and o(x,y) =0 if and only if x = y;

2) olx,y) = ely, x);
3) for any x, y,z € X we have o(x, z) < o(x, y) + o(y, 2).

The function g is called a metric on the set X. For x, y € X the number g(x, y) is called the distance
between x and y.

The first condition in Definition 2.3 says that distances between points of X are non-negative, and that
the only point located within the distance zero from a point x is the point x itself. The second condition
says that the distance from x to y is the same as the distance from y to x. The third condition is called
the triangle inequality. It says that the distance between points x and z measured directly will never
be bigger than the number we obtain by taking the distance from x to some intermediary point y and
adding it to the distance between y and z:

\\ e

Y

R 4
Q\,:'~ </

We define continuity of functions between metric spaces the same way as for functions between R”
and R™:

2.4 Definition. Let (X, p) and (Y, ) be metric spaces. A function f: X — Y is continuous at xo € X if
for each € > 0 there exists & > 0 such that if g(xo, x) < 0 then p(f(xo), f(x))) < e.

A function f: X — Y is continuous if it is continuous at every point xo € X.

We can reformulate this definition in terms of open balls:
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2.5 Definition. Let (X, o) be a metric space. For xg € X and let r > 0 the open ball with radius r and
with center at xg is the set

Bo(xo,r) = {x € X | o(x0,x) < r}
We will often write B(xo, r) instead of By(xo, r) when it will be clear from the context which metric is
being used.

Notice that a function f: X — Y between metric spaces (X, g) and (Y, u) is continuous at xo € X if
and only if for each € > 0 there exists > 0 such that By(xo, d) C f=1(Bu(f(x0), €)).

Here are some examples of metric spaces:

2.6 Example. Let X =R". For x = (x1,...,xn), Y = (y1,...,Yyn) define:

d(x g) = /11 — 912+ + (X0 — )
The metric d is called the Euclidean metric on R".

For example, if x = (1,3) and y = (4,1) are points in R? then

dix,y) = /(1 =47 + (3 -1)? = V13

A (1'3)

2.7 Example. Let X =R". For x = (x1,..., Xn) Yy =(y1,..., yn) define:

Qort(X, y) = X1 —y1|+ -+ |x0 — yn|
The metric gyt is called the orthogonal metric on R".

For example, if x = (1,3) and y = (4, 1) are points in R? then

Qort(x,y) =1 =4[+ [3-1] =5
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4y (1,3)

3-1]

°
|4 —1] (4,1)

-

2.8 Example. Let X =R". For x = (x1,...,xn), Y = (y1,..., Yyn) define:
oo |xXn = ynl}

Qmax(X, y) = max{|x1 — y1
The metric gy is called the maximum metric on R".
For example, if x = (1,3) and y = (4, 1) are points in R? then
3—-1} =3

Omax(X, y) = max{[1 — 4,

4y (1,3)
°

°
|4 —1] (4,1)

-

2.9 Example. Let X =R". For x = (x1,...,Xn), Yy = (Y1, ..., yn) define gp(x, y) as follows. If x =y
then gn(x,y) = 0. If x # y then

en(x, y) = X12+"~+X%+\/y$+~-~+y%
The metric gy is called the hub metric on R".
For example, if x = (1,3) and y = (4, 1) are points in R? then

on(x,y) = V12 + 32 +42 +12 = V10 + V17

4 (1,3)

VTS

»\2
A (4,1)
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2.10 Example. Let X be any set. Define a metric ggisc on X by

1 ifx
Qdisc(xr y) = {0 i x ii

The metric ggisc is called the discrete metric on X.

X

2.11 Example. If (X, ) is a metric space and A C X then A is a metric space with the metric induced
from X.

Exercises to Chapter 2

E2.1 Exercise. Verify the gpqx is @ metric on R".

E2.2 Exercise. For points x = (x1,...,x,), y = (y1,...,yn) in R" define

yoes ey

@min(x, y) = min{|x1 — yy Xn = Ynl}
Does this define a metric on R"? Justify your answer.
E2.3 Exercise. Let Z be a set of all integers, and let p be some fixed prime number. For m,n € Z
define
(m, n) = 0 itm=n
Qo 1) = p~% ifm—n=pkrwhererez ptr

Verify that g, is a metric on Z. It is called the p-adic metric.

E2.4 Exercise. Let S be a set and let F(S) denote the set of all non-empty finite subsets of S. For

A, B € F(S) define
_|ANn B

AU B|

where |A| denotes the number of elements of the set A. Show that g is a metric on F(S).

oA, B) =1
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E2.5 Exercise. Draw the following open balls in R? defined by the specified metrics:

B(xo, 1) for xo = (0, 0) and the orthogonal metric go/+.
B(xo, 1) for xo = (0,0) and the maximum metric @ qx-
B(X(), 1) for xo = (0, 0) and the hub metric gj.
B(xo, 6) for xo = (3,4) and the hub metric gj.
B(xo, 1) for xo = (3, 4) and the hub metric gj.

b

Qo

a)
)
)
)
e)

E2.6 Exercise. Let (X, 0) be a metric space, and let xop € X, Show that if x € B(xp, r) then exists
s > 0 such that B(x, s) C B(xo, r).

E2.7 Exercise. a) Let (X, o) be a metric space and let B(x, r), B(y, s) be open balls in X such that
B(y.,s) C B(x, r) but B(y,s) # B(x, r). Show that s < 2r.

b) Give an example of a metric space (X, ) and open balls B(x,r), B(y,s) in X that satisfy the
assumptions of part a) and such that s > r.

E2.8 Exercise. Let (X, ggisc) be a discrete metric space and let (Y, y) be some metric space. Show
that every function f: X — Y is continuous.

E2.9 Exercise. Consider R? as a metric space with the hub metric g, and R' as a metric space with
the Euclidean metric d.

a) Show that the function f: R? — R given by

A ) 0 if (x1,x2) =(0,0)
X1, X2) =
e 1 otherwise

is not continuous.

b) Show that the function g: R?> — R given by

glx1, x2) =

0 ifx7+x3<1
1 otherwise

is continuous.
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We have seen that by equipping sets X, Y with metrics we can specify what it means that a function
f: X = Y is continuous. In general continuity of functions depends on the choice of metrics: if we
have two different metrics on X (or on Y) then a function f: X — Y that is continuous with respect to
one of these metrics may be not continuous with respect to the other. This is however not always the
case. Our first goal in this chapter will be to show that if two metrics on X or Y are equivalent then
functions continuous with respect to one of them are continuous with respect to the other and vice
versa.

3.1 Definition. Let g1 and g2 be two metrics on the same set X. We say that the metrics g1 and g are
equivalent if for every x € X and for every r > 0 there exist s1,s2 > 0 such that By, (x, s1) € By, (x, r)
and By, (x, s2) € By, (x, r).

B, (x.r)

3.2 Proposition. Let g1, 02 be equivalent metrics on a set X, and let p1, 1 be equivalent metrics on
a set Y. A function f: X — Y is continuous with respect to the metrics g1 and 1 if and only if it is
continuous with respect to the metrics g and 1.

Proof. Assume that f is continuous with respect to g1 and p1. We will show that it is also continuous
with respect to g2 and p; (the argument in the other direction is the same). Let x € X and let
€ > 0. We need to show that there is & > 0 such that By, (x,d) C f=1(B,,(f(x), €))). Since the
metrics pq1 and pp are equivalent there exists €1 > 0 such that By, (f(x), €1)) C B,,(f(x), €)), and so
f=1 (B, (f(x), €1))) C F~1(B,,(f(x), €))). Also, since by assumption f is continuous with respect to g

19
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and 1, there is 01 such that By, (x, 01) C f=1(By, (f(x), €1))). Finally, using equivalence of metrics g
and gz we obtain that there exists 0 > 0 such that By, (x, 0) C By, (x, 81). Combining these inclusions
we get By, (x, d) C f=1 (B, (f(x), €))). O

3.3 Example. The Euclidean metric d, the orthogonal metric go+ and the maximum metric gpnqx are
equivalent metrics on R" (exercise).

3.4 Example. The following metrics on R? are not equivalent to one another: the Euclidean metric d,
the hub metric g5, and the discrete metric ggisc (exercise).

Every metric defines open balls, but even if metrics are equivalent their open balls may look very
differently (compare e.g. open balls in R? taken with respect to d and go). It turns out, however, that
each metric defines also a collection of so-called open sets, and that open sets defined by two metrics
are the same precisely when these metrics are equivalent.

3.5 Definition. Let (X, g) be a metric space. A subset U C X is an open set if U is a union of (perhaps
infinitely many) open balls in X: U = J,-, B(xi, ri)-

iel

3.6 Proposition. Let (X, 0) be a metric space and let U C X. The following conditions are equivalent:

1) The set U is open.
2) For every x € U there exists ry > 0 such that B(x, r,) C U.

Proof Exercise. O

3.7 Proposition. Let X be a set and let p1, 02 be two metrics on X. The following conditions are
equivalent:
1) The metrics o1 and g, are equivalent.

2) A set U C X is open with respect to the metric o1 if and only if it is open with respect to the
metric 0.
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Proof. 1) = 2) Assume that g1 and g, are equivalent and that the set U is open with respect to g1. By
Proposition 3.6 this means that for every x € U there exists ry > 0 such that B, (x, ry) € U. Since the
metric g1 is equivalent to g we can find s, > 0 such that By, (x, sx) € By, (x, rx). As a consequence for
every x € U we have B(x,sy) C U.

Using Proposition 3.6 again we get that the set U is open with respect to g;. By the same argument
we obtain that if U is open with respect to g, then it is open with respect to p;.

2) = 1) Exercise.

O]
Here are some basic properties of open sets in metric spaces:
3.8 Proposition. Let (X, o) be a metric space.
1) The sets X and @ are open sets.
2) If U; is an open set for i € | then the set | J;c, U; is open.
3) If Uy, Uy are open sets then the set Uy N Uy is open.
Proof. Exercise. O

3.9 Note. From part 3) of Proposition 3.8 is follows that if {U;, ..., U,} is a finite family of open sets
then Ui N---N U, is open. However, if {U;}ie/ is an infinite family of open sets then in general the
set [;e; Ui need not be open (exercise).

Our original definition of a continuous function between metric spaces stated that continuous functions
behave well with respect to open balls. The next proposition says that in order to check if a function is
continuous it is enough to know how it behaves with respect to open sets:

3.10 Proposition. Let (X, 0), (Y, u) be metric spaces and let f: X — Y be a function. The following
conditions are equivalent:
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1) The function f is continuous.
2) For every open set U C Y the set f~'(U) is open in X.

The proof of Proposition 3.10 will use the following fact:

3.11 Lemma. Let (X,0), (Y, u) be metric spaces and let f: X — Y be a continuous function. If
B := B(yo, r) is an open ball in Y then the set f~(B) is open in X.

Proof. Exercise. O

Proof of Proposition 3.70. 1) = 2) Assume that f: X — Y is a continuous function and that U C Y is
an open set. By definition this means that U is a union of some collection of open balls in Y:

U=JBulyir)

iel
This gives:
() = (U Bu(ys. rf)) = JF"(Bulyi )
iel iel
Since by Lemma 3.11 each of the sets f~1(B,(y;, r;) is open in X and by Proposition 3.8 a union of
open sets is open we obtain that the set f~'(U) is open in X.

2) = 1) Assume that f=1(U) is open in X for every open set U C Y. Given x € X and € > 0 take
U = B,(f(x), €). By assumption the set f~1(B,(f(x), €)) C X is open. Since x € f~1(B,(f(x), €)) this
implies that there exists 0 > 0 such that By(x, 9) C f_1(Bu(f(x), €)). This shows that f is a continuous
function. O]

Recall that we introduced metric spaces in order to be able to define continuity of functions. Proposition
3.10 says however that to define continuity we don’t really need to use metrics, it is enough to know
which sets are open. This observation leads to the following generalization of the notion of a metric
space:

3.12 Definition. Let X be a set. A topology on X is a collection T of subsets of X satisfying the
following conditions:

N X,oeT,;
2) U eTforielthen g U €T;
3) f Uy, Uy € Tthen UyNnUy €7.

Elements of T are called open sets.

A topological space is a pair (X,7) where X is a set and T is a topology on X.
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In the setting of topological spaces we can define continuous functions as follows:

3.13 Definition. Let (X, Tx), (Y, Ty) be topological spaces. A function f: X — Y is continuous if for
every U € Ty we have f~1(U) € Ty.

3.14 Example. If (X, o) is a metric space then X is a topological space with the topology
T ={U C X | U is a union of open balls}

We say that the topology T is induced by the metric g.

3.15 Note. From now on, unless indicated otherwise, we will consider R" as a topological space with
the topology induced by the Euclidean metric.

3.16 Example. Let X be an arbitrary set and let
T = {all subsets of X}

The topology T is called the discrete topology on X. If X is equipped with this topology then we say
that it is a discrete topological space.

Note that the discrete topology is induced by the discrete metric ggisc on X. Indeed, for x € X we have

Bgdisc (X' %) = {X}
so for any subset U C X we get
U= U BQdisc (X' %)
xeU
3.17 Example. Let X be an arbitrary set and let

T={X, o}
The topology T is called the antidiscrete topology on X.
3.18 Example. Let X =R and let
T={UCR|U=gor U= (R\YS) for some finite set S C R}
The topology T is called the Zariski topology on R.
One can ask whether for every topological space (X,T) we can find a metric ¢ on X such that the
topology T is induced by . Our next goal is to show that this is not the case: some topologies do not

come from any metric. Thus, the notion of a topological space is more general than that of a metric
space.
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3.19 Definition. A topological space (X, T) is metrizable if there exists a metric ¢ on X such that T is
the topology induced by o.

3.20 Lemma. /f (X, 7) is a metrizable topological space and x,y € X are points such that x #+ y then
there exists an open set U C X such that x € U and y ¢ U.

Proof Exercise. O

3.21 Proposition. If X is a set containing more than one point then the antidiscrete topology on X is
not metrizable.

Proof. This follows directly from Lemma 3.20. O]

Exercises to Chapter 3

E3.1 Exercise. Verify the statement of Example 3.3.
E3.2 Exercise. Verify the statement of Example 3.4.

E3.3 Exercise. The goal of this exercise is to show that the converse of Proposition 3.2 is also true.
Let X be a set and let g1, 02 be two metrics on X.

a) Assume that for each metric space (Y, p) and for each function f: X — Y the function f is continuous
with respect to g1 and p if and only if it is continuous respect to g and p. Show that g1 and g must
be equivalent metrics.

b) Assume that for each metric space (Y, p) and for each function g: Y — X the function g is continuous
with respect to i and g if and only if it is continuous respect to y and g>. Show that g1 and g must
be equivalent metrics.

E3.4 Exercise. Prove Proposition 3.6.

E3.5 Exercise. Consider the set R? with the Euclidean metric.

a) Show that the open half plane H = {(x1, x2) € R? | x, > 0} is an open set in R?

b) Show that the closed half plane H = {(x1, x2) € R? | x2 > 0} is not an open set in R?

E3.6 Exercise. Consider the set R? with the hub metric on. Show that the set
A={(x1,x) € R? | x2 > —1}

is an open set in R?
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E3.7 Exercise. Consider the set R with the Euclidean metric. Show that every open set in R is a
disjoint union of open intervals (a, b) (where possibly a = —oc0 or b = +00).

E3.8 Exercise. Prove the implication 2) = 1) of Proposition 3.7.
E3.9 Exercise. Prove Proposition 3.86.

E3.10 Exercise. Consider the set R? with the Euclidean metric. Give an example of open sets
Uy, Us, ..., in R? such that the set ﬂzoz1 U; is not open.

E3.11 Exercise. Prove Lemma 3.11.
E3.12 Exercise. Prove Lemma 3.20.
E3.13 Exercise. Show that the set R with the Zariski topology is not metrizable.

E3.14 Exercise. Let X be a topological space consisting of a finite number of points. Show that if X
is metrizable then it is a discrete space.

E3.15 Exercise. Let Rr, denote the set R with the Euclidean topology and Rz, the set R with the
Zariski topology. Show that every continuous function f: Rz, — Rg, must be constant.
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Our main goal in this chapter is to develop some tools that make it easier to construct examples of
topological spaces. By Definition 3.12 in order to define a topology on a set X we need to specify
which subsets of X are open sets. It can difficult to describe all open sets explicitly, so topological
spaces are often defined by giving either a basis or a subbasis of a topology. Interesting topological
spaces can be also obtained by considering subspaces of topological spaces. We explain these notions
below.

4.1 Definition. Let X be a set and let B be a collection of subsets of X. The collection B is a basis
on X if it satisfies the following conditions:

1) X =Uyes V:
2) for any V1, Vo € B and x € V4 N V; there exists W € B such that x € W and W C Vi N V.

X

4.2 Example. If (X, g) is a metric space then the set B = {B(x,r) | x € X, r > 0} consisting of all
open balls in X is a basis on X (exercise).

4.3 Proposition. Let X be a set, and let B be a basis on X. Let T denote the collection of all subsets

U C X that can be obtained as the union of some elements of B: U = | J,.cg, V for some B4 C B.
Then T is a topology on X.

26
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Proof. Exercise. O

4.4 Definition. Let B be a basis on a set X and let T be the topology defined as in Proposition 4.3.
In such case we will say that B is a basis of the topology T and that T is the topology defined by the
basis B.

4.5 Example. Let (X, g) be a metric space, let T be the topology on X induced by g, and let B be the
collection of all open balls in X. Directly from the definition of the topology T (3.14) it follows that B
is a basis of 7.

4.6 Example. Consider R" with the Euclidean metric d. Let B be the collection of all open balls
B(x,r) CR" such that r € Q and x = (x1, x2, ..., xp) where xq,...,x, € Q. Then B is a basis of the
Euclidean topology on R" (exercise).

4.7 Note. If a topological space X has a basis consisting of countably many sets then we say that X
satisfies the 2" countability axiom or that X is second countable. Since the set of rational numbers is
countable it follows that the basis of the Euclidean topology given in Example 4.6 is countable. Thus,
R"™ with the Euclidean topology is a second countable space. Second countable spaces have some
interesting properties, some of which we will encounter later on.

4.8 Example. The set B = {[a,b) | a, b € R} is a basis of a certain topology on R. We will call it
the arrow topology.

A4
o

4.9 Example. Let B = {[a, b] | a,b € R}. The set B is a basis of the discrete topology on R (exercise).

4.10 Example. Let X = {a, b, c,d} and let B = {{a, b, c},{b,c,d}}. The set B is not a basis of any
topology on X since b € {a, b, c} N {b, c,d}, and B does not contain any subset W such that b € W
and W C {a,b,c} n{b, ¢, d}.

4.11 Proposition. Let X be a set and let 8 be any collection of subsets of X such that X =<5 V.
Let T denote the collection of all subsets of X that can be obtained using two operations:

1) taking finite intersections of sets in §;
2) taking arbitrary unions of sets obtained in 1).

Then T is a topology on X.

Proof Exercise. O
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4.12 Definition. Let X be a set and let 8 be any collection of subsets of X such that X =[5 V-
The topology 7 defined by Proposition 4.11 is called the topology generated by S, and the collection
8 is called a subbasis of T.

4.13 Example. If X = {a,b,c,d} and 8 = {{a, b, ¢}, {b, ¢, d}} then the topology generated by § is
T ={{a,b,c},{b,c,d} {b.c}, {a, b, c d}, o}

The notions of a basis and a subbasis provide shortcuts for defining topologies: it is easier to specify
a basis of a topology than to define explicitly the whole topology (i.e. to describe all open sets).
Specifying a subbasis is even easier. The price we pay for this convenience is that it is more difficult
to identify which sets are open if we know only a basis or a subbasis of a topology:

1 easier to identify

open sets

topology T

open sets:
elements of T

basis B

open sets:
unions of elements of B

subbasis &

open sets:
unions of finite intersections
easier to define il of elements of 8

The next proposition often simplifies checking if a function between topological spaces is continuous:

4.14 Proposition. Let (X, Tx), (Y, Ty) be topological spaces, and let B be a basis (or a subbasis) of
Ty. A function f: X — Y is continuous if and only if f~1(V) € Tx for every V € B.

Proof. Exercise. O

A useful way of obtaining new examples of topological spaces is by considering subspaces of existing
spaces:

4.15 Definition. Let (X, T) be a topological space and let Y C X. The collection
Ty={YnuU|UeT}
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is a topology on Y called the subspace topology. We say that (Y, Ty) is a subspace of the topological
space (X, 7).

™ U is open in X

(
N

UnyY isopeninY

4.16 Example. The unit circle S' is defined by
SVi={(x,x) eR? | xF +x2 =1}

The circle S' is a topological space considered as a subspace of R?.

<«— open in R?

open in S'

In general the n-dimensional sphere S” is defined by
S" = {1, Xag1) ERTT X X2, =1}

It is a topological space considered as a subspace of R"*'.

4.17 Example. Consider Z as a subspace of R. The subspace topology on Z is the same as the discrete
topology (exercise).

4.18 Proposition. Let X be a topological space and let Y be its subspace.

1) The inclusion map j: Y — X is a continuous function.
2) If Z is a topological space then a function f: Z — Y is continuous if and only if the composition

jf: Z — X is continuous.

Proof Exercise.
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4.19 Proposition. Let X be a topological space and let Y be its subspace. If B is a basis (or a
subbasis) of X then the set By = {UNY | U € B} is a basis (resp. a subbasis) of Y.

Proof Exercise. O

Exercises to Chapter %

E4.1 Exercise. Prove Proposition 4.3

E4.2 Exercise. Verify the statement of Example 4.6.
E4.3 Exercise. Verify the statement of Example 4.9.
E4.4 Exercise. Prove Proposition 4.11.

E4.5 Exercise. Prove Proposition 4.14.

E4.6 Exercise. Consider the interval [0, 1] as a subspace of R. Determine which of the following sets
are open in [0, 1]. Justify your answers.

a) (3.1) b) (3.1] 9 (53) d) (5.5]
E4.7 Exercise. Verify the statement of Example 4.17.

E4.8 Exercise. Prove Proposition 4.18.

E4.9 Exercise. The goal of this exercise if to show subspace topology is uniquely determined by the
properties listed in Proposition 4.18. Let X be a topological space, let Y C X and let j: Y — X be
the inclusion map. Let T be a topology, and let Y5 denote Y considered as a topological spaces with
respect to the topology T. Assume that Y5 satisfies the following conditions:

1) The map j: Yo — X is a continuous function.
2) If Z is a topological space then a function f: Z — Yg is continuous if and only if the composition
jf: Z — X is continuous.

Show that T is the subspace topology on Y. Thatis, U € T if and only if U = Y N U’ where U’ is
some open set in X.

E4.10 Exercise. Recall that a topological space X is second countable if the topology on X has a
countable basis. Show that the discrete topology on a set X is second countable if and only if X is a
countable set.

E4.11 Exercise. Show that R with the arrow topology is not second countable. (Hint: Assume by
contradiction that B = {V4, V5,...} is a countable basis of the arrow topology. Let o; = inf V;. Take
a € R~ {ay, a2,...}. Show that the set [ag, ag + 1) is not a union of sets from B).
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E4.12 Exercise. Let J1 and T2 be two topologies on the same set X. We say that the topology 7> is
finer than T1 if Ty C T, (e.l. if every open set in T7 is also open in T3). Let T4, be the arrow topology
on R and let Jg, be the Euclidean topology on R. Show that Ty, is finer than Tg,.



5 | Closed Sets,
Interior, Closure,
Boundary

5.1 Definition. Let X be a topological space. A set A C X is a closed set if the set X \ A is open.

5.2 Example. A closed interval [a, b] C R is a closed set since the set R \ [a, b] = (—o0, a) U (b, +0)
is open in R.

5.3 Example. Let Tz, be the Zariski topology on R. Recall that U € T, if either U = @ or U = R\ S
where S C R is a finite set. As a consequence closed sets in the Zariski topology are the whole space
R and all finite subsets of R.

5.4 Example. If X is a topological space with the discrete topology then every subset A C X is closed
in X since every set X \\ A is open in X.

5.5 Proposition. Let X be a topological space.

1) The sets X, @ are closed.
2) If A; C X is a closed set for i € | then ﬂiE,Ai is closed.
3) If A1, Ay are closed sets then the set A1 U A is closed.

Proof. 1) The set X is closed since the set X \. X = @ is open. Similarly, the set @ is closed since
the set X \ @ = X is open.

2) We need to show that the set X \ (1),c;Ai is open. By De Morgan’s Laws (1.13) we have:

X~ (A= x~A)

iel iel

32
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By assumption the sets A; are closed, so the sets X ~. A; are open. Since any union of open sets is
open we get that X \. [);c, Ai is an open set.

3) Exercise. O

5.6 Note. By induction we obtain that if {Ay,..., A} is a finite collection of closed sets then the set
A1 U---UA, is closed. It is not true though that an infinite union of closed sets must be closed. For
example, the sets A, = [% 1] are closed in R, but the set [ J;2; A, = (0, 1] is not closed.

In metric spaces closed sets can be characterized using the notion of convergence of sequences:

5.7 Definition. Let (X, g) be a metric space, and let {x,} be a sequence of points in X. We say that
{xn} converges to a point y € X if for every € > 0 there exists N > 0 such that g(y, x,) < € for all
n > N. We write: x, — y.

Equivalently: x, — y if for every € > 0 there exists N > 0 such that x, € B(y, €) for all n > N.

5.8 Proposition. Let (X, 0) be a metric space and let A C X. The following conditions are equivalent:

1) The set A is closed in X.
2) If {x,} CAand x, — y then y € A.

Proof Exercise. O

5.9 Example. Take R with the Euclidean metric, and let A= (0,1]. Let x, = % Then {x,} C A, but
xp — 0 & A. This shows that A is not a closed set in R.

The notion of convergence of a sequence can be extended from metric spaces to general topological
spaces by replacing open balls with center at a point y with open neighborhoods of y:

5.10 Definition. Let X be a topological space and y € X. If U C X is an open set such that y € U
then we say that U is an open neighborhood of y.

5.11 Definition. Let X be a topological space. A sequence {x,} C X converges to y € X if for every
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open neighborhood U of y there exists N > 0 such that x, € U for n > N.

5.12 Note. In general topological spaces a sequence may converge to many points at the same time.
For example let (X, T) be a space with the antidiscrete topology T = {X, @}. Any sequence {x,} C X
converges to any point y € X since the only open neighborhood of y is whole space X, and x, € X
for all n. The next proposition says that such situation cannot happen in metric spaces:

5.13 Proposition. Let (X, g) be a metric space and let {x,} be a sequence in X. If x, — y and x, — z
for some y,z € X then y = z.

Proof. Exercise. O

5.14 Proposition. Let X be a topological space and let A C X be a closed set. If {x,} C A and
Xp — y then y € A.

Proof. Exercise. O

5.15 Note. For a general topological space X the converse of Proposition 5.14 is not true. That is,
assume that A C X is a set with the property that if {x,} C A and x, — y then y € A. The next
example shows that this does not imply that the set A must be closed in X.

5.16 Example. Let X = R with the following topology:
T={UCR|U=o or U= (R~ S) for some countable set S C R}

Closed sets in X are the whole space R and all countable subsets of R. If {x,} C X is a sequence
then x, — y if and only if there exists N > 0 such that x, = y for all n > N (exercise). It follows that
if Ais any (closed or not) subset of X, {x,} C A and x, — y then y € A.

5.17 Definition. Let X be a topological space and let Y C X.
e The interior of Y is the set Int(Y) :=J {U | U C Y and U is open in X}.
e The closure of Y is the set Y := () {A| Y C Aand A is closed in X}.
e The boundary of Y is the set Bd(Y) := Y N (X \Y).
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5.18 Example. Consider the set Y = (a, b] in R:

R
O O
a b
We have:
Int(Y) R Y R Bd(Y) R

O O @ ® @ @

a b a b a b

Int(Y) = (a, b) Y =a, b] Bd(Y) = {a, b}

5.19 Example. Consider the set Y = {(x1,x2) ER? | a < x; < b, ¢ < x2 < d} in R?:

d+
14
R
a b g
We have:
d dt = d
Int(Y) 1% Bd(Y)
C C C o
e b a b a b

Int(Y) = (a, b) x (c, d) Y =[a, b] x [c, d] Bd(Y) = [a, b] x {c, d}

U{a, b} x [c, d]

5.20 Proposition. Let X be a topological space and let Y C X.

1) The set Int(Y) is open in X. It is the biggest open set contained in Y: if U is open and U C Y
then U C Int(Y).

2) The set Y is closed in X. It is the smallest closed set that contains Y: if A is closed and Y C A
then Y C A.

Proof Exercise.
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5.21 Proposition. Let X be a topological space, let Y C X, and let x € X. The following conditions
are equivalent:

1) x € Int(Y)

2) There exists an open neighborhood U of x such that U C Y.

X

Proof. 1) = 2) Assume that x € Int(Y). Since Int(Y) is an open set and Int(Y) C Y we can take
U = Int(Y).

2) = 1) Assume that x € U for some open set U such that U C Y. Since Int(Y) is the union of all
open sets contained in Y thus U C Int(Y) and so x &€ Int(Y). O]

5.22 Proposition. Let X be a topological space, let Y C X, and let x € X. The following conditions
are equivalent:

1) xeyY

2) For every open neighborhood U of x we have UNY + @.

X

Y
Uy
[ X2

Proof. Exercise. O

5.23 Proposition. Let X be a topological space, let Y C X, and let x € X. The following conditions
are equivalent:

1) x € Bd(Y)
2) For every open neighborhood U of x we have UNY + @
and UN (X \Y) + @.
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Proof. This follows from the definition of Bd(Y) and Proposition 5.22. O
5.24 Definition. Let X be a topological space. A set Y C X is dense in X if Y = X.

5.25 Proposition. Let X be a topological space and let Y C X. The following conditions are equivalent:

1) Y is dense in X
2) IfU C X is an open set and U + @ then UNY # @.

Proof. This follows directly from Proposition 5.22. O

5.26 Example. The set of rational numbers Q is dense in R.

Exercises to Chapter 5

E5.1 Exercise. Prove Proposition 5.8
E5.2 Exercise. Prove Proposition 5.13

E5.3 Exercise. Let (X, g) be a metric space. A sequence {x,} is called a Cauchy sequence if for any
N > 0 there exists € > 0 such that if n, m > N then o(xn, xn) < €. Show that if {x,} is a sequence in
X that converges to some point xp € X then {x,} is a Cauchy sequence.

E5.4 Exercise. Prove Proposition 5.14

E5.5 Exercise. Let X be the topological space defined in Example 5.16 and let {x,} be a sequence in
X. Show that x, — y for some y € X iff there exists N > 0 such that x, = y for all n > N.

E5.6 Exercise. Prove Proposition 5.22

E5.7 Exercise. Let X be a topological space and let Y be a subspace of X. Show thataset AC Y is
closed in Y if and only if there exists a set B closed in X such that Y N B = A.

E5.8 Exercise. Let X be a topological space and let Y C X be a subspace.
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a) Assume that Y is open in X. Show that if U C Y is open in Y then U is open in X.
b) Assume that Y is closed in X. Show that if A C Y is closed in Y then A is closed in X.

E5.9 Exercise. Let (X, g) be a metric space. The closed ball with center at a point xop € X and radius
r >0 is the set

B(xo, r) = {x € X | o(x0,x) < r}
a) Show that for any xop € X and any r > 0 the closed ball B(xp, r) is a closed set.

b) Consider R" with the Euclidean metric d. Show that for any xo € R" and any r > 0 the closed ball
B(xg, r) is the closure of the open ball B(xp, r) (i.e. B(xo, r) = B(xo, r)).

c) Give an example showing that in a general metric space (X, g) the closed ball B(xo, r) need not be
the closure of the open ball B(xp, r).

E5.10 Exercise. Consider the following subset of R:

v={-
n

Describe Int(Y), Y, and Bd(Y) in the following topological spaces:

nEZ,n21}

a)
b)
¢) R with the arrow topology.

R with the Euclidean topology.
R with the Zariski topology.

d) R with the discrete topology.
e) R with the antidiscrete topology.
f) R with the topology defined in Example 5.16.

E5.11 Exercise. Let (X, g) be a metric space. We say that a set Y C X is bounded if there exists an
open ball B(x, r) C X such that Y C B(x, r). Show that if Y is a bounded set then Y is also bounded.
E5.12 Exercise. Let X be a topological space and let Y1, Y2 C X.

a) Show )71 UVZ =Y UY,

b) Is it true always true that YinY,=YiNnYy? Justify your answer.
E5.13 Exercise. Let X be a topological space and let Y C X be a dense subset of X. Show that

if f,g: X — R are continuous functions such that f(x) = g(x) for all x € Y then f(x) = g(x) for all
x € X.

E5.14 Exercise. Let X be a topological space, and let A, B C X. Show that if B C Int(A) then
X = Int(X ~ B) U Int(A).

E5.15 Exercise. Let R4, denote the set of real numbers with the arrow topology (4.8). The goal of
this exercise is to show that this space is not metrizable.
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a) Recall that a space X is second countable if it has a countable basis. We say that a space X
is separable if there is a set Y C X such that Y is countable and dense in X. Show that if X is a
metrizable space then X is separable if and only if X is second countable.

b) Show that R4, is a separable space.

Since by Exercise 4.11 R4, is not second countable this implies that R4, is not metrizable.
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Let X, Y be topological spaces. Recall that a function f: X — Y is continuous if for every open
set U C Y the set f~1(U) C X is open. In this chapter we study some properties of continuous
functions. We also introduce the notion of a homeomorphism that plays a central role in topology: from
the topological perspective interesting properties of spaces are the properties that are preserved by
homeomorphisms.

6.1 Proposition. Let X, Y be topological spaces. A function f: X — Y is continuous if and only if for

every closed set A C Y the set f~1(A) C X is closed.

Proof. Assume that f: X — Y is a continuous function and let A C Y be a closed set. We have
1 A) = X~ (YN A)

The set Y . Ais open in Y so by continuity of f the set f~'(Y ~. A) C X is open in X. It follows that
f~1(A) is closed in X.

Conversely, assume that f: X — Y is a function such that for every closed set A C Y the set f~1(A) C X
is closed. Let U C Y be an open set. We have

T U) =X~ (Y U)

The set Y ~ U is closed in Y so by assumption the set f~1(Y . U) is closed in X. If follows that
f~1(U) is open in X. Therefore f is a continuous function. O

For metric spaces continuous functions are precisely the functions that preserve convergence of
sequences:

6.2 Proposition. Let (X, g) be a metric space, let Y be a topological space, and let f: X — Y be a
function. The following conditions are equivalent:

1) f is continuous.
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2) For any sequence {x,} C X if x, — y for some y € X then f(x,) — f(y).

Proof. 1) = 2) Exercise.

2) = 1) Let AC Y be a closed set. We will show that the set f~'(A) is closed in X. By Proposition
5.8 it suffices to show that if {x,} C f~'(A) is a sequence and x, — x then x € f~1(A).

If x, — x then by assumption we have f(x,) — f(x). Since {f(x,)} C A and A is a closed set, thus by
Proposition 5.8 we obtain that f(x) € A, and so x € f~1(A). O

The implication 1) = 2) in Proposition 6.2 holds for maps between general topological spaces:

6.3 Proposition. Let f: X — Y be a continuous function of topological spaces. If {x,} C X is a
sequence and x, — x for some x € X then f(x,) — f(x).

Proof. Exercise. O

6.4 Example. We will show that the implication 2) = 1) in Proposition 6.2 is not true if X is a general
topological space. Let X be the space defined in Example 5.16: X = R with the topology

T={UCR|U=@or U= (R\S) for some countable set S C R}

Recall that if {x,} is a sequence in X then x, — x if and only if there exists N > 0 such that x, = x
for all n > N. Let f: X — X be a function given by

- 10 fxE01)
() = 1 ifx e (0,1)

This function is not continuous since the set {0} is closed in X and the set (0,1) = f~'({0}) is not
closed in X. On the other hand let {x,} C X be a sequence and let x, — x. There is N > 0 such that
xp = x for n > N, so f(x,) = f(x) for all n > N and so f(x,) — f(x).

6.5 Proposition. /f f: X — Y and g: Y — Z are continuous functions then the function gf: X — Z is
also continuous.

Proof. Exercise. O
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Frequently functions f: X — Y are constructed by gluing together several functions defined on
subspaces of X. The next two facts are useful for verifying that functions obtained in this way are
continuous.

6.6 Open Pasting Lemma. Let X, Y be topological spaces and let {U;}ic; be a family of open sets in
X such that Uie, U; = X. Assume that for i € | we have a continuous function f;: U; — Y such that
fi(x) = fi(x) if x € U; N U;. Then the function f: X — Y given by f(x) = fi(x) for x € U; is continuous.

X Us

U 1 U2

Proof. Let V C Y be an open set. We will show that the set f~'(V) C X is open. Since Ui Ui=X
we have
vy =Ur'mnu=J"(v)
il icl
Since f;: U; — Y is a continuous function the set £, (V) is open in U;. Also, since U; is open in X by
Exercise 5.8 we obtain that the set fi_1(\/) is open in X. Thus f~1(V) is an open set. O

6.7 Closed Pasting Lemma. Let X, Y be topological spaces and let A1, Ay C X be closed sets such
that A1 U Ay = X. Assume that for i = 1,2 we have a continuous function f;: A; — Y such that
f1(x) = fa(x) if x € A1 N Ay. Then the function f: X — Y given by f(x) = fi(x) for x € A; is continuous.

Proof Exercise. O

6.8 Example. Let f: R — R be the absolute value function, f(x) = |x|. On the set A; = (—o0, 0] this
function is given by f|a,(x) = —x, and on Ay = [0, +00) it is given by f|4,(x) = x. Since both f|4, and
f|a, are continuous functions and A, A, are closed sets in R by the Closed Pasting Lemma 6.7 we
obtain that f: R — R is continuous.

6.9 Note. Lemma 6.7 holds if instead of two closed sets we take any finite number of sets Aq,..., A,
such that [ JI_; A; = X. On the other hand the statement of the lemma does not hold in general if the
collection of sets {A;} is infinite.

6.10 Definition. A homeomorphism is a continuous function f: X — Y such that f is a bijection and
the inverse function f~': ¥ — X is continuous.

6.11 Proposition. 7) For any topological space the identify function idx: X — X given by idx(x) = x
is a homeomorphism.
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2)Iff: X — Y and g: Y — Z are homeomorphisms then the function gf: X — Z is also a
homeomorphism.

3) If f: X — Y is a homeomorphism then the inverse function f~': Y — X is also a homeomorphism.
4)If f: X = Y is a homeomorphism and Z C X then the function f|7: Z — f(Z) is also a homeomor-

phism.

Proof Exercise. O

6.12 Note. If f: X — Y is a continuous bijection then f need not be a homeomorphism since the
inverse function =~ may be not continuous. For example, let X = {x1, x2} be a space with the discrete
topology and let Y = {y1, y>} be a space with the antidiscrete topology. Let f: X — Y be given by
f(x;) = y;. The function f is continuous but =" is not continuous since the set {x;} is open in X, but
the set (f~1)~1({x1}) = {y1} is not open in Y.

6.13 Proposition. Let f: X — Y be a continuous bijection. The following conditions are equivalent:

(i) The function f is a homeomorphism.
(ii) For each open set U C X the set f(U) C Y is open.
(iii) For each closed set A C X the set f(A) C Y is closed.

Proof Exercise. O

6.14 Example. Recall that S’ denotes the unit circle:
S'={(x1,x) eR? | x} +x3 =1}

The function f: [0,1) — S" given by f(x) = (cos 27x, sin 27x) is a continuous bijection, but it is not a
homeomorphism since the set U =0, %) is open in [0, 1), but f(U) is not open in S'.

f(U)

6.15 Definition. We say that topological spaces X, Y are homeomorphic if there exists a homeomorphism
f: X — Y. In such case we write: X =Y.

6.16 Note. Notice that if X = Y and Y = Z then X = Z.
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6.17 Example. For any a < b and ¢ < d the open intervals (a, b), (¢, d) C R are homeomorphic. To
see this take e.g. the function f: (a, b) — (c, d) defined by

c—d ad — bc N
f(x)_(a_b)x+(a_b ) d |
(0
This function is a continuous bijection. Its inverse function f~': (c, d) — 4z
(a, b) is given by i
c
-1 N a—b>b cb —da + —>
f (X)_(c—d)x+( c—d) a b

so it is also continuous. By the same argument for any a < b and ¢ < d the closed intervals
[a, b],[c, d] C R are homeomorphic.

6.18 Note. In Chapter 7 we will show that an open interval (a, b) is not homeomorphic to a closed
interval [c, d|.

6.19 Example. We will show that for any a < b the open interval (a, b) is homeomorphic to R. Since
(a, b) = (—1,1) it will be enough to check that R = (—1,1). Take the function f: R — (—1,1) given by

X
f(x) = ——
) 1T+ |x| 1
This function is a continuous bijection with the inverse function y =f(x)
f~1:(=1,1) = R is given by X
X
1 (x) = ——

Since f~! is continuous we obtain that f is a homeomorphism.

6.20 Note. If spaces X and Y are homeomorphic then usually there are many homeomorphisms X — Y.
For example, the function g: (—1,1) — R given by

g(x) = tan (gx)

is another homeomorphism between the spaces (—1,1) and R.

6.21 Example. We will show that for any point xo € S’ there is a homeomorphism S' < {x} £ R.
Denote by 5(10'1) C R the circle of radius 1 with the center at the point (0,1) € R?:

5(10,1) ={(x1, %) eR? | x4+ (x2—1)> =1}

It is easy to check that for xo € S the space S"~\.{xo} is homeomorphic to the space X = 5(10’1)\{(0, 2)}.

Likewise, it is easy to check that R is homeomorphic to the subspace Y C R? that consists of all points
of the x-axis:
Y :={(x1,0) € R? | x; € R}
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It is then enough to show that X = Y. A homeomorphism p: X — Y can be constructed as follows. For
any point x € X there is a unique line in R? that passes through x and though the point (0,2) € R?.
We define p(x) to be the point of intersection of this line with the x-axis:

(0.2)

p(x)

The function p is called the stereographic projection.

In a similar way we can construct a stereographic projection in any dimension n > 1 that gives a

homeomorphism between the space S” \ {xo} (i.e. the n-dimensional sphere with one point deleted)
and the space R":

Exercises to Chapter 6

E6.1 Exercise. Consider the set of rational numbers Q as a subspace of R. Show that Q is not
homeomorphic to a space with the discrete topology.

E6.2 Exercise. Prove Proposition 6.3.
E6.3 Exercise. Prove Proposition 6.5.

E6.4 Exercise. Prove Lemma 6.7.
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E6.5 Exercise. Prove Proposition 6.13.
E6.6 Exercise. Let X be a topological space and let f,g: X — R be continuous functions.

a) Show that the set
A={xe X |[fx)=g(x)}

is closed in X.
b) Let h: X — R be a function given by h(x) = max{f(x), g(x)}. Show that h is continuous.

E6.7 Exercise. Let f,g: R — R be continuous functions such that f(x) > g(x) for all x € R. Define
subspaces X, Y of R? as follows.

X = {(x,y) € R? | g(x) < y < f(x)} Y:={(x,y) eR*|0< y <1}
Show that X 2 Y.

E6.8 Exercise. Let xo = (0,0) € R? and let B(xg, 1) C R? be a closed ball defined by the Euclidean
metric d: B
B(xo, 1) = {x € R? | d(x, x0) < 1}

Define subspaces X, Y C R? as follows:
X :=R?~ {x0} Y := R\ B(xo, 1)
Show that X = Y.

E6.9 Exercise. Let (X, 0) be a metric space. A subspace Y C X is a retract of X if there exists a
continuous function r: X — Y such that r(x) = x for all x € Y. Show that if Y C X is a retract of X
then Y is a closed in X.
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7.1 Let [a, b] C R be a closed interval and let (a, b) C R be an open interval. We would like to show
that [a, b] and (a, b) are non-homeomorphic topological spaces. The idea of a proof of this fact is as
follows. Assume that there exists a homeomorphism

f:la,b] — (a,b)

Recall that by Proposition 6.11 for any Y C [a, b] the function f|y: Y — f(Y) also would be a
homeomorphism. If we take Y =[a, b]\ {a} = (a, b] then

F(Y) = f(a, b)) ~ {f(a)} = (a, b) \ {f(a)}

Intuitively the spaces Y and f(Y) are different in an essential way since Y comes in one piece while
f(Y) is split into two pieces by removal of the point f(a):

\
(>Iy

a b a b
(o, ® (o, O

Y =[a, b]~ {a} F(Y) = (a, b) ~ {f(a)}

For this reason we can expect that the spaces are Y and f(Y) are not homeomorphic, and that, as a
consequence, [a, b] and (a, b) are not homeomorphic as well.

In order to make this intuitive argument into a rigorous proof we need to define precisely what it
means that a topological space is “in one piece” and then show that this feature is preserved by
homeomorphisms. The property of being “in one piece” is captured by the definition of a connected
space:

7.2 Definition. A topological space X is connected if for any two open sets U,V C X such that
UuV=Xand U,V #@wehave UNV # & .

%47
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7.3 Definition. If X is a topological space and U, V C X are non-empty open sets such that UNV = @
and UU V = X then we say that {U, V'} is a separation of X.

Thus, a space X is connected if there does not exists a separation of X.

7.4 Example. For a < b take (a,b) C R and let ¢ € (a,b). The space X = (a,b) ~ {c} is not
connected. Indeed, the sets U = (a, ¢) and V = (¢, b) form a separation of X.

7.5 Proposition. Let a < b. The intervals (a, b), [a, b], (a, b], and [a, b) are connected topological
spaces.

Proof. Assume first that [a, b] is a closed interval and that that U, V C [a, b] are open sets such a € U,
be V,and UU YV =]|a, b]. We will show that UN V # @&. Let xo = inf V. There are two possibilities:
either xg & U or xg € U. In the first case xp € V and xp > a. Since V is an open set there exists
€ > 0 such that (xo — €,x0 + €) C V. This implies that there is x € V such that x < xg which is
impossible by the definition of xp.

Thus the only possible option is xp € U. Since U is an open set there exists € > 0 such that
[x0, X0 + €’) C U. On the other hand, by the definition of xo we have [xo, xo + €') N V # &. Therefore
unvVv #o.

Assume now that / is an interval (either closed, open, or half-open) and that U, V C [ are non-empty
open sets such that UU V = [. We will show that UN V # &. Let ¢, d € | be points such that c € U
and d € V. We can assume that ¢ < d. Take U' = UnN|[c,d] and V' =V N|[c, d]. The sets U, V' are
openinc,d], ce U, de V', and U UV’ =]c, d]. By the observation above we have U' NV’ + &,
andso UNV # o.

O]

One can show that intervals are in fact the only subspaces of R that are connected:

7.6 Proposition. If X is a connected subspace of R then X is an interval (either open, closed, or
half-closed, finite or infinite).

Proof Exercise. O

7.7 Going back to the argument outlined in 7.1, by Proposition 7.5 we get that the space Y = (a, b]
is connected, and the space f(Y) = (a, b) \ f(a) is not connected by Example 7.4. We still need to
show however that a connected space cannot be homeomorphic to one that is not connected. In fact a
stronger statement is true:
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7.8 Proposition. Let f: X — Y be a continuous function. If f is onto and the space X is connected
then Y is also connected.

Proof. Assume that Y is not connected and let U,V C Y be a separation of X. Then the sets
f=1(U), f~1(V) form a separation of X which contradicts the assumption that X is connected. O]

7.9 Corollary. Iff: X — Y is a continuous function and X is a connected space then f(X) is connected.

Proof. By restricting the range of f we obtain a function f: X — f(X) which is continuous and onto,
and so it we can apply Proposition 7.8. O

A very useful consequence of Corollary 7.9 is the following fact:

7.10 Intermediate Value Theorem. Let X be a connected topological space and let f: X — R be a
continuous function. If a < b are points in R such that a = f(x) and b = f(y) for some x,y € X then
for each ¢ € [a, b] there exists z € X such that ¢ = f(z).

Proof. By Corollary 7.9 the set f(X) is connected, and so by Proposition 7.6 f(X) is an interval. It
follows that for any a, b € f(X) we have [a, b] C f(X). O

Since every homeomorphism f: X — Y is onto directly from Corollary 7.9 we get:
7.11 Corollary. If X = Y and X is a connected space then Y is also connected.

7.12 Corollary. The space R is connected.

Proof. This follows from Corollary 7.11 and Proposition 7.5 since R = (a, b) for any a < b. O

7.13 Note. A topological invariant is a property of topological spaces such that if a space X has this
property and X = Y then Y also has this property. By Corollary 7.11 connectedness is a topological
invariant.

7.14 Proposition. Let X be a topological space. The following conditions are equivalent :
1) X is connected
2) For any closed sets A, B C X such that A,B + X and AN B =& we have AU B # X.
3) If AC X is a set that is both open and closed then either A= X or A= @.

4) If D = {0,1} is a space with the discrete topology then any continuous function f: X — D is a
constant function.

Proof Exercise. O
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7.15 Proposition. Let X be a topological space and for i € | let Y; be a subspace of X. Assume that
Uie) Yi =X and (¢, Yi # @. If Y; is connected for each i € | then X is also connected.

Proof. Let D = {0, 1} be a space with the discrete topology and let f: X — D be a continuous function.
By Proposition 7.14 it is enough to show that f is a constant function. Let xo € ()¢, Yi. We can
assume that f(xg) = 0. For any i € / the function f|y,: Y; = D is constant since Y; is connected. Since
xo € Yi and f(xg) = 0 we get that f(x) = 0 for all x € Y;. Since this applies to all subspaces Y; we
obtain that f(x) =0 for all x € J,¢, Vi = X. O

7.16 Corollary. The space R" is connected for all n > 1.

Proof. For 0 # x € R" let L, C R" be the line passing through x and the origin:
Ly={txeR" |t e R}

For every x € R"” consider the continuous function f,: R — R" given by f(t) = tx. Since R is
connected and f,(R) = L, if follows that L, is connected. We have R” = |, cp» Lx and [, cgn Lc = {0}.
Therefore by Proposition 7.15 the space R" is connected. O

7.17 Definition. Let X be a topological space. A connected component of X is a subspace Y C X
such that

1) Y is connected
2) it Y CZ C X and Z is connected then Y = Z.

7.18 Proposition. Let X be a topological space.

1) For every point xo € X there exist a connected component Y C X such that xo € Y.
2) If Y, Y are connected components of X then either YNY =& or Y =Y.

Proof. 1) Given a point xo € X let {C;}ic/ be the collection of all subspaces of X such that xo € G
and G; is connected. Define Y :=(J,c; Ci. We have xp € Y. Also, since xg € ();¢; i by Proposition
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/.15 we obtain that Y is connected. If Y C Z C X and Z is connected then Z = (;, for some iy € /,
and so Z =Y. Therefore Y is a connected component of X.

2) Let Y, Y’ be two connected components of X. Assume that Y N Y’ # &. By Proposition 7.15 we get
then that Y U Y’ is connected. Since Y C Y U Y’ we must have Y = Y U Y’. By the same argument
we obtain that Y' = Y U Y’. Therefore Y =Y’

O

7.19 Corollary. Let X be a topological space. If Z C X is a connected subspace then there exists a
connected component Y C X such that Z C Y.

Proof Exercise. O

7.20 Corollary. Let f: X — Y be a continuous function. If X is a connected space then there exists a
connected component Z C Y such that f(X) C Z.

Proof Exercise. O

Exercises to Chapter 7

E7.1 Exercise. Let X be a topological space and let Y C X be a subspace. Show that if Y is a
connected space and Y is dense in X then X is connected.

E7.2 Exercise. Prove Proposition 7.6.

E7.3 Exercise. Show that the sphere S" is connected for all n > 1.

E7.4 Exercise. Let a < b. Show that the closed interval [a, b] C R is not homeomorphic to the
half-closed interval (a, b].

E7.5 Exercise. A function f: R — R is strictly increasing is for all x, y € R such that x > y we have
f(x) > f(y), and is it strictly decreasing is for all x, y € R such that x > y we have f(x) < f(y). Show
that if f: R — R is a continuous 1-1 function then f is either strictly increasing or strictly decreasing.

E7.6 Exercise. Let f: R — R be a continuous function such that f(x) - f(f(x)) = 1 for all x € R and
that f(10) = 9. Find the value of f(5). Justify your answer.

E7.7 Exercise. Let f: S” — R be a continuous function. Show that there exists a point x € S” such
that f(x) = f(—x). Here it x = (xq, ..., xp) € S" then —x = (—xq, ..., —Xp).

E7.8 Exercise. Let a < b. Show that there does not exist a continuous bijection f: (a, b) — [a, b].
Remember that a continuous bijection need not be a homeomorphism since the inverse function may be
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not continuous (see 6.12).
E7.9 Exercise. Prove Proposition 7.14.

E7.10 Exercise. Let X be a topological space. Show that the following conditions are equivalent:
1) X is connected

2) if AC X is any set such that A #+ X and A # @ then Bd(A) + @.

E7.11 Exercise. Let X be a topological space. Show that every connected component of X is closed
in X.

E7.12 Exercise. Let (X, g) be a metric space. Assume for some xg € X and r > 0 the open ball B(xo, r)
consists of countably many points. Show that X is not connected.

E7.13 Exercise. Let X be the subspace of R? consisting of the positive x-axis and of the graph of the
function f(x) = % for x > 0:

X :={(x,00€R? | x >0} U{(x,}) e R* | x > 0}

A

Show that X is not connected.

E7.14 Exercise. The topologist’s sine curve is the subspace Y of R? that consists of a segment of the
y-axis and of the graph of the function f(x) = sln(%):
Y:={0y) eR*| —1<y<1}U{(x,sin(})) € R? | x > 0}

A

Show that Y is connected.

E7.15 Exercise. Let f,g: R — R be continuous functions such that g(x) < f(x) for all x € R. Let Z
be the subspace of R? given by

Z={(xy) | gx) <y<f(x)}
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Show that Z is connected.

E7.16 Exercise. Consider the unit circle S" = {(x,y) € R? | x> + y> = 1}. Let p: R — S denote
the function given by p(t) = (sin 27t cos 27rt). Geometrically speaking this function wraps R infinitely
many times around the circle:

Show that there does not exist a continuous function g: S' — R such that pg = idg:.

E7.17 Exercise. A space X is totally disconnected if every connected component of X consists of a
single point. Obviously every discrete topological space is totally disconnected. Consider the set ot
rational numbers QQ as a subspace of R. Show that Q is totally disconnected. Note that by Exercise
6.1 Q is not a discrete space.

E7.18 Exercise. Show that metrizability is a topological invariant. That s, it X and Y are homeomorphic
spaces, and X metrizable then so is Y.



8 | Path
Connectedness

The notion of connectedness of a space was invented to define rigorously what it means that a space
is “in one piece”. In this chapter we introduce path connectedness which is designed to capture a
similar property but in a different way. It turns out that these two notions are not the same: while
every path connected space is connected, the opposite is not true. In effect path connectedness gives
us a new topological invariant of spaces. Additional related invariants are obtained by considering
local connectedness and local path connectedness of spaces.

8.1 Definition. Let X be a topological space. A path in X is a continuous function w: [0, 1] = X. If
w(0) = xp and w(1) = x1 then we say that w joins xp with xq.

8.2 Definition. 1) If w:[0,1] — X is a path in X then the inverse of w is the path @ given by

w(t) = w(1 —t) for t €[0,1]

54
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2) If w.t:[0,1] = X are paths such that w(1) = 7(0) then the concatenation of w and t if the path
w * T given by
w(2t) for t €10,1/2

(= 7)(t) = {T(Zt —1)  for t €[12,1]

X

s

8.3 Definition. A space X is path connected if for every xp, x1 € X there is a path joining xo with x1.

8.4 Example. For any n > 1 the space R" is path connected. Indeed, if xo,x1 € R” then define
w:[0,1] = R" by
w(t) = (1— t)xo + txq

We have w(0) = xp and w(1) = x1.

8.5 Proposition. Every path connected space is connected.

Proof. Exercise. O
8.6 Note. It is not true that a connected space must be path connected. For example, let Y be the
topologist’s sine curve (7.14). This is a connected space. On the other hand Y is not path connected

(exercise).

8.7 Proposition. Let X be a topological space and for i € | let Y; be a subspace of X. Assume that
Uie) Yi =X and (¢, Yi # @. If Y; is path connected for each i € | then X is also path connected.

Proof. Let xo, x1 € X. We need to show that there exists a path w: [0,1] — X such that w(0) = xp
and w(1) = x1.
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Since X = (J;¢; Vi we have xo € Yj, and x1 € Y}, for some ig, i1 € I. Let y € [,, Vi Since Y}, is path
connected and xp, y € Y}, there is a path 0: [0, 1] — Y}, such that o(0) = xo and (1) = y. Also, since
Yi, is path connected and xq, y € Y}, there is a path 7: [0, 1] = Y}, such that 7(0) = y and 7(1) = x1.
The concatenation o * T gives a path joining xp with xq.

O]

8.8 Definition. Let X be a topological space. A path connected component of X is a subspace Y C X
such that

1) Y is path connected
2) it Y CZ C X and Z is path connected then Y = Z.

8.9 Proposition. Let X be a topological space.

1) For every point xo € X there exist a path connected component Y C X such that xo € Y.
2) IfY,Y" are path connected components of X then either YNY =& orY =Y.

Proof. Similar to the proof of Proposition 7.18. O]

8.10 Proposition. Let xo € X The path connected component Y C X that contains xo is given by:

Y = {x € X | there exists a path joining x with xo}

Proof Exercise. O

8.11 Example. Let Y be the topologist’s sine curve. The space Y has only one connected component
(since Y is connected). On the other hand it has two path connected components:

Vi={0y)| —1<y<1} and Yo={(xsin(l)) | x>0}

Yi Y2
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8.12 Definition. Let X be a topological space.

1) X is locally connected if for any x € X and any open neighborhood U of x there is an open
neighborhood V' of x such that V C U and V' is connected.

2) X is locally path connected if for any x € X and any open neighborhood U of x there is an open
neighborhood V' of x such that V C U and V is path connected.

8.13 Example. Let X = (0,1) U (2,3) C R. The space X is neither connected nor path connected but
it is both locally connected and locally path connected.

8.14 Example. Let X be the subspace of R? consisting of the intervals joining points (0, 0) and (1/n, 0)
for n =1,2,... with the point (0, 1):

(0,1)

(0.0)
The space X is called the harmonic broom. This space is connected and path connected. It is neither
locally connected nor locally path connected since any neighborhood of the point (0, 0) that does not

contain the point (0, 1) is not connected.

8.15 Proposition. If X is locally path connected then it is locally connected.

Proof. Exercise. O

8.16 Proposition. If a space X is locally connected then connected components of X are open in X.

Proof Exercise. O

8.17 Proposition. /f a space X is locally path connected then path connected components of X are
open in X.

Proof. Exercise. O

8.18 Proposition. If X is a connected and locally path connected space then X is path connected.

Proof. It is enough to show that X has only one path connected component. Assume, by contradiction,
that X has at least two distinct path connected components. Let Y be some path connected component
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of X and let Y’ be the union of all other path connected components. By Proposition 8.17 both Y
and Y’ are open sets. Also YN Y =@ and Y U Y’ = X. This contradicts the assumption that X is
connected. O

Exercises to Chapter 8

E8.1 Exercise. Prove Proposition 8.5.
E8.2 Exercise. Prove Proposition 8.10.

E8.3 Exercise. The goal of this exercise is to verify that the statement of Note 8.6 holds. Show that
the topologist sine curve (Exercise 7.14) is not path connected.

E8.4 Exercise. Let X be a topological space whose elements are integers, and such that U C X is
open if either U =@ or U = X \. S for some finite set S. Show that X is locally connected but not
locally path connected.

E8.5 Exercise. Prove Proposition 8.16.
E8.6 Exercise. Prove Proposition 8.17.

E8.7 Exercise. Let M,(R) denote the set of all n x n matrices with coefficients in R. Since each matrix
consists of n? real numbers the set M,(R) can be identified with R™. Using this identification we can
consider M, (R) as a metric space. Let GL,(R) be the subspace of M,(R) consisting of all invertible
matrices. Equivalently:

GL,(R) = {A € M,(R) | detA # 0}

where detA is the determinant of A. Show that GL,(R) has exactly two path connected components:
GLf(R) and GL, (R) where

GL (R) = {A € GL,(R) | detA>0}, GL;(R)={A€E GLy(R) | detA< 0}

E8.8 Exercise. Let X be a subspace of R”. Show that if X is connected and it is open in R” then X
is path connected.

E8.9 Exercise. For A C R” and € > 0 define A; := {x € R" | d(x, y) < € for some y € A}.

Ae
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Show that if A is connected then A¢ is path connected for any € > 0.

E8.10 Exercise. Let A be a countable set of points in R?. Show that the space R? \ A is path
connected.

E8.11 Exercise. Let X be a topological space and let U, V C X be open sets such that UU V and
U NV are path connected. Show that U and V are path connected.



9 | Separation Axioms

Separation axioms are a family of topological invariants that give us new ways of distinquishing
between various spaces. The idea is to look how open sets in a space can be used to create “buffer
zones” separating pairs of points and closed sets. Separations axioms are denoted by T, T, etc., where
T comes from the German word Trennungsaxiom, which just means “separation axiom”. Separation
axioms can be also seen as a tool for identifying how close a topological space is to being metrizable:
spaces that satisfy an axiom T; can be considered as being closer to metrizable spaces than spaces
that do not satisfy T;.

9.1 Definition. A topological space X satisfies the axiom Ty if for every points x, y € X such that
x # y there exist open sets U,V C X suchthatxe U,y g Uandy e V, x ¢ V.

[

9.2 Example. If X is a space with the antidiscrete topology and X consists of more than one point
then X does not satisfy 7.

X

9.3 Proposition. Let X be a topological space. The following conditions are equivalent:

1) X satisfies Tj.
2) For every point x € X the set {x} C X is closed.

Proof. Exercise. O

9.4 Definition. A topological space X satisfies the axiom T, if for any points x, y € X such that x # y

60
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there exist open sets U,V C X suchthatx e U,y € V,and UNV = @.

X

A space that satisfies the axiom T3 is called a Hausdorff space.

9.5 Note. Any metric space satisfies T,. Indeed, for x,y € X, x # y take U = B(x, €), V = B(y, ¢€)
where € < %Q(X, y). Then U,V are opensets, xc U,y Vand UNV = @.

9.6 Note. If X satisfies T, then it satisfies 7.

9.7 Example. The real line R with the Zariski topology satisfies Ty but not 7.

The following is a generalization of Proposition 5.13

9.8 Proposition. Let X be a Hausdorff space and let {x,} be a sequence in X. If x, > y and x, — z
for some then y = z.

Proof Exercise. O

9.9 Definition. A topological space X satisfies the axiom T3 if X satisfies T; and if for each point
x € X and each closed set A C X such that x ¢ A there exist open sets U, V C X such that x € U,
ACV,and UNV = a.

X

A space that satisfies the axiom T3 is called a regular space.

9.10 Note. Since in spaces satisfying Ty sets consisting of a single point are closed (9.3) it follows
that if a space satisfies T3 then it satisfies T>.

9.11 Example. Here is an example of a space X that satisfies T, but not 7T35. Take the set
K={|n=12..}CR
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Define a topological space X as follows. As a set X = R. A basis B of the topology on X is given by
B={UCR|U-=(a,b)or U= (a,b)~ K for some a < b}

Notice that the set X ~. K is open in X, so K is a closed set.

The space X satisfies T, since any two points can be separated by some open intervals. On the other
hand we will see that X does not satisfy 73. Take x = 0 € X and let U, V C X be open sets such
that x € U and K C V. We will show that UN V # @. Since x € U and U is open there exists a
basis element U; € B such that x € U; and Uy C U. By assumption Uy NK =&, so Uy = (a,b) ~ K
for some a < 0 < b. Take n such that % < b. Since % € V and V is open there is a basis element
Vi € B such that % e Vjand Vi C V. Since Vi N K # @ we have V; = (c, d) for some ¢ < % < d.
ForangzeRsuchthatc<z<%andzgél(we have ze UyNVj,andsoze UN V.

Vi = (c, d)

o
N
S|—
N

9.12 Definition. A topological space X satisfies the axiom T4 if X satisfies Ty and if for any closed
sets A, B C X such that AN B = & there exist open sets U,V C X such that AC U, B C V, and
unv=g.

A space that satisfies the axiom T4 is called a normal space.
9.13 Note. If X satisfies T4 then it satisfies Ts.

9.14 Theorem. Every metric space is normal.

The proof of this theorem will rely on the following fact:

9.15 Proposition. Let X be a topological space satisfying T4. If for any pair of closed sets A, B C X
satisfying AN B = & there exists a continuous function f: X — [0,1] such that A C f~'({0}) and
B C f~'({1}) then X is a normal space.
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Proof. Exercise. O

9.16 Definition. Let (X, g) be a metric space. The distance between a point x € X and a set A C X
is the number
o(x,A) := inf{o(x, a) | a € A}

9.17 Lemma. If (X, g) is a metric space and A C X is a closed set then go(x, A) = 0 if and only if x € A.

Proof. Exercise. O
9.18 Lemma. Let (X, g) be a metric space and A C X. The function ¢: X — R given by

¢x) = olx, A)

is continuous.

Proof. Let x € X. We need to check that for every € > 0 there exists 0 > 0 such that if g(x, x’) < d
then |@(x) — @(x')| < e. It will be enough to show that

lo(x) — o(x)| < alx, X')
for all x, x’ € X since then we can take 0 = .

For a € A we have
a(x, A) < o(x, a) < g(x, x') + g(x’, a)

This gives
e(x, A) < g(x,X') + o(x', A)

and so
p(x) — @(x') = alx, A) — g(x", A) < g(x, x')
In the same way we obtain ¢(x’) — ¢(x) < (X', x), and so |@(x) — @(x")| < o(x, x').

O]

Proof of Theorem 9.14. Let (X, ) be a metric space and let A, B C X be closed sets such that ANB = @.
By Proposition 9.15 it will suffice to show that there exists a continuous function f: X — [0, 1] such
that A C f=1({0}) and B C f~'({1}). Take f to be the function given by

_ o(x, A)
"= 500 A) + olx, B)

By Lemma 9.17 o(x,A) = 0 only if x € A, and o(x, B) = 0 only if x € B. Since AN B = & we have
o(x,A) + o(x, B) # 0 for all x € X, so f is well defined. From Lemma 9.18 it follows that f is a
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continuous function. Finally, for any x € A we have

_ o(x, A) _ 0 _
flx) = o, A) +o(x,B)  0+o(x.B) 0

and for any x € B we have

O]

Notice that the function f constructed in the proof of Theorem 9.14 satisfies a condition that is stronger
than the assumption of Proposition 9.15: we have f(x) = 0 if and only if x € A and f(x) =1 if and
only if x € B. Thus we obtain:

9.19 Corollary. If (X, ) is a metric space and A, B C X are closed sets such that AN B = & then
there exists a continuous function f: X — [0,1] such that A= f~"({0}) and B = f~1({1}).

9.20 Note. The results described above can be summarized by the following picture:

Ty

I

LE!
T4

e antidiscrete spaces

>0
>0
{ ]

| R with the Zariski topology
Example 9.11

metrizable spaces

Each rectangle represents the class of topological spaces satisfying the corresponding separation
axiom. No area of this diagram is empty. Even though we have not seen here an example of a space
that satisfies T3 but not T4 such spaces do exist.

Exercises to Chapter 9

E9.1 Exercise. Prove Proposition 9.3.
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E9.2 Exercise. Prove Proposition 9.8.
E9.3 Exercise. Prove Proposition 9.15.
E9.4 Exercise. Prove Lemma 9.17.

E9.5 Exercise. Let X be a topological space and let Y be a subspace of X.

a) Show that if X satisfies T7 then Y satisfies Tj.
b) Show that if X satisfies T, then Y satisfies T>.
c) Show that if X satisfies T3 then Y satisfies Ts.

Note: It may happen that X satisfies T4 but Y does not.

E9.6 Exercise. Show that if X is a normal space and Y is a closed subspace of X then Y is a normal
space.

E9.7 Exercise. Let X be a Hausdorff space. Show that the following conditions are equivalent:

(i) every subspace of X is a normal space.

(ii) for any two sets A, B C X such that AN B = @ and AN B = @ there exists open sets U, V C X
suchthat AC U, BCVand UNV =a.

E9.8 Exercise. This is a generalization of Exercise 6.9. Recall that a retract of a topological space X
is a subspace Y C X for which there exists a continuous function r: X — Y such that r(x) = x for all
x € Y. Show that if X is a Hausdorff space and Y C X is a retract of X then Y is a closed in X.

E9.9 Exercise. Let X be a space satisfying T1. Show that the following conditions are equivalent:

(i) X is a normal space.

(it) For any two disjoint closed sets A, B C X there exist closed sets A", B C X such that ANA" = &,
BNB' =@ and AUB = X.

E9.10 Exercise. Let X be a topological space and Y be a Hausdorff space. Let f,g: X — Y be
continuous functions and let A C X be given by

A={xeX|f(x) = g(x)
Show that A is closed in X.

E9.11 Exercise. Let X be a topological space, Y be a Hausdorff space, and let A be a set dense in X.
Let f,g: X — Y be continuous functions. Show that if f(x) = g(x) for all x € A then f(x) = g(x) for
all x e X

E9.12 Exercise. Let f: X — Y be a continuous function. Assume that f is onto and that for any closed
set A C X the set f(A) C Y is closed. Show that if X is a normal space then Y is also normal.
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The separation axioms introduced in the last chapter can be seen as a tool to constructing closer and
closer approximations of the class of metrizable spaces. However, even normal spaces, i.e. spaces that
satisfy the of the strongest of these axioms need not be metrizable. For example, take the real line
R with the arrow topology (4.8). One can show that it is a normal space (exercise), but by Exercise
5.15 this space is not metrizable. The Urysohn Lemma, which is the main result of this chapter, shows
however that normal spaces retain some useful properties of metrizable spaces. Recall that in the last
chapter we have seen that for any metric space X, and any pair of disjoint closed sets in X we can find
is a continuous function f: X — [0, 1] which maps one set to 0 and the other set to 1. The Urysohn
lemma says that the same property holds for any normal space:

10.1 Urysohn Lemma. Let X be a normal space and let A, B C X be closed sets such that AN B = @.
There exists a continuous function f: X — [0, 1] such that A C f~({0}) and B C f~'({1}).

The proof of this fact will use a couple of lemmas:

10.2 Lemma. Let X be a topological space. Assume that for each r € [0,1]N Q we are given an open
set V, C X such that V. C V, if r < r’. There exists a continuous function f: X — [0, 1] such that if
x € V, then f(x) < r and if x ¢ Vq then f(x) = 1.

Vy | Vo :
Vi | "~
"

66
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Proof. Define the function f: X — [0, 1] by:

1 if x & V,
f(x) =

inf{r | xe V;} ifxeV
We need to show that f is continuous. Notice that the set
§={UCI0,1]| U=]0,a) or U= (a,1]for some a €10,1]}

is a subbasis of the topology on [0, 1], so it will suffice to show that for any a € [0, 1] the sets f~1([0, a))
and f~'((a, 1)) are open in X.

We have:
(0.a) = |J Vi

r<a

so f~1([0, @)) is an open set.

Next, we claim that
r>a

Indeed, if x € X \. V, for some r > a then x ¢ V,. This gives f(x) > r > a, and so x € f~'((a,1)).
Conversely, assume that x € f~'((a, 1]). Then f(x) > a so there exist r > a such that x ¢ V, Take
r' €10,1]N Q such that a < r’ < r. Since V,» C V, we get that x ¢ V,,, or equivalently x € X \ V.
Therefore x € J,o, X \ V.

r>a

Since the sets X \. V, are open it follows that f~'((a, 1]) is an open set.

O

10.3 Lemma. Let X be a normal space, let A C X be a closed set and let U C X be an open set such
that A C U. There exists an open set V such that AC V and V C U.

Proof Exercise. O
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Proof of Urysohn Lemma 10.7. We will show that for each r € [0,1] N Q there exists an open set
V, C X such that

1) AC W

2) BC X\ V

3) if r<r then V, C V,.

By Lemma 10.2 this will give a continuous function f: X — [0, 1] such that f(x) < r for all x € V, and
f(x) =1 for all x & V4. By 1) we will get then that f(x) = 0 for all x € A and by 2) that f(x) =1 for
all x € B.

Construction of sets V; proceeds as follows. Since the set [0,1] N Q is countable we can arrange its
elements into a sequence:

[0,1]NnQ = {ro,r1,r2,...}

We can assume that ro = 0 and r1 = 1. We will construct the sets V;, by induction with respect to k.

Take V,, = )ﬁ\ B. Since V;, is open and A C V,, by Lemma 10.3 there exists an open set V' such that
AC Vand V C V.. Define V,, = V.

Next, assume that we have already constructed sets V..., V, . We obtain the set V, . as follows.
Let r, be the biggest number in the set {rg,..., r,} satisfying r, < r,41, and let ry be the smallest
number in {ro,..., ry} satisfying r,41 < rq. Since r, < ry we have Vi, C V. By Lemma 10.3 there
exists an open set V such that Vrp CVandVC Vi, Weset vV, . :=V.

n+1

O]

One can ask whether an analog of Urysohn Lemma holds for reqular spaces: given a regular space X,
a point x € X, and a closed set A C X such that x ¢ A is there a continuous function f: X — [0, 1]
such that f(x) = 0 and f(A) C {1}? It turns out that this is not true, but it provides motivation for one
more separation axiom:

10.4 Definition. A topological space X satisfies the axiom Tz, if X satisfies T1 and if for each point
x € X and each closed set A C X such that x ¢ A there exists a continuous function f: X — [0, 1]
such that f(x) =1 and f|4 = 0.

A space that satisfies the axiom 731, is called a completely reqular space or a Tychonoff space.
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While Definition 10.4 may seem a bit artificial at the moment, there is a different context which makes
the class of completely regular spaces interesting. We will get back to this in Chapter 18.

10.5 Note. By Urysohn Lemma every normal space is completely reqular. Also, if X is a completely
reqular space then X is reqular. Indeed, for a point x € X and a closed set A C X such that x & A let
f: X —[0,1] be a function as in Definition 10.4. Let U = f~1([0, 1)) and let V = f~"((,1]). Then the
sets U, Vareopenin X, ACU, xeV,and UNV =g2.

The diagram in Note 9.20 can be now extended as follows:

T

[P

IE
T3,
T4

e antidiscrete spaces

| R with the Zariski topology
Example 9.11

metrizable spaces

No area of this diagram is empty: there exist reqular spaces that are not completely regular and there
exist completely reqular spaces that are not normal.

Exercises to Chapter 10

E10.1 Exercise. Let R4, denote the set of real numbers with the arrow topology (4.8). Show that this
space is normal.

E10.2 Exercise. Prove Lemma 10.3.

E10.3 Exercise. By Corollary 9.19 metric spaces satisfy a stronger version of the Urysohn Lemma
10.2: for any pair of disjoint, closed subsets A, B in a metric space X there exists a continuous function
f: X —[0,1] such that A= f=1({0}) and B = f~1({1}). One can ask if the same is true for all normal
spaces. The goal of this exercise is to resolve this question.

a) Aset AC X is called a Gs-set if there exists a countable family of open sets Uy, U,, ... such that
A=, Uy. Let X be a topological space and let A, B C X be disjoint, closed subsets such that
there exists a function f: X — [0,1] with A = f~"({0}) and B = f~'({1}). Show that both A and B

are (j-sets.
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Note: One can also show that the converse holds: if X is a normal space and A, B are closed, disjoint
Gs-sets in X then such function f exists (see Exercise 11.4).

b) Let X be be a topological space defined as follows. As a set X = RU {oo} where oo is an extra
point. Any set U C X such that co ¢ U is open in X. If oo € U then U is open if X \ U is a finite
set. Show that X is a normal space, but that not every closed set in X is a Gs-set. Thus the stronger
version of Urysohn Lemma does not hold in X.

Notice that as a consequence the space X described in part b) gives another example of a space which
is normal but not metrizable.



11 | Tietze Extension
Theorem

The main goal of this chapter is to prove the following fact which describes one of the most useful
properties of normal spaces:

11.1 Tietze Extension Theorem (v.1). Let X be a normal space, let A C X be a closed subspace,
and let f: A — [a, b] be a continuous function for some [a, b] C R. There exits a continuous function
f: X —[a, b] such that f|a = f.

The main idea of the proof is to use Urysohn Lemma 10.1 to construct functions f,: X — [a, b] for
n=1,2,... such that as n increases )_‘n|A gives ever closer approximations of f. Then we take f to be
the limit of the sequence {f,}. We start by looking at sequences of functions and their convergence.

11.2 Definition. Let X, Y be a topological spaces and let {f,: X — Y} be a sequence of functions.
We say that the sequence {f,} converges pointwise to a function f: X — Y if for each x € X the
sequence {f,(x)} C Y converges to the point f(x).

11.3 Note. If {f,: X — Y} is a sequence of continuous functions that converges pointwise to f: X — Y
then f need not be continuous. For example, let f,:[0,1] — R be the function given by f,(x) = x".
Notice that f,(x) — O for all x € [0, 1) and that f,(1) — 1. Thus the sequence {f,} converges pointwise
to the function f: [0, 1] — R defined by

f(x) = {0 for x £1

1 forx=1

The functions f, are continuous but f is not.

11.4 Definition. Let X be a topological space, let (Y, g) be a metric space, and let {f,: X — Y} be a
sequence of functions. We say that the sequence {f,} converges uniformly to a function f: X — Y if

71
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for every € > 0 there exists N > 0 such that
o(f(x), fa(x)) < €
for all x € X and for all n > N.

11.5 Note. If a sequence {f,} converges uniformly to f then it also converges pointwise to f, but the
converse is not true in general.

11.6 Proposition. Let X be a topological space and let (Y, ) be a metric space. Assume that
{fa: X = Y} is a sequence of functions that converges uniformly to f: X — Y. If all functions f, are
continuous then f is also a continuous function.

Proof. Let U C Y be an open set. We need to show that the set f~1(U) C X is open. If suffices to
check that each point xg € f~1(U) has an open neighborhood V such that V' C f~'(U). Since U is
an open set there exists € > 0 such B(f(xo), €) € U. Choose N > 0 such that g(f(x), fn(x)) < § for
all x € X, and take V = fﬁ(B(fN(xo), £)). Since fy is a continuous function the set V' is an open
neighborhood of xp in X. It remains to show that V C f~1(U). For x € V we have:

e(f(x), f(x0)) < a(f(x), Iin(x)) + e(fn(x), In(x0)) + @(fn(x0), F(x0)) < S+ 5+ 5 =€
This means that f(x) € B(f(xo), €) C U, and so x € f~1(U).

v | E

\\/ = 5 (B(fn(x0), £)) LB(f/\/(XO)r 5)

O

11.7 Lemma. Let X be a normal space, A C X be a closed subspace, and let f: A — R be a continuous
function such that for some C > 0 we have |f(x)| < C for all x € A. There exists a continuous function
g: X — R such that |g(x)| < %C for all x € X and |f(x) — g(x)| < %C for all x € A.

Proof. Define Y := f~1(—C, —%C]), Z = f_1([%C, C)). Since f: A — R is a continuous function these
sets are closed in A, but since A is closed in X the sets Y and Z are also closed in X. Since YNZ =@
by the Urysohn Lemma 10.1 there is a continuous function h: X — [0, 1] such that h(Y) C {0} and
h(Z) C {1}. Define g: X - R by
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Proof of Theorem 11.1. Without loss of generality we can assume that [a, b] =[0,1]. Forn =1,2, ...
we will construct continuous functions g,: X — R such that

) [gn(x)] < 3 (%)’771 for all x € X;

M) |[f(x) =Y gix)| < (3)" forall x € A
We argue by induction. Existence of g4 follows directly from Lemma 11.7. Assume that for some n > 1
we already have functions g1, ..., gp satisfying (i) and (ii). In Lemma 11.7 take f to be the function

f—3 7 ,giand take C = ( ) Then we can take g,+1 := g where g is the function given by the
lemma.

Let f, := Y [ ,g, and let f := Y 2, g,. Using condition (i) we obtain that the sequence {f,}
converges uniformly to f (exercise). Since each of the functions f, is continuous, thus by Proposition
11.6 we obtain that f is a continuous function. Also, using (ii) be obtain that f(x) = f(x) for all x € A
(exercise). O

Here is another useful reformulation of Tietze Extension Theorem:

11.8 Tietze Extension Theorem (v.2). Let X be a normal space, let A C X be a closed subspace, and
let f: A — R be a continuous function. There exits a continuous function f: X — R such that f|a = f.

Proof. It is enough to show that for any continuous function g: A — (—1,1) we can find a continuous
function g: X — (—1,1) such that g|a = g. Indeed, if this holds then given a function f: A — R let

g = hf where h: R — (—1,1) is an arbitrary homeomorphism. Then we can take f = h™'g.

Assume then that g: A — (—1,1) is a continuous function. By Theorem 171.1 there is a function
g1: X = [=1,1] such that g1|a = g. Let B:= g7 ({—1,1}). The set B'is closed in X and AN B = &
since g1(A) = g(A) € (—1,1). By Urgsohn Lemma 10.1 there is a continuous function k: X — [0, 1]
such that B C k~1({0}) and A C k~1({1}). Let g(x) := k(x) - g1(x). We have:

1) if g1(x) € (—1,1) then g(x) € (—1.,1)
2) if g1(x) € {—1,1} then x € Bso g(x) =0-g1(x) =0

It follows that g: X — (—1,1). Also, g is a continuous function since k and g1 are continuous. Finally,
if x € Athen g(x) =1-g1(x) = g(x), so gla=g. O

Tietze Extension Theorem holds for functions defined on normal spaces. It turns out the function
extension property is actually equivalent to the notion of normality of a space:

11.9 Theorem. Let X be a space satisfying T1. The following conditions are equivalent:

1) X is a normal space.
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2) For any closed sets A, B C X such that AN B = @ there is a continuous function f: X — [0, 1]
such that such that A C f~1({0}) and B C f~1({1}).

3) If AC X is a closed set then any continuous function f: A — R can be extended to a continuous
function f: X — R.

Proof. The implication 1) = 2) is the Urysohn Lemma 10.1 and 2) = 1) is Proposition 9.15. The
implication 1) = 3) is the Tietze Extension Theorem 11.8. The proof of implication 3) = 1) is an
exercise.

O]

Exercises to Chapter 11

E11.1 Exercise. Prove implication 3) = 1) of Theorem 11.9.

E11.2 Exercise. Let X be a normal space, let A C X be a closed subspace, and let f: A — R be a
continuous function.

a) Assume that g: X — R is a continuous function such that f(x) < g(x) for all x € A. Show that there
exists a continuous function F: X — R satisfying F|a = f and F(x) < g(x) for all x € X.

b) Assume that g, h: X — R are a continuous function such that h(x) < f(x) < g(x) for all x € A and
h(x) < g(x) for all x € X. Show that there exists a continuous function F': X — R satisfying F'|a = f
and h(x) < F'(x) < g(x) for all x € X.

E11.3 Exercise. Recall that if X is a topological space then a subspace Y C X is a called a retract of
X if there exists a continuous function r: X — Y such that r(x) = x for all x € Y. Let X be a normal
space and let Y C X be a closed subspace of X such that Y = R. Show that Y is a retract of X.

E11.4 Exercise. Let X be topological space. Recall from Exercise 10.3 that a set A C X is a Gs-set if
there exists a countable family of open sets Uy, Uy, ... such that A = ﬂzo:1 U,.

a) Show that if X is a normal space and A C X is a closed Ggs-set then there exists a continuous
function f: X — [0, 1] such that A = f=1({0}).

b) Show that if X is a normal space and A, B C X are closed Gs-sets such that AN B = & then there
exists a continuous function f: X — [0, 1] such that A = f~'({0}) and B = f~"({1}).
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Metrization
Theorem

In this chapter we return to the problem of determining which topological spaces are metrizable i.e.
can be equipped with a metric which is compatible with their topology. We have seen already that
any metrizable space must be normal, but that not every normal space is metrizable. We will show,
however, that if a normal space space satisfies one extra condition then it is metrizable. Recall that a
space X is second countable if it has a countable basis. We have:

12.1 Urysohn Metrization Theorem. Every second countable normal space is metrizable.

The main idea of the proof is to show that any space as in the theorem can be identified with a
subspace of some metric space. To make this more precise we need the following:

12.2 Definition. A continuous function i: X — Y is an embedding if its restriction i: X — i(X) is a
homeomorphism (where i(X) has the topology of a subspace of Y).

12.3 Example. The function i: (0,1) — R given by i(x) = x is an embedding. The function j: (0,1) - R
given by j(x) = 2x is another embedding of the interval (0, 1) into R.

12.4 Note. 1) If j: X — Y is an embedding then j must be 1-1.

2) Not every continuous 1-1 function is an embedding. For example, take N = {0,1,2, ...} with the
discrete topology, and let f: N — R be given

0 ifn=0
f(n):{1 itn>0

n

75
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The function f is continuous and it is 1-1, but it is not an embedding since f: N — f(N) is not a
homeomorphism.

12.5 Lemma. If j: X — Y is an embedding and Y is a metrizable space then X is also metrizable.

Proof. Let p be a metric on Y. Define a metric g on X by o(x1, x2) = p(j(x1), j(x2)). It is easy to check
that the topology on X is induced by the metric g (exercise). O

Let now X be a space as in Theorem 12.1. In order to show that X is metrizable it will be enough to
construct an embedding j: X — Y where Y is metrizable. The space Y will be obtained as a product
of topological spaces:

12.6 Definition. Let {X;};c/ be a family of topological spaces. The product topology on [ ]z, Xi is the
topology generated by the basis

B = {[Nic, Ui | Ui is open in X; and U; # X; for finitely many indices i only}

12.7 Note. 1) If Xj, X5 are topological spaces then the product topology on X7 x X; is the topology
induced by the basis B = {U; x U, | Uy is open in Xi, U, is open in X3}

X2 X; x Xo

UZ U1 X Uz

Ui Xi

2) In general if X1,..., X, are topological spaces then the product topology on Xj x --- x X, is the
topology generated by the basis B = {U; x --- x U, | U; is open in X;}.

3) If {Xi}$2, is an infinitely countable family of topological spaces then the basis of the product
topology on [ ]2, X; consists of all sets of the form

Up x - x Uy x X1 X Xpgo X Xz X ...

where n > 0 and U; C X; is an opensetfori=1,...,n.

12.8 Proposition. Let {X;};c/ be a family of topological spaces and for j € | let
pj: |_| X,' — X]
iel

be the projection onto the j-th factor: p;((xi)ic/) = xj. Then:
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1) for any j € I the function p; is continuous.

2) Afunction f: Y — [, Xi is continuous if and only if the composition p;f: Y — X; is continuous
forall j €1

Proof Exercise. O

12.9 Note. Notice that the basis B given in Definition 12.6 consists of all sets of the form
pi (U N0 pi N(U;,)

tn

where i1,...,ip € land U, C Xj,, ..., C X, are open sets.

tn

12.10 Proposition. /f {X;}?2, is a countable family of metrizable spaces then [];2, X; is also a
metrizable space.

Proof. Let g; be a metric on X;. We can assume that for any x, x" € X; we have g;(x, x’) < 1. Indeed, if
o; does not have this property then we can replace it by the metric g} given by:

1 otherwise

P i(x, x") ifgi(x, x) <1
WM:F() ailx, x)

The metrics g; and g are equivalent (exercise), and so they define the same topology on the space X;.

Given metrics g; on X; satisfying the above condition define a metric go, on |_|‘l>i1 Xi by:
4 = 1 ’
geol(xi). (x0)) = D 5;ifxi X)
i=1

The topology induced by the metric goo on [ 721 X; is the product topology (exercise). O

12.11 Example. The Hilbert cube is the topological space [0, 1]} obtained as the infinite countable
product of the closed interval [0, 1]:

0.1 =] (0.1
i=1

Elements of [0,1]“0 are infinite sequences (t) = (t1,t2,...) where t; € [0,1] for i = 1,2,... The
Hilbert cube is a metric space with a metric g given by

=1
al(t). (si) = )_ 51t —sil
i=1

Theorem 12.1 is a consequence of the following fact:
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12.12 Theorem. If X is a second countable normal space then there exists an embedding j: X — [0, 1]%.

Theorem 12.12 will follow in turn from a more general result on embeddings of topological spaces:

12.13 Definition. Let X be a topological space and let {f;},c; be a family of continuous functions
fi: X = [0,1]. We say that the family {f;};c/ separates points from closed sets if for any point xp € X
and any closed set A C X such that xo ¢ A there is a function f; € {f;};c/ such that f;(xg) > 0 and
fila=0.

12.14 Embedding Lemma. Let X be a Ty-space. If {f;: X — [0, 1]}ics is a family that separates points
from closed sets then the map

foo: X — |_| [0,1]
iel
given by fo(x) = (fi(x))ies is an embedding.

12.15 Note. If the family {f;};c/ in Lemma 12.14 is infinitely countable then f,, is an embedding of X
into the Hilbert cube [0, 1]%.

We will show first that Theorem 12.12 follows from Lemma 12.14, and then we will prove the lemma.

Proof of Theorem 12.12. Let B = {V;}$2; be a countable basis of X, and let S the set given by
S:={(i,j) € Z* xZ* | V;C V}}

If (i, j) € S then the sets V; and X \ V; are closed and disjoint, so by the Urysohn Lemma 10.1 there
is a continuous function f;;: X — [0, 1] such that

1 xeV;
fij(x) = .
0 ifxeX\V

We will show that the family {f;;}(;j)es separates points from closed sets. Take xp € X and let A C X
be an closed set such that xop ¢ A. Since B = {\/i}‘l?i1 is a basis of X there is V; € B such that
xo € Vjand V; € X \\ A. Using Lemma 10.3 we also obtain that there exists V; € B such that xo € V;
and V; C V;. We have f;j(xo) = 1. Also, since A C X \ V; we have f;j|4 = 0.

By the Embedding Lemma 12.14 the family {f;};,jes defines an embedding

foo: X = [ ]10,1]
(

i,j)eS

The set S is countable. If it is infinite then []; s [0, 1] =0, 1P%. If S is finite then [ijes [0,1]=
[0, 1N for some N > 0 and [0, 1]N can be identified with a subspace of [0, 1]%. O



12. Urysohn Metrization Theorem 79

Proof of Theorem 12.1. Follows from Theorem 12.12, Lemma 12.5, and the fact that the Hilbert cube is
a metric space (12.11). O

It remains to prove Lemma 12.14:

Proof of Lemma 12.74. We need to show that the function f., satisfies the following conditions:

1) fw is continuous;
2) f is 1-1;
3) foo: X = fo(X) is @ homeomorphism.

1) Let p;: [];; [0,1] = [0, 1] be the projection onto the j-th coordinate. Since pjf., = f;, thus p;f is
a continuous function for all j € I. Therefore by Proposition 12.8 the function f, is continuous.

2) Let x,y € X, x # y. Since X is a Ty-space the set {y} is closed in X. Therefore there is a function
f; € {fi}ies such that f;(x) > 0 and f;(y) = 0. In particular f;(x) # f;(y). Since f; = p;f, this gives
Pjfoo(X) # pifeoly). Therefore fo(x) # foo(y).

3) Let U C X be an open set. We need to prove that the set foo(U) is open in f(X). It will suffice to
show that for any xg € U there is a set V open in foo(X) such that foo(x0) € V and V C f, (V).

Given xg € U let f; € {fi}ic/ be a function such that f;(xg) > 0 and fj|x.u = 0. Let p;: [],5/[0,1] =
[0, 1] be the projection onto the j-th coordinate. Define

V= foo(X) N p; ' ((0,1])
The set V is open in foo(X) since pj_1((0, 1]) is open in [ ],z [0, 1]. Notice that
V = {fw(x) | x € X and pjfs(x) > 0}

Since pjfs(x0) = fi(xo) > 0 we have f(xo) € V. Finally, if foo(x) € V then f;(x) > 0 which means that
x € U, and so fu(Xx) € foo(U). This gives V' C fo(U). O

One can show that the following holds:

12.16 Proposition. Every second countable reqular space is normal.
Proof. Exercise. O

As a consequence Theorem 12.1 can be reformulated as follows:

12.17 Urysohn Metrization Theorem (v.2). Every second countable reqular space is metrizable.
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While every metrizable space is normal (and reqular) such spaces do not need to be second countable.
For example, any discrete space X is metrizable, but if X consists of uncountably many points it does
not have a countable basis (Exercise 4.10). This means that the converse of the Urysohn Metrization
Theorem does not hold. However, this theorem can be generalized to give conditions that are both
sufficient and necessary for metrizability of a space. We finish this chapter by giving the statement of
such result without proof.

12.18 Definition. Let X be a topological space. A collection U = {U;};c/ of open sets in X is locally
finite if each point x € X has an open neighborhood V| such that V, N U; # @ for finitely many i € /
only.

A collection U is countably locally finite if it can be decomposed into a countable union U = (72, U,
where each collection U, is locally finite.

12.19 Nagata-Smirnov Metrization Theorem. Let X be a topological space. The following conditions
are equivalent:

1) X is metrizable.

2) X is reqular and it has a basis which is countably locally finite.

Exercises to Chapter 12

E12.1 Exercise. Show that the product topology on R” =R x --- x R is the same as the topology
induced by the Euclidean metric.

E12.2 Exercise. Let {X;};c/ be a family of topological spaces. The box topology on [],c, X; is the
topology generated by the basis

B ={[Nic,; Ui | Ui is open in X;}

Notice that for products of finitely many spaces the box topology is the same as the product topology,
but that it differs if we take infinite products.

Let X =[]724]0,1] be the product of countably many copies of the interval [0, 1]. Consider X as a
topological space with the box topology. Show that the map f:[0,1] — X given by f(t) = (t,t, t,...)
is not continuous.

E12.3 Exercise. Prove Proposition 12.8

E12.4 Exercise. Let {X;};c/ be a family of topological spaces and for i € I let A; be a closed set in
Xi. Show that the set [];c; A; is closed in the product topology on [ ], X:.

E12.5 Exercise. Let X and Y be non-empty topological spaces. Show that the space X x Y is
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connected if and only if X and Y are connected.

E12.6 Exercise. Assume that X, Y are spaces such that R Z X x Y. Show that either X or Y is
consists of only one point.

E12.7 Exercise. Let X, Y be topological spaces. For a (not necessarily continuous) function f: X — Y
the graph of f is the subspace ['(f) of X x Y given by

M) = {(x. f(x)) € X x Y | x € X}

Show that if Y is a Hausdorff space and f: X — Y is a continuous function then I'(f) is closed in
X xY.

E12.8 Exercise. Let Xj, X3 be topological spaces, and for i = 1,2 let p;: X1 x X — X; be the
projection map.

a) Show that if a set U C Xj x X5 is open in X1 x X3 then p;(U) is open in X.
b) Is it true that if A C X7 x X3 is a closed set then p;(A) must be closed is X; ? Justify your answer.

E12.9 Exercise. The goal of this exercise is to complete the proof of Proposition 12.10. Fori=1,2,...
let (Xi, 0i) be a metric space such that g;(x, x) < 1 for all x, x" € Xj. Let g, be a metric the Cartesian
product [ ]2, X; given by

4 = 1 ’
Geol(xi), (x])) = ) 5;8ilxi, )
i=1
Show that the topology defined by oo, is the same as the product topology.

E12.10 Exercise. The goal of this exercise is to give a proof of Proposition 12.16. Let X be a second
countable reqular space and let A, B C X be closed sets such that AN B = @.

a) Show that there exist countable families of open sets {Uy, Ua, ...} and {V4, V2, ...} such that

() ACUiZ; Uiand B C UZ, Vi

(ii) forall i >1 we have UyNB=g and V,NA=2
b) For n > 1 define

U, = U, ~ OV[ and V)=V, \ OU[
i=1 i=1

Let U' =J72, U, and V' =72, V). Show that U’ and V' are open sets, that AC U’ and B C V/,
and that U'n V' = @.
E12.11 Exercise. Let Ry;sc denote the real line with the discrete topology and let X = []°2; Ryisc.
a) Show that X is not second countable.

b) By Proposition 12.10 we know that X is a metrizable space. Verify this fact without using Proposition
12.10, but using instead only topological properties of X and the Nagata-Smirnov Metrization Theorem
12.19.
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of Manifolds

Manifolds are among the most important objects in geometry in topology. In this chapter we introduce
manifolds and look at some of their basic examples and properties. In particular, as an application of
the Urysohn Metrization Theorem, we show that every manifold is a metrizable space.

13.1 Definition. A topological manifold of dimension n is a topological space M which is a Hausdorff,
second countable, and such that every point of M has an open neighborhood homeomorphic to an open
subset of R" (we say that M is locally homeomorphic to R").

13.2 Note. Let M be a manifold of dimension n. If U C M is an open set and ¢: U — V is a

homeomorphism of U with some open set V C R" then we say that U is a coordinate neighborhood
and ¢ is a coordinate chart on M.

Rn

13.3 Lemma. If M is an n-dimensional manifold then:

1) for any point x € M there exists a coordinate chart ¢: U — V such that x € U, V is an open
ball V = B(y, r), and ¢(x) = y;

82
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2) for any point x € M there exists a coordinate chart ¢: U — V such that x € U, V =R", and

¢(x) = 0.
Proof Exercise. O

13.4 Example. A space M is a manifold of dimension O if and only if M is a countable (finite or
infinite) discrete space.

13.5 Example. If U is an open set in R"” then U is an n-dimensional manifold. The identity map
id: U — U is then a coordinate chart defined on the whole manifold U. In particular R” is an

n-dimensional manifold.

13.6 Example. The n-dimensional sphere

S" = (X1, Xog1) ERTT X 4 X2, =1}
is an n-dimensional manifold. Indeed, let x = (xq, ..., xp+1) € S". We need to show that there exists an
open neighborhood of x which is homeomorphic to an open subset of R". Choose i € {1,2,...,n+ 1}

such that x; # 0. Assume that x; > 0. Take U;" = {(y1,...,yn+1) € S" | y; > 0}. The set U;" is open
in S" and x € U. We have a continuous map

ht: Ur = B(0,1) CR”

given by h(y1, ..., Ynt1) = (Yy1,..., Yicty Yigds -y Yn+1). This map is a homeomorphism with the
inverse (h)~1: B(0,1) — U;" given by

(h?’)—1(t1,...,tn)= (t1,...,T[_1,\/1 _(t12+"'+t%),ti,...tn,

If x; < 0 then we can construct in a similar way a coordinate chart h;: U~ — B(0,1) where
U ={y1,... . yn41) € S" | yi < O}

13.7 Proposition. If M is an m-dimensional manifold and N is an n-dimensional manifold then M x N
is an m + n-dimensional manifold.

Proof Exercise. O

13.8 Example. The torus is the space T2 :=S' x S'. Since S is a manifold of dimension 1, thus by
Proposition 13.7 T2 is a manifold of dimension 2. Similarly, for any n > 2 the n-dimensional torus
T" =[], S" is a manifold of dimension n.

13.9 Note. There exist topological spaces that are locally homeomorphic to R”, but do not satisfy the
the other conditions of the definition of a manifold (13.1). For example, the line with double origin is
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a topological space L defined as follows. As a set L consist of all points of the real line R and one
additional point that we will denote by 0:

=N N Nl
)

A basis B of the topology on L consists of the following sets:

1) any open set in R is in B;
2) for any a < 0 and b > 0 the set (a,0) U {0} U (0, b) is in B.

Notice that L is locally homeomorphic to R. Indeed, since R is an open set in L thus any point of L~ {0}
has an open neighborhood homeomorphic to R. Also, for any a < 0 < b the set (a,0) U {0} U (0, b) is
an open neighborhood of 0 which is homeomorphic to the open interval (a, b). On the other hand L is
not a Hausdorff space since the point 0 cannot be separated by open sets from 0 € R. Therefore L is
not a manifold. There exist also spaces (e.g. Alexandroff long line) that are locally homeomorphic to
R™ and are Hausdorff, but are not second countable.

The following theorem says that the dimension of a manifold is well defined:

13.10 Invariance of Dimension Theorem. /f M is a non-empty topological space such that M is a
manifold of dimension m and M is also a manifold of dimension n then m = n.

In other words if a space is locally homeomorphic to R” then if cannot be locally homeomorphic to R”
for n £ m. While this sounds obvious the proof for arbitrary m and n is actually quite involved and
goes beyond the scope of this course. The proof is much simpler for m = 0 and m = 1 (exercise).

An slight generalization of the notion of a manifold is a manifold with boundary. Let H" denote the
subspace of R” given by H" = {(x, ..., xp) € R" | x, > 0}.

13.11 Definition. A topological n-dimensional manifold with boundary is a topological space M
which is a Hausdorff, second countable, and such that every point of M has an open neighborhood
homeomorphic to an open subset of H".

As before, if M is a manifold with boundary, U is an open set in M, V is an open set in H" and
¢: U — V is a homeomorphism then we say that ¢ is a coordinate chart on M.

13.12 Let 0H" = {(x1,...,xp) € H" | x, = 0}. If M is an n-dimensional manifold with boundary,
¢: U — V is a coordinate chart, and x € U then there are two possibilities:
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Hn

In the first case we say that the point x is a boundary point of M, and in the the second case that x is
an interior point of M. The next theorem says that a point cannot be a boundary point and an interior
point of M at the same time:

13.13 Theorem. Let M be an n-dimensional manifold with boundary, let xo € M and let ¢: U — V
be a local coordinate chart such that xg € U. If ¢(x0) € OH" then for any other local coordinate chart
Y: U — V' such that xo € U’ we have i(xo) € dH".

The proof in the general case requires similar machinery as the proof of Theorem 13.10, and so we will
omit it here. The case when n =1 is much simpler (exercise).

13.14 Definition. Let M be a manifold with boundary. The subspace of M consisting of all boundary
points of M is called the boundary of M and it is denoted by M.

13.15 Example. The space H" is trivially an n-dimensional manifold with boundary.

13.16 Example. For any n the closed n-dimensional ball
B " ={(x,...,x)) €R" | x} +---+x2< 1}
is an n-dimensional manifold with boundary (exercise). In this case we have 9B" = s 1.

13.17 Example. If M is a manifold (without boundary) then we can consider it as a manifold with
boundary. where oM = &.

13.18 Example. If M is an m-dimensional manifold with boundary and N is an n-dimensional manifold
without boundary then M x N is an (m + n)-dimensional manifold with boundary (exercise). In such

case we have: (M x N) = dM x N. For example the solid torus B° x S' is a 3-dimensional manifold
with boundary, and 9(B” x S') = S' x S' = T2,
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Even more generally, if M is an m-dimensional manifold with boundary and N is an n-dimensional
manifold with boundary then M x N is an (m + n)-dimensional manifold with boundary and d(M x N) =
(M x N)U (M x dN) (exercise).

13.19 Proposition. /f M is an n-dimensional manifold with boundary then:

1) M~ 0OM is an open subset of M and it is an n-dimensional manifold (without boundary);
2) OM is a closed subset of M and it is an (n — 1)-dimensional manifold (without boundary).

Proof. Exercise. O

13.20 Theorem. Every topological manifold (with or without boundary) is metrizable.

Our argument will use the following fact, the proof of which will be postponed until later (see Exercise
15.5).

13.21 Lemma. Let M be an n-dimensional topological manifold, and let ¢: U — V be a coordinate
chart on M. If B(x, r) is a closed ball in R" such that B(x,r) C V then the set ¢~ (B(x, r)) is closed
in M.

Proof of Theorem 13.20. We will use Urysohn Metrization Theorem 12.17. Since by definition every
manifold is second countable it will be enough to prove that manifolds are reqular topological spaces.

Let M be an n-dimensional manifold, let A C M be a closed set, and let x € M be a point such
that x & A. We need to show that there exists open sets W, W' C M such that AC W, x € W’
and W N W' = g. Assume first that x does not belong to the boundary of M. We can find an open
neighborhood U of x and homeomorphism ¢: U — R" such that ¢(x) = 0. Since A is closed in M the
set ANU is closed in U, and so ¢(ANU) is closed in R". Therefore the set R” \. ¢(ANU) is open in R".
Since 0 = ¢(x) € R” \ ¢(A N U) we can find an open ball B(0, €) such that B(0, ) C R" ~ @(AN U):

M R

_{ / — @)/ :)(x)
|/

Take W =M~ ¢~ 1(B(0,5)) and W = ¢~ (B(0, §)). Notice that x € W’. Also, since W’ is open in
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U and U is open in M we obtain that W’ is open in M. Next, by Lemma 13.27 the set ¢~ '(B(0, 5)) is
closed in M, so W is open in M. Moreover, since W’ C ¢~'(B(0, 5)) we obtain that W N W' = @. It
remains to show that A C W, or equivalently that An ¢~'(B(0, 5)=2. fye Aand y ¢ U then
y ¢ o " (B(O, 5)) since ©~1(B(0, 5)) C U. Also, if y € AN U then y ¢ ©~(B(0, 5)) by the choice of €,
and so we are done. In case when x € dM we can use a similar argument.

O]

Exercises to Chapter 13

E13.1 Exercise. Prove Lemma 13.3.

E13.2 Exercise. Let M be an n-dimensional manifold, let xp € M and let W C M be an open set such
that xg € W. Show that there exists a coordinate neighborhood U C M such that xo € U and U C W.

E13.3 Exercise. The goal of this exercise is to prove the Invariance of Dimension Theorem 13.10 in
small dimensions.

a) Let M be a manifold of dimension 0. Show that M is not locally homeomorphic to R” for any n # 0.
b) Let M be a manifold of dimension 1. Show that M is not locally homeomorphic to R” for any n # 1.
E13.4 Exercise. Prove Theorem 13.13 in the case when M is a 1-dimensional manifold with boundary.

E13.5 Exercise. Let M be an m-dimensional manifold with boundary and N an n-dimensional
manifold with boundary Show that M x N is an (m + n)-dimensional manifold with boundary and
O(M x N) = (M x N) U (M x aN)

E13.6 Exercise. Prove Proposition 13.19.



14 | Compact Spaces

14.1 Definition. Let X be a topological space. A cover of X is a collection Y = {Y;}ics of subsets of
X such that | J,o, Yi = X.

iel

2 Y,

If the sets Y; are open in X for all i € [ then Y is an open cover of X. If Y consists of finitely many
sets then Y is a finite cover of X.

14.2 Definition. Let Y = {Y;},c/ be a cover of X. A subcover of Y is cover Y of X such that every
element of Y is in Y.

14.3 Example. Let X = R. The collection
Y={(mn) CR|mneZ m<n}
is an open cover of R, and the collection
Y={(-nnCR|n=12...}

is a subcover of Y.
14.4 Definition. A space X is compact if every open cover of X contains a finite subcover.

14.5 Example. A discrete topological space X is compact if and only if X consists of finitely many
points.
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14.6 Example. Let X be a subspace of R given by
X={0tu{lin=12..}

The space X is compact. Indeed, let U = {U;};c/ be any open cover of X and let 0 € Uy. Then there
exists N > 0 such that % € U, foralln > N. Forn=1,...,N let U;, € U be a set such that
% € U,,. We have:

X = U[OUU,'1 U"'UU[N

so {U, Uiy, ..., Ui} is a finite subcover of U.

14.7 Example. The real line R is not compact since the open cover
Y={n-1.n+1)CR|neZ}
does not have any finite subcover.

14.8 Proposition. Let f: X — Y be a continuous function. If X is compact and f is onto then Y is
compact.

Proof Exercise. O

14.9 Corollary. Let f: X — Y be a continuous function. If A C X is compact then f(A) C Y is compact.

Proof. The function f|4: A — f(A) is onto, so this follows from Proposition 14.8. O

14.10 Corollary. Let X, Y be topological spaces. If X is compact and Y = X then Y is compact.

Proof. Follows from Proposition 14.8. O
14.11 Example. For any a < b the open interval (a, b) C R is not compact since (a, b) = R.

14.12 Proposition. For any a < b the closed interval [a, b] C R is compact.

Proof. Let U be an open cover of [a, b] and let
A = {x €[a, b] | the interval [a, x] can be covered by a finite number of elements of U}
Let xp := sup A.

Step 1. We will show that xo > a. Indeed, let U € U be a set such that a € U. Since U is open we
have [a, a + €) C U for some € > 0. It follows that x € A for all x € [a, a + €). Therefore xp > a + €.
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Step 2. Next, we will show that xg € A. Let Uy € U be a set such that xg € Up. Since U is open and
xo > a there exists €1 > 0 such that (xo — €1, x0] C Up. Also, since xo = sup A there is x € A such
that x € (xo — €1, x0]. Notice that

[a, x0] = [a, x] U (xo — &1, x0]

By assumption the interval [a, x] can be covered by a finite number of sets from U and (xo — €1, xo] is
covered by Up € U. As a consequence [a, xo] can be covered by a finite number of elements of U, and
so xp € A

Step 3. In view of Step 2 it suffices to show that xo = b. To see this take again Uy € U to be a set
such that xo € U. If xo < b then there exists €2 > 0 such that [xo, xo + €2) C Up. Notice that for any
X € (xo, x0 + €2) the interval [a, x] can be covered by a finite number of elements of U, and thus x € A.
Since x > xg this contradicts the assumption that xo = sup A.

O

14.13 Proposition. Let X be a compact space. If Y is a closed subspace of X then Y is compact.

Proof. Exercise. O

14.14 Proposition. Let X be a Hausdorff space and let Y C X. If Y is compact then it is closed in X.

Proposition 14.14 is a direct consequence of the following fact:

14.15 Lemma. Let X be a Hausdorff space, let Y C X be a compact subspace, and let x € X \ Y.
There exists open sets U,V C X such thatx e U, Y CVandUNV = @.

Proof. Since X is a Hausdorff space for any point y € Y there exist open sets U, and V,, such that
x € Uy, yeV,and U, NV, = 3. Notice that Y C Vy. Since Y is compact we can find a finite
number of points y1,...,y, € Y such that

yey

Y CV,U---UV,

Take V=V, U---uV, and U:= Uy, N---NU,.
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O

Proof of Proposition 14.14. By Lemma 14.15 for each point x € X\ Y we can find an open set Uy, C X
such that x € Uy and Uy C X . Y. Therefore X \\ Y is open and so Y is closed. O

14.16 Corollary. Let X be a compact Hausdorff space. A subspace Y C X is compact if and only if Y
is closed in X.

Proof. Follows from Proposition 14.13 and Proposition 14.14. O

14.17 Proposition. Let f: X — Y be a continuous bijection. If X is a compact space and Y is a
Hausdorff space then f is a homeomorphism.

Proof. By Proposition 6.13 it suffices to show that for any closed set A C X the set f(A) C Y is closed.
Let A C X be a closed set. By Proposition 14.13 A is a compact space and thus by Corollary 14.9 f(A)
is a compact subspace of Y. Since Y is a Hausdorff space using Proposition 14.14 we obtain that f(A)
is closed in Y.

O]

14.18 Theorem. If X is a compact Hausdorff space then X is normal.

Proof. Step 1. We will show first that X is a regular space (9.9). Let A C X be a closed set and
let x € X . A. We need to show that there exists open sets U, V C X such that x € U, A C V and
UnNV = @. Notice that by Proposition 14.13 the set A is compact. Since X is Hausdorff existence of
the sets U and V follows from Lemma 14.15.

Step 2. Next, we show that X is normal. Let A, B C X be closed sets such that AN B = @. By Step 1
for every x € A we can find open sets U, and V, such that x € Uy, B C V, and U, NV, = @. The
collection U = {U,}xea is an open cover of A. Since A is compact there is a finite number of points
X1, ..., Xm € Asuch that {Uy,, ..., Uy, } is a cover of A. Take U :=JiL; Uy, and V :=(_; Vi. Then
Uand V are opensets, ACU, BCVand UNV =2. O
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Exercises to Chapter 14

E14.1 Exercise. Prove Proposition 14.8.
E14.2 Exercise. Prove Proposition 14.13

E14.3 Exercise. Let X be a Hausdorff space and let A C X. Show that the following conditions are
equivalent:
(1)) A is compact

(it)) A'is closed in X and in any open cover {U;}ie/ of X there exists a finite number of sets U, , ..., U;
such that A C | J{_, U,,.

n

E14.4 Exercise. a) Let X be a compact space and for i =1,2,... let A; C X be a non-empty closed
set. Show that if Aiyq C A; for all i then (2, A; # @.

b) Give an example of a (non-compact) space X and closed non-empty sets A; C X satisfying Aiyq1 C A;
for i=1,2,... such that N2, Ai = @.

E14.5 Exercise. a) Let X be a compact Hausdorff space and for i =1,2,... let A; C X be a closed,
connected set. Show that if A;;1 C A; for all i then ﬂf; A; is connected.

b) Give an example of a space X and subspaces A1 C A, C ... C X such that A; is connected for each
i but (24 A; is not connected.

E14.6 Exercise. The goal of this exercise is to show that if f: X — R is a continuous function and X
is a compact space then there exist points x1,x2 € X such that f(xq) is the minimum value of f and
f(x2) is the maximum value.

Let X be a compact space and let f: X — R be a continuous function.
a) Show that there exists C > 0 such that |f(x)| < C for all x € X.

b) By part a) there exists C > 0 such that f(X) C [—C, C]. This implies that inff(X) # —oo
and sup f(X) # +o0o. Show that there are points x1,x2 € X such that f(xq) = inff(X) and that
f(x2) = sup f(X).

E14.7 Exercise. Let (X, g) be a compact metric space, and let f: X — X be a function such that
o(f(x), f(y)) < olx,y) forall x,y € X, x # y.

a) Show that the function ¢: X — R given by ¢(x) = o(x, f(x)) is continuous.

b) Show that there exists a unique point xg € X such that f(xp) = xo.
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E14.8 Exercise. Let f: X — Y be a continuous map such for any closed set A C X the set f(A) is
closed in Y.

a) Let y € Y. Show that if U C X is an open set and f~'(y) C U then there exists an open set V C Y
such that y € V and f~1(V) C U.

b) Show that if Y is compact and f~'(y) is compact for each y € Y then X is compact.

E14.9 Exercise. Let X, Y be topological spaces, and let p1: X x Y — X be the projection map:
pi(x, y) = x. Show that if Y is compact then for any closed set A C X x Y the set p1(A) C X is closed
in X.



15 | Heine-Borel
Theorem

We have seen already that a closed interval [a, b] C R is a compact space (14.12). Our next goal is to
prove Heine-Borel Theorem 15.3 which gives a simple description of compact subspaces of R".

15.1 Definition. Let (X, o) be a metric space. A set A C X is bounded if there exists an open ball
B(xp, r) C X such that A C B(x, r).

15.2 Proposition. Let (X, g) be a metric space and let A C X. The following conditions are equivalent:

1) A is bounded.
2) For each x € X there exists ry > 0 such that A C B(x, ry).
3) There exists R > 0 such that o(x1, x2) < R for all x1,x2 € A.

Proof. Exercise. O
15.3 Heine-Borel Theorem. A set A C R" is compact if and only if A is closed and bounded.

15.4 Note. The statement of Heine-Borel Theorem is not true if we replace R” by an arbitrary metric
space. Take e.g. X = (0, 1) with the usual metric d(x, y) = [x — y|. Let A= X. The set A is closed in

9%
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X. Also, A is bounded since d(x, y) < 1 for all x,y € A. However A is not compact.

The proof of Heine-Borel Theorem will make use of the following fact:

15.5 Theorem. If X, Y are compact spaces then the space X x Y is also compact.

Proof. Let W = {U;}ic/ be an open cover of X x Y. Assume first that each set U; is of the form
U; = V; x W; with V; open in X, and W, is open in Y. We will show that U has a finite subcover,

Step 1. We will show first that for every point x € X there is an open set Z, C X such that Z, x Y
can be covered by a finite number of elements of U. Consider the subspace {x} x ¥ C X x Y. Since
{x} x Y = Y is compact there is a finite number of sets V;, x W;,,...,V; x W, € U such that
{x} xY C U}’:1 Vi, x W;,. We can take Z, = ﬂ7:1 Vi,.

i

X XxY

Xe®

Step 2. The family {Z}yex is a on open cover of X. Since X is compact we have X = [ J{_; Z, for
some x1,...,xy € X. It follows that X x Y = UZ':1(ZXk x Y). Since each set Z,, x Y is covered by a
finite number of elements of U it follows that X x Y is also covered by a finite number of elements of U.

Assume now that U = {U;}ie/ is an arbitrary open cover of X x Y. For every point (x,y) € X x Y let
Vixy) X Wix,y) be a set such that V(, ) is open in X, Wy, is open in Y, (x,y) € V(xy) X Wy and
Vixy) X Wixy) € U; for some i € [:

XxY

Vixg) X Wixy)

The family {V(x,y) X Wix.y)}(x.y)exxy is an open cover of X x Y. By the argument above we can find
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points (x1,y1),....(Xp, yn) € X x Y such that X x Y = U7:1 Visiy)) X Wiy For j=1,...,n let
Ui; € U be a set such that V(s ;) X Wiy,y;) C Uj;. We have

n n
XxY= U Visign X Wiy © U U
=1 =1

which means that {Uj1 e an} is a finite subcover of U. O
15.6 Corollary. If X1,..., X, are compact spaces spaces then the space X x --- x X, is compact.
Proof. Follows from Theorem 15.5 by induction with respect to n. O
15.7 Corollary. Fori=1,..., n let[a;, bi] C R be a closed interval. The closed box

[a1,b1] x -+ x [an, by] CR"

is compact.
Proof. This follows from Proposition 14.12 and Corollary 15.6. O

Proof of Theorem 15.3. (=) Exercise.

(<) f ACR" is a closed and bounded set then A C B(0, r) for some r > 0. Notice that B(0,r) C J"
where / =[—r,r] CR. As a consequence A is a closed subspace of /. By Corollary 15.7 the space J"
is a compact. Since closed subspaces of compact spaces are compact (Proposition 14.13) we obtain
that A is compact.

O

Exercises to Chapter 15

E15.1 Exercise. Prove the implication (=) of Theorem 15.3.

E15.2 Exercise. Let X, Y be topological spaces. Show that the converse of Theorem 15.5 holds. That
is, show that if X x Y is a compact space then X and Y are compact spaces.

E15.3 Exercise. Let f: X x [0,1] = Y be a continuous function, and let U C Y be an open set. Show
that the set
V={xeX|f({x}x[01])CU}

is open in X.
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E15.4 Exercise. Let A, B be compact subspaces of R". Show that the set
A+B={x+yeR"|xeA yeB}

is also compact.

E15.5 Exercise. In Chapter 13 while proving that topological manifolds are metrizable we omitted the
proof of Lemma 13.21. We are now in position to fill this gap. Prove Lemma 13.21.



16 | Compact Metric
Spaces

We have seen previously that many questions related to metric spaces (e.g. whether a subset of a
metric space is closed or whether a function between metric spaces is continuous) can be resolved by
looking at convergence of sequences. Our main goal in this chapter the proof of Theorem 16.2 which
says that also compactness of metric spaces can be characterized in terms convergence of sequences.

16.1 Definition. A topological space X is sequentially compact if every sequence {x,} C X contains
a convergent subsequence.

16.2 Theorem. A metric space (X, g) is compact if and only if it is sequentially compact.
16.3 Note. The statement of Theorem 16.2 is not true for general topological spaces: there exist
spaces that are compact but not sequentially compact, and there exist spaces that are sequentially

compact but not compact.

16.4 Lemma. Let (X, 0) be a metric space. If a sequence {x,} C X does not contain any convergent
subsequence then {x,} is a closed set in X.

Proof Exercise. O

16.5 Lemma. Let (X, 0) be a metric space. If a sequence {x,} C X does not contain any convergent
subsequence then for each k = 1,2, ... there exists g, > 0 such that B(xk, k) N {xn} = xk.

Proof Exercise. O

Proof of Theorem 10.2 (=). Assume that (X, g) is a metric space and that {x,} C X is a sequence
without a convergent subsequence. By Lemma 16.4 the set Uy = X \ {x,} is open. For k =1,2, ...

98
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denote Uy := B(xk, k) where B(x, €k) is the open ball given by Lemma 16.5. The the family of sets
{0, Uy, Uy, ...} is an open cover of X that has no finite subcover. Therefore X is not compact.

X“‘

16.6 Definition. Let (X, g) be a metric space, and let U = {U;}ics be an open cover of X. A Lebesgue
number for U is a number Ay > 0 such that for every x € X we have B(x, Ay) C U; for some U; € U.

O]

16.7 Note. For a general metric space (X, g) and an open cover U of X a Lebesque number for U may
not exist (exercise).

16.8 Lemma. /f (X, o) is a sequentially compact metric space then for any open cover U of X there
exists a Lebesgue number for U.

Proof. We argue by contradiction. Assume that U is an open cover of X without a Lebesgue number.
This implies that for any n > 1 there is x, € X such that B(x,, %) is not contained in any element of
U. Since X is sequentially compact the sequence {x,} contains a convergent subsequence {x,, }. Let
xn, — Xo and let Up € U be a set such that xop € Up. We can find € > 0 such that B(xp, €) C Up and
k > 0 such that nik < 5 and g(xo, xp,) < 5. This gives:

Bl ) € Blx. §) € Blxo, €) € U

which is impossible by the choice of x;, .
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16.9 Definition. Let (X 0) be a metric space. For € > 0 an e-net in X is a set of points {x;}ic; C X
such that X = J,¢, B(xi, ).

16.10 Note. A set {x;}ic/ is an e-net in X if and only if for every x € X there is i € [ such that
o(x, xi) < €.

16.11 Lemma. Let (X, o) be a sequentially compact metric space. For every € > 0 there exists a finite
e-net in X.

Proof. Assume that for some € > 0 the space X does not have a finite e-net. Choose any point
x1 € X. We have B(x1, €) # X (since otherwise the set {x1} would be an g-net in X), so we can find
x2 € X such that x2 & B(x1,€). Next, since {x1,x2} is not an e-net there exists x3 € X such that
X3 ¢ Ul 1 B(xi, €). Arguing by induction we get an infinite sequence {x,} C X such that

n—1
Xn €& U B(x;, €)

i=1

for n =1,2,... This means that for any n # m we have g(x,, xn) > €. As a consequence {x,} does not
contain any convergent subsequence (exercise), and so the space X is not sequentially compact. [

Proof of Theorem 10.2 (<) . Assume that the space (X, g) is sequentially compact and let U be an
open cover of X. We need to show that U contains a finite subcover. By Lemma 16.8 there exists a
Lebesque number Ay for U. Also, by Lemma 16.17, we can find in X a finite Ay-net {xq,...,x,}. For
i=1,...,nlet U; € U be a set such that B(x;, Ay) C U;. We have:

n

X:UBXI,)\u gLnJ

i=1

Therefore {Us, ..., Uy} is a finite subcover of U. O

16.12 Corollary. /f (X, ) is a compact metric space then for any open cover U of X there exists a
Lebesque number for U.

Proof. Follows from Theorem 16.2 and Lemma 16.8. O

Exercises to Chapter 16

E16.1 Exercise. Prove Lemma 16.4.
E16.2 Exercise. Prove Lemma 16.5.
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E16.3 Exercise. Give an example of an open covering U of the open interval (0, 1) (with the usual
metric) such that there does not exist a Lebesgue number for U.

E16.4 Exercise. The goal of this exercise is to fill one missing detail in the proof of Lemma 16.11.
Let (X, 0) be a metric space and let {x,} be a sequence in X. Assume that for some € > 0 we have
0(xn, xm) > € for all m # n. Show that {x,} does not contain any convergent subsequence.

E16.5 Exercise. Let (X, o) be a metric space and let A C X be a set such that AN K is compact for
every compact set K C X. Show that A is closed in X.

E16.6 Exercise. Recall that if (X, g) is a metric space then a sequence {x,} in X is a Cauchy sequence
if for each € > 0 there exists N > 0 such that o(x,, xn) < € for all n, m > N. The space (X, g) is a
complete metric space if each Cauchy sequence in X is convergent.

Let (X, 0) be a metric space. Show that the following conditions are equivalent.
(i) X is compact
(it) The space X is a complete metric space and for any € > 0 there exists a finite e-net in X.

E16.7 Exercise. Let (X, 0) be a metric space. We will say that a function f: X — R is bounded it
there is K > 0 such that |[f(x)| < K for all x € X. Show that the following conditions are equivalent:

(i) X is compact
(ii) every continuous function f: X — R is bounded.
Hint: Show that if X is non-compact then it contains a sequence {x,} with no convergent subsequence
p q g q

and such that x, # xp, for all n # m. Let A be the subspace of X consisting of all points of this
sequence. Show the function f: A — R given by f(x,) = n is continuous).

E16.8 Exercise. Theorem 16.2 characterizes compactness in metric spaces. One can ask if every
compact Hausdorff space is metrizable. The goal of this exercise is to show that this is not true in
general.

a) Recall that a space X is separable if it contains a countable dense subset. Show that any compact
metric space is separable.

b) The Alexandroff double circle is a topological space X defined as follows. The points of X are the
points of two concentric circles: Cp (the inner circle) and Gy (the outer circle). Let p: Cy — C; denote
the radial projection map. A basis B of the topology on X consists of two types of sets:

(i) If y € G then {y} € B.

(it) If V C Gy is an open arch with center at the point x then then V U p(V ~\ {x}) € B.
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Show that X is a compact Hausdorff space, but that it is not separable. By part a) this will imply that
X is not metrizable.

E16.9 Exercise. Let X be the Alexandroff double circle defined in Exercise 16.8. Is X sequentially
compact? Justify your answer.

E16.10 Exercise. Let (X, g) be a compact metric space and let f: X — X be a continuous function
such that o(f(x), f(y)) > o(x, y) for all x,y € X. Show that f is a homeomorphism.

E16.11 Exercise. Let (X, g) be a compact metric space, and let f: X — X be a function such that
o(f(x), f(y)) < o(x,y) for all x,y € X, x # y. By Exercise 14.7 there exists a unique point xg € X
such that f(xp) = xo. Let x be an arbitrary point in X and let {x,} be a sequence defined by x; = x
and x, = f(x,-1) for n > 1. Show that the sequence {x,} converges to the point xo.

E16.12 Exercise. Let (X, 0), (Y, y) be metric spaces. We say that a function f: X — Y is uniformly
continuous if for each € > 0 there exists 8 > 0 such that if x;,x2 € X and o(x1,x2) < 0 then

u(f(x1), f(x2)) < e.

a) Give an example of a continuous function f: R — R which is not uniformly continuous. Justify your
answer.

b) Show that if f: X — Y is continuous function and X is a compact space then f is uniformly
continuous.

E16.13 Exercise. Let U C R" be an open set and let D C R"” x R” be the set consisting of all pairs
(x,y) € U x U for which the whole line segment joining x and y is contained in U:

D={xy)eUxU]|tx+(1—t)yec Uforall t €[0,1]}
Show that D is open in R"” x R".
E16.14 Exercise. For AC R" and € > 0 define
Ac = {x € R" | d(x,y) < € for some y € A}
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Ae

Let AC U C R"” where A is compact and U is open in R”. Show that there exists € > 0 such that
Ae C U.

E16.15 Exercise. Let (X, ) be a metric space, and let a,b € X. For € > 0 we will say that a
sequence of points (xq,...,x,) is an e-chain connecting a and b if x; = a, x, = b, and o(x;, xi+1) < €

fori=1,..., n—1.
Let (X, o) be a compact metric space. Show that the following conditions are equivalent:

1) the space X is connected;
2) for any points a, b € X and any € > 0 there exists e-chain connecting a and b.



17 | Tychonoff Theorem

We have seen already that a product of finitely many compact spaces is compact (15.6) . The main
goal here is to show that the same is true for arbitrary products of compact spaces:

17.1 Tychonoff Theorem. If {Xs}ses is a family of topological spaces and Xs is compact for each
s € S then the product space [ |,os Xs is compact.

The proof of Theorem 17.1 involves two main ideas. The first is reformulation of compactness in terms
of closed sets.

17.2 Definition. Let A be a family of subsets of a space X. The family A is centered if for any finite
number of sets Ay,..., A, € Awe have AiN---NA, O

17.3 Example. If A = {A;}ic/ is a family of subsets of X such that (., A; = @ then A is centered.

17.4 Example. Let X = R. For n € Z define A, = (n, +00). Then the family {A,},cz is centered
even though (1,27, An = 9.

17.5 Lemma. Let X be a topological space. The following conditions are equivalent:

1) The space X is compact.
2) For any centered family A of closed subsets of X we have (4 A # @.

Proof. 2) = 1) Let W = {U,}ics be an open cover of X. We need to show that U has a finite subcover.
For i € | define A; := X ~ U;. This gives a family A = {A;}ic/ of closed sets in X. We have:

NA=X~U)=X~|JU=X"X=0
iel iel iel

This implies that A is not a centered family, so there exist sets A;,, ..., A;, € A such that A;N---NA;, =

ln

104
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. This gives:

G=A, N NA, =X~ U)n-nX~U)=X~ (U, U--UU)

tn

Therefore X = U;, U---U U;,, and so {U;,,..., U; } is a finite subcover of 1.

1) = 2) Follows from a similar argument. O

Having Lemma 17.5 at our disposal we can try to prove the Theorem 17.1 in the following way. Given a
centered family A of subsets of [ ],c5 Xs we need to show that (4 A # @. Let pgy: [ ocs Xs = Xy,
be the projection onto the sg-th factor. For each s € S the family { ps(A) }aca is a centered family of
closed subsets of X,. Since Xs is compact we can find xs € X, such that x; € [z ps(A). If we can
show that the point (xs)ses € [ |,cs Xs is in (44 A then we are done.

X2
X1 X Xz

X2 ¢ (x>

X1 )(1

The problem with this approach is that in general not every choice of points xs € (e 4 Ps(A) will give
a point (xs)ses that belongs to (4.4 A:

X2
X1 X Xz

X20 [ (X1 , Xz)

This brings in the second main idea of the proof of Tychonoff Theorem, which (modulo a few technical
details) can be outlined as follows. We will start with an arbitrary centered family A of closed subsets
of [ ],e5 Xs, but then we will replace it by a certain family M such that A C M. This inclusion will
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give (peneM € (Naea A so it will be enough to show that (), M # @. The advantage of working
with the family M will be that for any choice of points xs € (e Ps(M) the point (xs)ses will belong
to mMeM M, which will let us avoid the issues indicated above.

The main difficulty is to show that for a given centered family A we can find a family M that has the
above propreties. This will be accomplished using Zorn’s Lemma. This lemma is a very useful result in
set theory that appears in proofs of many theorems in various areas of mathematics. Here is a concise
introduction to Zorn's Lemma:

17.6 Definition. A partially ordered set (or poset) is a set S equipped with a binary relation <
satisfying
(i) x < x forall x € S (reflexivity)

(i) if x <y and y < x then y = x (antisymmetry)
(iii) if x <y and y < z then x < z (transitivity).

17.7 Definition. A linearly ordered set is a poset (S, <) such that for any x, y € S we have either
x<yory<x

17.8 Example. If Ais a set and S is the set of all subsets of A then S is a poset with ordering given
by inclusion of subsets.

17.9 Definition. If (S, <) is a poset then an element x € S is a maximal element of S if we have
x < y only for y = x.

17.10 Example. If S is the set of all subsets of a set A ordered by inclusion then S has only one
maximal element: the whole set A.

If we take S’ to be the set of all proper subsets of a A then S’ has many maximal elements: for every
a € A the set A— {a} is a maximal element of S'.

17.11 Example. In general a poset does not need to have any maximal elements. For example, take
the set of integers Z with the usual ordering <. The set Z does not have any maximal elements since
for every number n € Z we can find a larger number (e.g. n +1).

17.12 Note. If (S,<) is a poset and T C S then T is also a poset with ordering inherited from S.

17.13 Definition. Let (S, <) is a poset and let T C S. An upper bound of T is an element x € S such
that y < xforally € T.

17.14 Definition. If (S, <) is a poset. A chainin S is a subset T C S such that T is linearly ordered.

1715 Zorn’s Lemma. /f (S, <) is a non-empty poset such that every chain in S has an upper bound
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in S then S contains a maximal element.
Proof. See any book on set theory. O]
We are finally ready for the proof of the Tychonoff Theorem:

Proof of Theorem 17.1. Let X = [],c5 Xs where X is a compact space for each s € S. Let A be a
centered family of closed subsets of X. We will show that there exists x = (xs)ses € X such that
X € (Naea A Let T denote the set consisting of all centered families JF of (not necessarily closed)
subsets of X such that A C J. The set T is partially ordered by the inclusion.

Claim. Every chain in T has an upper bound.

Indeed, if {J;};e/ is a chain in T then take J = Ujes Fj- Since F is a centered family (exercise) and
F; € TJ for all j € J thus F is an upper bound of {JF;},¢/.

By Zorn's Lemma 17.15 we obtain that the set T contains a maximal element M. We will show that
there exists x € X such that o
X € ﬂ M

MeM

Since A C M and A consists of closed sets we have (y;cp M C (Naca A- Therefore it will follow that
X € (aea A and thus (e A+ 2.

Construction of the element x proceeds as follows. For s € S let ps: X — X5 by the projection onto
the s-th coordinate. For each s € S the family {ps(M)}men is a centered family of closed subsets of

Xs, s0 by compactness of X; there is x; € X; such that xs € (e Ps(M). We set x = (xg)ses.

In order to see that x € (e M notice that M has the following property:
if BC X and BNM # @& for all M € M then Be M (%)

Indeed, if M = MU {B} then M’ € T (exercise) and M C M/, so by the maximality of M we must
have M = M.

For s € S let Us; C X5 be an open neighborhood of xs. Since xs € ps(M) for all M € M, thus
Us N ps(M) # & for all M € M. Equivalently, p7'(Us) N M # @ for all M € M. By property () we
obtain that p~1(Us) € M for all s € S. Since M is a centered family we obtain

p (Us)N---np (U, )NM# @ forall M e M (%)

Recall that by (12.9) the sets of the form p~"(Us,)N---Np~"(Us,). are precisely the open neighborhoods
of x that belong to the basis of the product topology on X, and thus any open neighborhood of X
contains a neighborhood of this type. Therefore using (x+) we obtain that if M € M then for any open
neighborhood U of x we have M N U # @. This means that for every M € M we have x € M, and
thus x € (Myen M-
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O
17.16 Proposition. If X; is a Hausdorff space for each i € | then the product space [ ], Xi is also
Hausdorff.
Proof. Exercise. O

17.17 Corollary. If X; is a compact Hausdorff space space for each i € | then the product space
[ 1;c; Xi is also compact Hausdorff

Proof. Follows from Tychonoff Theorem 17.1 and Proposition 17.16. O

Exercises to Chapter 17

E17.1 Exercise. This problem does not involve topology, it is an exercise in using Zorn's Lemma 17.15.
A subset H C R is a subgroup of R if it satisfies three conditions:

1) 0e H
2) if x € Hthen —x € H
3) ifx,ye Hthenx+y e H
For example, the set of integers Z and the set of rational numbers @@ are subgroups of R. Show that for

any real number r # 0 there exists a subgroup H C R such that r ¢ H, but r € H' for any subgroup
H’ such that H C H and H # H'.

E17.2 Exercise. This is another exercise on Zorn's Lemma. Recall (1.24) that any binary relation on
a set S is formally defined as a subset R C S x S. We say that R is a partial order relation if S
equipped with this relation is a partially ordered set (17.6). In the subset notation this mean that R
satisfies the following conditions:

(i) (x,x) € Rforallxe S
(i) if (x,y) € Rand (y,x) € S then x =y
(iii) if (x,y) € R and (y,z) € R then (x,z) € R.
A partial order relation R is a linear order relation if X equipped with this relation becomes a linearly

ordered set (17.7) . Explicitly, this mean that R satisfies conditions (i) - (iii), and that for any x,y € S
either (x,y) € Ror (y,x) € R.

If R, R’ are binary relations on S then we will say that R extends R if R C R’

a) Show that if R is a partial order relation on S and xp, yo € S are elements such that (xo, yo) € R
and (yo, xo) ¢ R then R can be extended to a partial order relation R’ such that (xp, yo) € R’
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b) Show that if R is a partial order relation on a set S then R can be extended to a linear order
relation R on S.

E17.3 Exercise. The goal of this exercise is to complete two details in the proof of the Tychonoff
Theorem 17.1.

a) For j € J let 7} be a centered family of subsets of a space X. Show that if the set {J;} ¢/ is linearly
ordered with respect to inclusion then J = Ujej J; is a centered family.

b) Let T denote the collection of all centered families of subsets of X. Consider T with ordering given
by inclusion. Let M be a maximal element in T, and let A C X be s set such that AN M #+ @ for all

M € M. Show that the family M’ = M U {A} is centered.
E17.4 Exercise. Prove Proposition 17.16.

E17.5 Exercise. The Cantor set is the subspace C of the real line defined as follows. Take Ap = [0, 1]
The set Ay is then obtained by removing the open middle third subinterval of Ag:

A1 =[0,1] (3, 9) =[0, 3]U[5.1]

Next, A, is obtained from A; by removing open middle third subinterval out of each connected component
of Ay. Explicitly:

A, =10, 51U, 3]U[Z, 2]V I8, 1]
Inductively we construct A,41 from A, by removing the middle third open subintervals from all connected
components of A,. Then we define C = ﬂﬁozo A,.

Show that the Cantor set is homeomorphic to the space [ 72, D where D is the discrete space with
two elements D = {0, 1}.
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We have seen that compact Hausdorff spaces have several interesting properties that make this class
of spaces especially important in topology. If we are working with a space X which is not compact we
can ask if X can be embedded into some compact Hausdorff space Y. If such embedding exists we can
identify X with a subspace of Y, and some arguments that work for compact Hausdorff spaces will
still apply to X. This approach leads to the notion of a compactification of a space. Our goal in this
chapter is to determine which spaces have compactifications. We will also show that compactifications
of a given space X can be ordered, and we will look for the largest and smallest compactifications of X.

18.1 Proposition. Let X be a topological space. If there exists an embedding j: X — Y such that
Y is a compact Hausdorff space then there exists an embedding j1: X — Z such that Z is compact

Hausdorff and ji(X) = Z.

Proof. Assume that we have an embedding j: X — Y where Y is a compact Hausdorff space. Let j(X)
be the closure of j(X) in Y. The space j(X) is compact (by Proposition 14.13) and Hausdorff, so we
can take Z = j(X) and define ji: X — Z by ji(x) = j(x) for all x € X. O

18.2 Definition. A space Z is a compactification of X if Z is compact Hausdorff and there exists an

embedding j: X — Z such that j(X) = Z.

18.3 Corollary. Let X be a topological space. The following conditions are equivalent:

1) There exists a compactification of X.
2) There exists an embedding j: X — Y where Y is a compact Hausdorff space.

Proof. Follows from Proposition 18.1. O]

18.4 Example. The closed interval [—1, 1] is a compactification of the open interval (—1,1). with the
embedding j: (—1,1) = [=1,1] is given by j(t) =t for t € (—1,1).

110
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18.5 Example. The unit circle ST = {(x1, x2) € R? | X12 + x% = 1} is another compactification of the
interval (—1,1). The embedding j: (—1,1) — S' is given by j(t) = (sin 7t, — cos 7t).

18.6 Example. A more complex compactification of the space X = (—1,1) can be obtained as follows.
Let / =[—1,1]. Consider the function j: X — J x J given by

j(t) = (t, cos (1L—t||t|))

The map j is an embedding, and so j(X) C J x J is a compactification of X. We have:
(X)={-1} xJ U jX)u {1} xJ

jX)

{=1}xJ J(X) {1} xJ

18.7 Theorem. A space X has a compactification if and only if X is completely regular (i.e. it is a
T31-space).

Proof. (=) Assume that X has a compactification. Let j: X — Y be an embedding where Y is a
compact Hausdorff space. By Theorem 14.18 the space Y is normal, so it is completely reqular. Since
subspaces of completely regular spaces are completely reqular (exercise) we obtain that j(X) C Y is
completely reqular. Finally, since j(X) = X we get that X is completely regular.

(<) Assume that X is completely reqular . We need to show that there exists an embedding j: X — Y
where Y is a compact Hausdorff space. Let C(X) denote the set of all continuous functions f: X — [0, 1].
Complete reqularity of X implies that C(X) is a family of functions that separates points from closed
sets in X (12.13). Consider the map

jxi X = []10.1]

feC(X)
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given by jx(x) = (f(x))rec(x). By the Embedding Lemma 12.14 we obtain that this map is an embedding.
It remains to notice that by Corollary 17.17 the space [ ];cc(x)0, 1] is compact Hausdorff. O

18.8 Note. In the part (=) of the proof of Theorem 18.7 we used the fact that subspaces of completely
regular spaces are completely regular. An analogous property does not hold for normal spaces: a
subspace of a normal space need not be normal. For this reason it is not true that a space that has a
compactification must be a normal space.

18.9 Definition. Let X be a completely reqular space and let jx: X — ercx)[o 1] be the embedding
defined in the proof of Theorem 18.7 and let B(X) be the closure of jx(X) in [Tjcex)[0, 1] The

compactification jx: X — B(X) is called the Cech-Stone compactification of X.

The Cech-Stone compactification is the largest compactification of a space X in the following sense:

18.10 Definition. Let X be a space and let ij: X — Y4, i1: X — Y7 be compactifications of X. We
will write Y5 > Y5 if there exists a continuous function g: Y7 — Y5 such that i; = giy:

/N

Y1—> Y2

18.11 Proposition. Let iy: X — Y1, i1: X — Y; be compactifications of a space X.
1) If Y1 > Y5 then there exists only one map g: Yy — Y7 satisfying i; = giy. Moreover g is onto.

2) Yy > Y and Yo > Yy if and only if the map g: Y1 — Y2 is a homeomorphism.

Proof. Exercise. O

18.12 Theorem. Let X be a completely reqular space and let jx: X — B(X) be the Cech-Stone
compactification of X. For any compactification i: X — Y of X we have B(X) > Y.

The proof Theorem 18.12 will use the following fact:

18.13 Lemma. If f: X; — X is a continuous map of compact Hausdorff spaces then f(A) = f(A) for
any AC Xq .

Proof. Exercise. O
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Proof of Theorem 18.12. Let i: X — Y be a compactification of X. We need to show that there exists
a map g: B(X) — Y such that the following diagram commutes:

7\

B(X) Y

9

Let C(X), C(Y) denote the sets of all continuous functions X — [0,1] and Y — [0, 1] respectively.
Consider the continuous functions jx: X = [jccx[0. 1] and jy: Y = [pecv)[0, 1] defined as in the
proof of Theorem 18.7. Notice that we have a continuous function

e [0 [1] [01]

feC(X) frec(y)
given by ix((fr)rec(x)) = (sr)rrec(y) where sp = t;r. Moreover, the following diagram commutes:

i

X Y

|+

[recpol0.1] —Q0 [recl0.1]

Jx

We have:

(B(X)) = ix(jx (X)) = Lufix(X) = jyi(X) = jy (i((X)) = jy (V)

Here the first equality comes from the definition of B(X), the second from Lemma 18.13, the third
from commutativity of the diagram above, the fourth again from Lemma 18.13, and the last from the
assumption that i: X — Y is a compactification. Since the map jy: Y — []ycc(y)[0. 1] is embedding

the map jy: Y — jy(Y) is a homeomorphism. We can take g = jf ix: B(X)—>Y.
O]

Motivated by the fact that Cech-Stone compactification is the largest compactification of a space X
one can ask if the smallest compactification of X also exists. If X is a non-compact space then we
need to add at least one point to X to compactify it. If adding only one point suffices then it gives an
obvious candidate for the smallest compactification:

18.14 Definition. A space Z is a one-point compactification of a space X if Z is a compactification of
X with embedding j: X — Z such that the set Z ~ j(X) consists of only one point.

18.15 Example. The unit circle S' is a one-point compactification of the open interval (0, 1).
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18.16 Proposition. If a space X has a one-point compactification j: X — Z then this compactification
is unique up to homeomorphism. That is, if j': X — Z' is another one-point compactification of X then
there exists a homeomorphism h: Z — Z' such that j' = jh.

Proof Exercise. O

Our next goal is to determine which spaces admit a one-point compactification.

18.17 Definition. A topological space X is locally compact if every point x € X has an open
neighborhood U, C X such that the the closure Uy is compact.

18.18 Note. 1) If X is a compact space then X is locally compact since for any x € X we can take
Uy = X.

2) The real line R is not compact but it is locally compact. For x € R we can take Uy = (x —1,x + 1),
and then U, =[x — 1, x + 1] is compact. Similarly, for each n > 0 the space R" is a non-compact but
locally compact.

3) The set Q of rational numbers, considered as a subspace of the real line, is not locally compact
(exercise).

18.19 Theorem. Let X be a non-compact topological space. The following conditions are equivalent:

1) The space X is locally compact and Hausdorff.
2) There exists a one-point compactification of X.

Proof. 1) = 2) Assume that X locally compact and Hausdorff. We define a space X as follows. Points
of X™ are points of X and one extra point that we will denote by oco:

Xt := XU {o0}
A set U C X% is open if either of the following conditions holds:

() UC X and U is open in X
(it) U= {o0} U (X~ K) where K C X is a compact set.

The collection of subsets of X* defined in this way is a topology on X* (exercise). One can check
that the function j: X — X* given by j(x) = x is continuous and that it is an embedding (exercise).
Moreover, since X is not compact for every open neighborhood U of co we have UN X # @, so
J(X) = X*.

To see that X* is a compact space assume that U = {U;};e/ is an open cover of X*. Let U, € U be a
set such that co € U;,. By the definition of the topology on X* we have X* \ U, = K where K C X
is a compact set. Compactness of K gives that

KCU,u---uy,

n
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for some Uy, ..., U;, € WU. It follows that {Uj,, Uy, ..., U, } is a finite cover of XT.
It remains to check that X is a Hausdorff space (exercise).

2) = 1) Let j: X — Z be a one-point compactification of X. Since X = j(X) it suffices to show that
the space j(X) is locally compact and Hausdorff. We will denote by oo the unique point in Z ~ j(X).

Since Z is a Hausdorff space and subspaces of a Hausdorff space are Hausdorff we get that j(X) is a
Hausdorff space.

Next, we will show that j(X) is locally compact. Let x € j(X). Since Z is Hausdorff there are sets
U, \LQ Z open in Z such that x € U, c0 € V, and UN K: . Since oo & U the set U is open in X.
Let U denote the closure of U in X. We will show that U is a compact set. Notice that we have

ucz~VvcCcz

Since Z . V' is closed in the compact space Z thus it is compact by Proposition 14.13. Also, since U
is a closed subset of Z \ V, thus U is compact by the same result. O]

18.20 Corollary. If X is a locally compact Hausdorff space then X is completely reqular.

Proof. Follows from Theorem 18.7 and Theorem 18.19. O

18.21 Corollary. Let X be a topological space. The following conditions are equivalent:

1) The space X is locally compact and Hausdorff .

2) There exists an embedding i: X — Y where Y is compact Hausdorff space and i(X) is an open
setin.

Proof. 1) = 2) If X is compact then we can take i to be the identity map idx: X — X. If X is not
compact take the one-point compactification j: X — X*. By the definition of topology on X the set
j(X) is open in XT.

2) = 1) exercise. O

The next proposition says that one-point compactification, when it exists, is the smallest compactification
of a space in the sense of Definition 18.10:

18.22 Proposition. Let X be a non-compact, locally compact space and let j: X — X% be the one-point
compactification of X. For every compactification i: X — Y of X we have Y > X™.

Proof. Exercise. O
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One can also show that if a space X is not locally compact (and so it does not have a one-point
compactification) then no compactification of X has the property of being the smallest (see Exercise
18.13).

Exercises to Chapter 18

E18.1 Exercise. Show that a subspace of a completely regular space is completely regular (this will
complete the proof of Theorem 18.7).

E18.2 Exercise. Prove Proposition 18.11.
E18.3 Exercise. Prove Lemma 18.13.

E18.4 Exercise. Consider the set Q of rational numbers with the subspace topology of the real line.
Show that Q is not locally compact.

E18.5 Exercise. Prove Proposition 18.16.

E18.6 Exercise. The goal of this exercise is to fill one of the gaps left in the proof of Theorem 18.19.
Let X be a locally compact Hausdorff space and let X* = X U {oo} be the space defined in part 1) =
2) of the proof of (18.19). Show that X* is a Hausdorff space.

E18.7 Exercise. Prove the implication 2) = 1) of Corollary 18.21.

E18.8 Exercise. A continuous function f: X — Y is proper if for every compact set A C Y the
set f~1(A) C X is compact. Let X, Y be locally compact, Hausdorff spaces and let X*, Y* be their
one-point compactifications. Let f: X — Y be a continuous function. Show that the following conditions
are equivalent:

1) The function f is proper.

2) The function f*: Xt — YT given by f*(x) = f(x) for x € X and f*(c0) = oo is continuous.
E18.9 Exercise. Let (X, 0), (Y, i) be metric spaces and let f: X — Y be a continuous function. Show
that the following conditions are equivalent:

1) f is proper (Exercise 18.8)
2) If {x,} € X is a sequence such that {f(x,)} C Y converges then {x,} C X has a convergent
subsequence.

E18.10 Exercise. Let X, Y be locally compact Hausdorff spaces, and let i: X — Y be an embedding
such that i(X) is an open in Y. Define j#: Y* — X7 as follows:

4o i) iy € j(X)
(y) = :
(%) otherwise

Show that j# is a continuous function.
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E18.11 Exercise. Let X be topological space and let j: X — Y be a compactification of X. Show that
if X is locally compact the set j(X) is open in Y.

E18.12 Exercise. Prove Proposition 18.22.

E18.13 Exercise. The goal of this exercise is to show that the smallest compactification of a non-
compact space X exists only if X has a one-point compactification (i.e. if X is a locally compact
space).

Let X be a completely regular non-compact space. Assume that there exists a compactification j: X — Y
of X such that for any other compactification i: X — Z we have Z > Y. Show that Y is a one-point
compactification of X. As a consequence X must be locally compact. (Hint: Assume that Y is not a
one-point compactification of X and let y1, y2 € Y ~ j(X). Show that the space W = Y ~ {y1, y2} has
a one-point compactification k: W — W and that kj: : X — W is a compactification of X. Show
that it is not true that W+ > Y).



19 | QOuotient Spaces

So far we have encountered two methods of constructing new topological spaces from old ones:

e given a space X we can obtain new spaces by considering subspaces of X;
e given two (or more) spaces X4, X2 we can obtain a new space by taking their product X x X.

Here we will consider another, very useful construction of a quotient space of a given topological space.
This construction will let us produce, in particular, interesting examples of manifolds. Intuitively, a
quotient space of a space X is a space Y which is obtained by identifying some points of X. For
example, if we take the square X =[0, 1] x [0, 1] and identify each point (0, t) with the point (1, t) for
t €10, 1] we obtain a space Y that looks like a cylinder:

In order to make this precise we need to specify the following:

1) what are the points of Y;
2) what is the topology on Y.

The first part is done by considering Y as the set of equivalence classes of some equivalence relation
on X. The second part is done by defining the quotient topology. We explain these notions below.

19.1 Definition. Let X be a set. An equivalence relation on X is a binary relation ~ satisfying three
properties:

1) x ~ x for all x € X (reflexivity)
2) if x ~ y then y ~ x (symmetry)
3) if x ~y and y ~ z then x ~ z (transitivity)
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19.2 Example. Let X =[0,1] x [0, 1]. Define a relation on X as follows. For any (s, t) € X we set
(s,t) ~ (s, t). Also, for any t € [0,1] we set (0,t) ~ (1,t) and (1,t) ~ (0,t). This relation is an
equivalence relation that identifies corresponding points of the vertical edges of the square [0, 1] x [0, 1].

19.3 Example. Define a relation ~ on the set of real numbers R as follows: r ~ s if s = r 4+ n for
some n € Z. One can check that this is an equivalence relation (exercise).

19.4 Definition. Let X we a set with an equivalence relation ~ and let x € X. The equivalence class
of x is the subset [x] C X consisting of all elements that are in the relation with x:

X|={y € X | x ~ y}

19.5 Example. Take X =[0,1] x [0, 1] with the equivalence relation defined as in Example 19.2. If
(s,t) € X and s # 0,1 then [(s, t)] consists of a single point: [(s, t)] = {(s, t)}. If s = 0,1 then [(s, 0)]
consists of two points: [(0, t)] =[(1, t)] = {(0, ), (1, )}

19.6 Example. Take R with the equivalence relation defined as in Example 19.3. For r € R we have:
[rl={r+n|nelkZ}

For example: [1]= {1+ n | n € Z} = Z. Notice that [1]=[2] and [v'2] = [V2 + 1].

19.7 Proposition. Let X be a set with an equivalence relation ~. For x,y € X we have [x| = [y] if

and only if x ~ y.

Proof. (=) Since x ~ x we have x € [x]. Therefore if [x] = [y] then x € [y] and so x ~ y.

(«<) Assume that x ~ y and that z € [x]. This gives z ~ x and by transitivity z ~ y. Therefore z € [y].
This shows that [x] C [y]. In the same way we can show that [y] C [x]. Thus we get [x] = [y]. O

19.8 Corollary. Let X be a set with an equivalence relation ~ and let x,y € X. If [x]N[y] # & then
[x] = [yl

Proof. Assume that [x] N [y] # @ and let z € [x] N[y} This means that z ~ x and z ~ y. Using
transitivity we get that x ~ y, and so by Proposition 19.7 [x] = [y]. O

19.9 Note. Corollary 19.8 shows that an equivalence relation ~ on a set X splits X into a disjoint
union of distinct equivalence classes of ~. The opposite is also true. Namely, assume that we have
a family {A;}ie/ of subsets of X such that A;NA; = @ for i # j and | J,c;Ai = X. We can define a
relation ~ on X such that x ~ y if and only if both x and y are elements of the same subset A;. This
relation is an equivalence relation and its equivalence classes are the sets A;.
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19.10 Definition. Let X be a set with an equivalence relation ~. The quotient set of X is the set X/~
whose elements are all distinct equivalence classes of ~. The function

g X — X[~

given by s(x) = [x] is called the quotient map.

19.11 Note. Let X be a set with an equivalence relation ~, and let f: X — Y be a function. Assume
that for each x,x" € X such that x ~ x’ we have f(x) = f(x'). Then we can define a function
f: X/~ — Y by f([x]) = f(x). We have f = fr, i.e. the following diagram commutes:

X/~

A

X——Y

19.12 Definition. Let X be a topological space and let ~ be an equivalence relation on X. The
quotient topology on the set X/~ is the topology where a set U C X/~ is open if and only if the set
a7 1(U) is open in X. The set X/~ with this topology is called the quotient space of X taken with
respect to the relation ~.

19.13 Proposition. Let X, Y be a topological spaces and let ~ be an equivalence relation on X. A
function f: X/~ — Y is continuous if and only if the function fr: X — Y is continuous.

Proof Exercise. O

19.14 Note. Let X be a space with an equivalence relation ~ and let f: X — Y be a continuous
function. If for each x, x” € X such that x ~ x” we have f(x) = f(x’) then as in (19.11) we obtain a
function f: X/~ — Y, f([x]) = f(x). Since the function for = f is continuous thus by Proposition 19.13
f is a continuous function.

19.15 Example. Take the closed interval [—1, 1] with the equivalence relation ~ such that (—1) ~ 1
(and t ~ t for all t € [—1,1]). We will show that the quotient space [—1.1]/~ is homeomorphic to the
circle S'. Consider the function f: [~1,1] — S' given by f(x) = (sin 7rx, — cos 7x):

Since f(1) = f(=1) by (19.14) we get the induced continuous function f: [—1,1]/~ — S'. We will
prove that f is a homeomorphism. First, notice that f is a bijection. Next, since [—1,1] is a compact
space and the quotient map n: [—1,1] — [—1,1]/~ is onto by Proposition 14.8 we obtain that the
space [—1,1]/~ is compact. Therefore we can use Proposition 14.17 which says that any continuous
bijection from a compact space to a Hausdorff space is a homeomorphism.

This example can be generalized as follows. Take the closed unit ball

B" = {x € R" | d(0,x) < 1}
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The unit sphere S"™™' = {x € R" | d(0, x) = 1} is a subspace of B". Consider the equivalence relation
~ on B" that identifies all points of S"~': x ~ x’ for all x,x’ € S"~'. Using similar arguments as
above one can show that B"/~ is homeomorphic to the sphere S” (exercise). Notice that for n = 1 we
have B! =[-1,1] and S° = {—1,1} so in this case we recover the homeomorphism [—1, 1]/~ = S

19.16 Note. Let X be a space and let A C X. Consider the equivalence relation on X that identifies
all points of A: x ~ x” for all x,x” € A. The quotient space X/~ is usually denoted by X/A. Using
this notation the homeomorphism given in Example 19.15 can be written as B"/S"~1 = S

19.17 Example. Take the square [0, 1] x [0, 1] with the equivalence relation defined as in Example
19.2: (0,t) ~ (1,t) for all t €0, 1]. Using arguments similar as in Example 19.15 we can show that
the quotient space is homeomorphic to the cylinder S' x [0, 1];

19.18 Example. Take the square [0, 1] x [0, 1] with the equivalence relation given by (0, t) ~ (1,1 —t)
for all t € [0, 1]. The space obtained as a quotient space is called the Mébius band:

The Mébius band is a 2-dimensional manifold with boundary, and its boundary is homeomorphic to S'.

19.19 Example. Take the square [0, 1] x [0, 1] with the equivalence relation given by (0, t) ~ (1, t) for
all t €[0,1] and (s,0) ~ (s,1) for all s €[0,1]. Using arguments similar to these given in Example
19.15 one can show that the quotient space in this case is homeomorphic to the torus:

-
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19.20 Example. Take the square [0, 1] x [0, 1] with the equivalence relation given by (0, t) ~ (1, t) for
all t €[0,1] and (s,0) ~ (1 —s,1) for all s € [0, 1]. The resulting quotient space is called the Klein
bottle. One can show that the Klein bottle is a two dimensional manifold.

>

19.21 Example. Following the scheme of the last two examples we can consider the square [0, 1] %[0, 1]
with the equivalence relation given by (0,t) ~ (1,1 —t) and (s,0) ~ (1 —s,1) for all s,t € [0, 1]:

The resulting quotient space is homeomorphic to the space RP? which is defined as follows. Take the
the 2-dimensional closed unit ball B~. The boundary of B’ is the circle S'. Consider the equivalence

=2
relation ~ on B that identifies each point (x;, x2) € S' with its antipodal point (—x1, —x2):

We define RP? = EZ/N. This space is called the 2-dimensional real projective space and it is a
2-dimensional manifold. One can show that RP? (and also the Klein bottle) cannot be embedded into
R3. For this reason it is harder to visualize it.

19.22 Example. The construction of RP? given in Example 19.27 can be generalized to higher
dimensions. Consider the n-dimensional closed unit ball B". The boundary B" is the sphere S"~1.
Similarly as before we can consider the equivalence relation ~ on B" that identifies antipodal points
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of S"—1.

for all (x1,...,x,) € S"~'. The quotient space B" |~ is denoted by RP" and is called the n-dimensional
real projective space. The space RP" is an n-dimensional manifold. For another perspective on projective
spaces see Exercise 19.5.

Exercises to Chapter 19

E19.1 Exercise. Consider the real line R with the equivalence relation defined as in Example 19.3.
Show that the quotient space R/~ is homeomorphic with S'.

E19.2 Exercise. Take the closed interval [0, 1] with the equivalence relation ~ defined as in Example
19.15. Let r: [0, 1] = [0, 1]/~ be the quotient map. The set U = [0, 1) which is open subset of [0, 1]
Show that 7r(U) is not open in [0, 1]/~.

E19.3 Exercise. Let B" C R” be the closed unit ball (see Example 19.15). Show that B"/S"~" is
homeomorphic to S".

E19.4 Exercise. Recall that the topologists sine curve Y is the subspace of R? consisting of the
vertical line segment ¥; = {(0,y) | —1 <y < 1} and the curve Y5 = {(x,sin(})) | x > 0}:

X

Y1 Y2

Show that the space Y/Y; is homeomorphic to the half line [0, +00).

E19.5 Exercise. Consider the unit sphere S” with the equivalence relation that identifies antipodal
points of S":
(X1r" . VXI'I+1) ~ (_X1r' .- r_Xn—H)

for all (x1,...,xp+1). Show that the quotient space S/~ is homeomorphic to the projective space RP"
(19.22).

Note: This construction lets us interpret RP" as the space of straight lines in R"*! that pass through
the origin. Indeed, any such line L intersects the sphere S" at two points: some point x and its
antipodal point —x:
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Since RP" is obtained by identifying antipodal points we get a bijective correspondence between
elements of RP" and lines in R"*" passing through the origin.

E19.6 Exercise. A pointed topological space is a pair (X, xo) where X is a topological space and
xo € X. The smash product of pointed spaces (X, xp) and (Y, yo) is the quotient space

XAY=(XxY)A

where A = (X x {yo}) U ({x0} x Y)
a) Let X, Y be a locally compact spaces (18.17). Show that the space X x Y is locally compact.

b) By part a) and Corrollary 17.17 if X,Y are locally compact Hausdorff spaces then the space
X x Y is also locally compact and Hausdorff. By Theorem 18.19 we have in such case one-point
compactifications X*, Y, and (X x Y)* of the spaces X, Y, and X x Y respectively. Recall that
Xt = XU{oo} and YT = Y U {oo}. Consider (X*,00) and (YT, 00) as pointed spaces. Show that
there is a homeomorphism:

XTAYTE(Xx V)T



20 | Embeddings
of Manifolds

We have seen so far several examples of manifolds. Some of them (e.g. S") are defined as subspaces
of a Euclidean space R"™ for some m, but some other (e.g. the Klein bottle (19.20), or the projective
spaces (19.22)) are defined more abstractly. A natural question is if every manifold is homeomorphic to
a subspace of some Euclidean space R", or equivalently if it can be embedded into R™. Our next goal
is to show that this is in fact true, at least in the case of compact manifolds.

We begin with some technical preparation.

20.1 Definition. Let X be a topological space and let f: X — R be a continuous function. The support
of f is the closure of the subset of X consisting of points with non-zero values:

supp(f) = [x € X [ 1(x) # 0}

20.2 Definition. Let X be a topological space and let U = {U;}ic/ be an open cover of X. A partition
of unity subordinate to U is a family of continuous functions {A;: X — [0, 1]};c/ such that

(i) supp(A;) C U; for each i € [;
(ii) each point x € X has an open neighborhood Uy such that U, N supp(A;) # @ for finitely many
i €l only;
(i) for each x € X we have )} ,,; Ai(x) = 1.

20.3 Note. Condition (iii) makes sense since by (it) we have A;(x) # O for finitely many i € / only.

Partitions of unity are a very useful tool for gluing together functions defined on subsets of X to obtain
a function defined on the whole space X:

20.4 Lemma. Let X be a topological space, let U = {U;}ies be an open cover of X and let {A;}ic/ be

125
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a partition of unity subordinate to U.
1) Leti e I and let f;: U; — R" be a continuous function. Then the function f;: X — R" given by

(x) Ai(x)fi(x)  for x € U;
X) =
: 0 for x € X . U;

is continuous.

2) Assume that for each i € | we have a continuous function f;: U; — R", and let f;: X — R" be
the function defined as above. Then the function f: X — R" given by

flx) =) filx)

icl
is continuous.
Proof. Exercise. O
20.5 Proposition. Let X be a normal space. For any finite open cover {Us, ..., U,} of X there exists

a partition of unity subordinate to this cover.

The proof of Proposition 20.5 will use the following fact:

20.6 Finite Shrinking Lemma. Let X be a normal space and let {Uy, ..., Uy} be a finite open cover
of X. There exists an open cover {V, ..., Vi } of X such that V; C U; for each i > 1.

Proof. We will argue by induction. Assume that for some k < n we already have open sets Vq,..., Vi
such that V; C U; for all 1 < i < k and that {V4,..., Vi, Uks1, ..., U,} is a cover of X (at the start of
induction we set k = 0). We will show that there exists an open set Vi1 such that Vie1 C Ugyq and
that {V4,..., Viet1, Ukg2 ..., Uy } still covers X. Take the set

W=ViU---UVeUUgrU---UU,

Notice that W U Uy41 = X. Therefore X ~\ W C Uiy1. Since X \ W is a closed set by Lemma 10.3
there exists an open set V such that X~ W C V and V C Ui, 1. The first of these properties gives
WU V = X, which means that {V4,..., Vi, V, Uks2..., Uy} is an open cover of X. Therefore we can
take Vi = V.

O

Lemma 20.6 can be generalized to infinite covers of normal spaces as follows:

20.7 Shrinking Lemma. Let X be a normal space and let {U;}ic; be a open cover of X such that each
point of X belongs to finitely many sets U; only. There exists an open cover {Vi}tier of X such that
Vi C U foralliel
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Proof. Exercise. O

Proof of Proposition 20.5. By Lemma 20.6 there exists an open cover {V4,..., V,} of X such that
V; C U; for all i > 1. Since X is a normal space by Lemma 10.3 for each i > 1 we can find an open
set W; such that V; C W; and W, C U.. Using Urysohn Lemma 10.1 we get continuous functions
pi: X = [0,1] such that p;(V;) C {1} and p(X ~ W;) C {0}. Notice that supp(y;) € W; C U;. Let
p =3[, ui. We claim that p(x) > 0 for all x € X. Indeed, if x € X then x € Vj for some j > 1 and
so pj(x) =1. Fori=1,...,n let A;: X — [0, 1] be the function given by

pi(x)
Ai(x) =
=
The family {A1,...,A,} is a partition of unity subordinate to the cover {Us,..., U,} (exercise).

O

20.8 Corollary. If X is a compact Hausdorff space then for every open cover U of X there exists an
partition of unity subordinate to U.

Proof. Let U = {U,}ics. Since X is compact we can find a finite subcover {U,,, ..., U} of U. By
Theorem 14.18 the space X is normal, so using Proposition 20.5 we obtain a partition of unity
{Aiy, ..., A, } subordinate to the cover {U;,,..., U, }. Forie I~ {i,..., in} let A;: X — [0, 1] be the
constant zero function. The family of functions {A;};e/ is a partition of unity subordinate to the cover
Uu. O

We are now ready to prove the embedding theorem for compact manifolds. We will consider first the
case of manifolds without boundary:

20.9 Theorem. If M is a compact manifold without boundary then for some N > 0 there exists an
embedding j: M — RN.

20.10 Note. A compact manifold without boundary is called a closed manifold.

Proof of Theorem 20.9. Assume that M is an n-dimensional manifold. Since M is compact we can find
a finite collection of coordinate charts {¢;: Ui — R"}7, on M such that {U;}[”, is an open cover of M.
By Corollary 20.8 there exists a partition of unity {A;}!; subordinate to this cover. Fori=1,..., m
let p;: M — R” be the function obtained from ¢; as in part 1) of Lemma 20.4. Consider the continuous
function j: M — R™*™ defined as follows:

JX¥) =(@1(x), s Pm(x), Arlx), ooy Am(X))

We will show that j is a 1-1 function. Since M is a compact and R™*" is a Hausdorff space by
Proposition 14.17 this will imply that j is a homeomorphism onto j(M) C R™*" and so it is an
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embedding. Assume then that x, y € M are points such that j(x) = j(y). This means that @;(x) = @i(y)
and Ai(x) = Ai(y) forall i =1,..., m. Since Y ", Ai(x) = 1 there exists 1 < ip < m such that
Aip(x) # 0, and so also A;(y) # 0. Since supp(4;) C U;, we obtain that x, y € U;,. By definition of
i, we have @;)(z) = Aiy(2)@iy(2) for all z € U;,. Therefore we get

Aig(X)@ig (X) = @ig (X) = Pig (Y) = i (y) Pip (y)

Dividing both sides by A;(x) = A, (y) we obtain ¢;(x) = @i,(y). However, ¢;,: U, — R" is a
homeomorphism, so in particular it is a 1-1 function. This shows that x = y. O

It is straightforward to generalize the proof of Theorem 20.9 to the case when M is a compact manifold

with boundary. We will use however a slightly different argument to show that such manifolds can be

embedded into Euclidean spaces.

20.11 Definition. Let M be a manifold with boundary dM. The double of M is the topological space
DM =M x {0,1}/~

where {0,1} is the discrete space with two points and ~ is the equivalence relation on M x {0,1}
given by (x,0) ~ (x, 1) for all x € oM.

M M x {0,1} DM

20.12 Proposition. If M is an n-dimensional manifold with boundary then DM is an n-dimensional
manifold without boundary. Moreover, if M is compact then so is DM.

Proof Exercise. O

20.13 Corollary. If M is a compact manifold with boundary then for some N > 0 there exists an
embedding M — RN,

Proof. Take the double DM of M. By Proposition 20.12 DM is a closed manifold, so using Theorem
20.9 we obtain an embedding j: DM — RN for some N > 0. Notice that we also have an embedding
sti: M — DM where i: M — Mx {0, 1} is the function given by i(x) = (x,0) and 7: Mx {0,1} - DM
is the quotient map. Therefore we obtain an embedding

jmi: M — RN



20. Embedding of Manifolds 129

20.14 Note. Theorem 20.9 and Corollary 20.13 can be extended to non-compact manifolds: one can
show that any manifold (compact or not, with or without boundary) can be embedded into the Euclidean
space RN for some N > 0. Moreover, it turns out that any n-dimensional manifold can be embedded
into R?"*1. An interesting question is, given some specific manifold M (e.g. M = RP") what is the
smallest number N such that M can be embedded into RV,

Exercises to Chapter 20

E20.1 Exercise. Prove Lemma 20.4.
E20.2 Exercise. Prove Proposition 20.12.

E20.3 Exercise. Recall that H" is the subspace of R" given by H" = {(x1,...,x,) € R" | x, > 0}
and that 0H" = {(x1,...,x,) € H" | x, = 0}. Let M be a compact manifold with boundary oM.
Show that for some N > 0 there exists an embedding j: M — HN such that j(OM) C dHN and
jM~ oM) € HN < oHN.

aHn

E20.4 Exercise. The goal of this exercise is to prove the general Shrinking Lemma 20.7. Let X be
a normal space and let {U;}ic; be an open cover of X such that every point of X belongs to finitely
many sets U; only.

a) Let S be the set consisting of all pairs (/, {V,};e)) where J is a subset of / and {V/};e; is a
collection of open sets in X such that V; C U; for all j € J, and {V;};c; U {Ui}ie/y is a cover of
X. We define a partial order on S as follows. If (J, {Vj};e)) and (/', {V/};ey) are elements of S then
U AVitien) < U {V/}ey) H1C S and if V; = V] forall j € J. Use Zorn's Lemma 17.15 to show that
the set S has a maximal element.

b) Let S be the set defined above. Show that if (/, {V}};e)) is a maximal element of S then /= /. This
gives that {V,},c/ is an open cover of X such that V; C U; for all i € I.
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21.1 Definition. Let X, Y be topological spaces. By Map(X, Y) we will denote the set of all continuous
functions f: X — Y.

Our main goal in this chapter is to show how the set Map(X, Y) can be given the structure of a
topological space. Constructions of new topological spaces from existing topological spaces that we
have already seen were motivated by the choice of continuous functions from or into the new space
that we wanted to have. For example, the product topology was defined in such way, that a map
f:Y — [],e; Xi is continuous if and only if its compositions with all projection maps p;f: Y — X; are
continuous (12.8). Similarly, the quotient topology on a space X/~ was defined so that a function
f: X/~ — Y is continuous if and only if its composition with the quotient map fzr: X — Y is continuous
(19.13). The choice of topology on Map(X, Y) will be based on similar considerations.

Denote by Func(X, Y) the set of all functions (continuous or not) X — Y. Any function F: Zx X — Y
defines a function F.: Z — Func(X,Y), where for z € Z the function F.(z): X — Y is given by
F«(2)(x) = F(z,x). Conversely, any function F,: Z — Func(X, Y) defines a function F: Z x X - Y
given by F(z,x) = F.(z)(x). For any spaces X,VY,Z the assignment F — F, gives a bijective
correspondence:

functions

ZxX-Y] \Z- Func(X,Y)

functions ) -

If F: Zx X — Y is a continuous function, then for any z € Z the function F.(z): X — Y is continuous.
This shows that in this case we get a well defined function

F.: Z = Map(X, Y)

With this in mind, it is reasonable to attempt to define a topology on Map(X, Y) in such way, that for
any function F: Z x X — Y the induced function F,: Z — Map(X, Y) is continuous if any only if F is
continuous. This motivates the following definition:

21.2 Definition. Let X, Y be a topological spaces, and let T be a topology on Map(X, Y).

130
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1) We will say that the topology T is lower admissible if for any continuous function F: Zx X — Y
the function F.: Z — Map(X, Y) is continuous.

2) We will say that the topology T is upper admissible if for any function F: Z x X — Y if the
function F.: Z — Map(X, Y) is continuous then F is continuous.

3) We will say that the topology T is admissible if it is both lower and upper admissible.

The definition of upper admissible topology can be reformulated using the notion of the evaluation map:

21.3 Definition. Let X, Y be topological spaces. The evaluation map is the function
ev: Map(X,Y)x X - Y

given by ev((f, x)) = f(x).

Notice that ev.: Map(X, Y) — Map(X, Y) is the identity function. We have:

21.4 Lemma. Let X, Y be topological spaces, and let T be a topology on Map(X, Y). The following
conditions are equivalent:

1) The topology T is upper admissible.
2) The evaluation map ev: Map(X,Y) x X — Y is continuous.

Proof. 1) = 2) For any choice of topology on Map(X, Y) the identity function idmap(x,v): Map(X,Y) —
Map(X, Y) is continuous. Since by assumption T is upper admissible and ev, = idmap(x,y) this implies
that ev is continuous.

2) = 1) Assume that ev in continuos, and let F: Z x X — Y be a function such that F, is continuous.
Then F, x idx: Z x X = Map(X, Y) x X is a continuous function. Since F = evo (F, x idy) it follows
that F is continuous. O

21.5 Example. Let X, Y be topological spaces. If we consider Map(X, Y) with the antidiscrete topology
then every function Z — Map(X, Y) is continuous. Therefore the antidiscrete topology on Map(X, Y)
is lower admissible.

On the other hand, consider Map(X, Y) with the discrete topology. We will show that this topology is
upper admissible. By Lemma 271.4 it suffices to verify that the evaluation map ev: Map(X,Y)x X — Y
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is continuous, i.e. that for any open set U C Y the set ev™'(U) is open in Map(X, Y¥) x X. Notice that

ev 1 (U) = {(f, x) € Map(X, Y) x X | f(x) € U}
= {(f,x) € Map(X,Y) x X | x € {1 (U)}
= |J =

feMap(X,Y)

For any f € Map(X, Y) the set f~1(U) is open in X, and since the topology on Map(X, Y) is discrete
the set {f} is open in Map(X, Y). It follows that ev="(U) is open in Map(X, Y) x X.

21.6 Proposition. Let X, Y be topological spaces.

1) If U, W are two topologies on Map(X, Y) such that W C U and U is upper admissible, then W
also is upper admissible.

2) If L, L are two topologies on Map(X, Y) such that L' C £ and L is lower admissible, then L’
also is lower admissible.

3) IfU, £ are two topologies on Map(X, Y) such that U is upper admissible and L is lower admissible
then £ C U.

Proof. Proofs of 1) and 2) are straightforward. To prove part 3), denote by Map(X, Y)y and Map(X, Y);
the set Map(X, Y) equipped with the topology, respectively, U and £. Since U is upper admissible
the evaluation map ev: Map(X, Y)i x X — Y is continuous. Since £ is lower admissible we get that
idmap(x,y) = evs: Map(X, Y)y — Map(X, Y)¢ is continuous. Therefore any set U open in Map(X, Y)¢
is also open in Map(X, Y)y, and so £ C U. O

21.7 Corollary. Given spaces X and Y, if there exists an admissible topology on Map(X, Y) then such
topology is unique.

Proof. This follows directly from Proposition 21.6. O]

The next proposition shows that in general an admissible topology on Map(X, Y) may not exist:

21.8 Proposition. Let X be completely reqular space. If there exist an admissible topology on
Map(X, R) then X is locally compact.

21.9 Example. Since the space Q of rational numbers is completely reqular but not locally compact
(Exercise 18.4), there is no admissible topology on Map(Q, R).

The proof Proposition 21.8 will depend on the following fact:
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21.10 Definition. Let X, Y be topological spaces. For sets A C X and B C Y denote

P(A, B) = {f € Map(X, Y) | f(A) C B}

21.11 Lemma. Let X, Y topological spaces, and let U = {U;}ic; be an open cover of X. Let T be a
topology on Map(X, Y) with subbasis given by all sets P(A, V) where A C X is a closed set such that
A C U; for some i €I, and V C Y is an open set. If X is a reqgular space then T upper admissible.

Proof. Exercise. O

Proof of Proposition 21.5. Let A be an admissible topology on Map(X, R), and let Map(X, R)4 denote
Map(X, R) taken with this topology. Take xo € X. We need to show that there exists an open set
V C X such that xo € V and V' is compact.

Let f: X — R be a constant function given by f(x) = 0 for all x € X. Then ev((f, x0)) € (—1,1). Since
(—1,1) is open in R and the function ev: Map(X,R)4 x X — R is continuous, there exist open sets
W C Map(X,R)4 and V C X such that f € W, xo € V, and ev(W x V) C (—1,1). We will prove
that V is compact. It will suffice to show that if U is an open cover of X then V C U, U...U,, for
some i1,...,i, € | (Exercise 14.3). Let U = {U;}</ be such open cover, and let T be a topology on
Map(X, R) with subbasis consisting of all sets P(A, Z) where A C X is a closed, A C U; for some i € |,
and Z C R is an open set. By Lemma 21.11 T is upper admissible. Since A is lower admissible, by
Proposition 21.6 we obtain that A C T. This implies that there exist elements P(A1, Z1), ... P(An, Z»)
of the subbasis of T such that f € ﬂZ:1 P(Ak, Zx) € W. Notice that since f(Ax) = 0 for all k, we must
have 0 € ({_1 Zk. Assume that there exists a point y € V ~[Ji_; Ak. Since the set | Ji_; Ak is closed
in X and the space X is completely regular, this would give a continuous function g: X — R such that
g(Ui—1 Ax) =0 (and so g € ({1 P(Ak, Zk) € W) and g(y) = 1. This is however impossible, since by
the choice of W and V we have h(v) € (—1,1) for every h € W and v € V. Therefore V C |J]_; Ax,
and since UZ:1 A is closed, also V C UZ:1 Ak. By assumption for each k = 1,..., n there exists
Ui, € U such that A¢ C Uj,. This gives V C |J]_; U,,.

O

In view of Proposition 21.8 a natural question is whether an admissible topology on Map(X, Y) exists
when X is a completely reqular, locally compact space. The condition that X is completely reqgular
can replaced by the condition that X is Hausdorff, since every locally compact Hausdorff space is
completely regular (18.20). Our next goal is to show that under these assumptions on X the set
Map(X, Y) has an admissible topology, and that this topology can be described as follows:

21.12 Definition. Let X, Y be topological spaces. The compact-open topology on Map(X, Y) is the
topology defined by the subbasis consisting of all sets P(A, U) where A C X is compact and U C Y is

an open set.

21.13 Theorem. For any spaces X, Y the compact-open topology on Map(X, Y) is lower admissible.
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Proof. Consider Map(X, Y) as a space with compact-open topology, and let F: Z x X — Y be a
continuous function. We need to show that if F.: Z — Map(X, Y) is continuous. By Proposition 4.14
it is enough to show that for any compact set A C Y and an open set U C Y the set F'(P(A, U)) is
open in Z. It will suffice to check that for any zy € F1(P(A, U)) there exists an open neighborhood
V C Z such that V C F1(P(A, U)). Notice that

F-YPA V) ={ze Z]| F({z} x A) C U}
={zeZ|{z} xACF (L)}

In particular, since zg € F_'(P(A, U)) we have {z} x A C F~'(U). The set F~'(U) is open in
Z xY,s0o F7Y(U) = ;/(Vi x W;) for some open sets V; € Z and W; € X. Since {z} x A= Ais
compact, there exist iy,...i, € I such that {z} x A C J;_{(Vi, x W;,). Take V = (_; Vi,. Then
VxAC(Ji_q Vi, x W, CFY(U), and so V C F71(P(A, U)). O

21.14 Theorem. Let X, Y be topological spaces. If X is locally compact Hausdorff space then the
compact-open topology on Map(X, Y) is upper admisible.

Proof. Let € denote the compact-open topology on Map(X, Y). Let U = {U;} be an open cover of X
such that U; is compact for each i € I. Such open cover exists by the assumption that X is locally
compact. Let T be the topology on Map(X, Y) with subbasis consisting of all sets P(A, V) where
A C X is a closed, AC U, for some i € /, and V C Y is an open. Notice that by Proposition 14.13
for any such P(A, V) the set A is compact, since A C U; for some i € /, and U; is compact. Therefore
P(A, V)€ € and so T C C.

By Lemma 271.17 the topology T is upper admissible. Since by Theorem 21.13 C is lower admissible
using Proposition 21.6 we obtain that € C TJ. This shows that € = T, and so € is upper admissible. [J

21.15 Corollary. If X is a locally compact Hausdorff space and Y is any space then the compact-open
topology on Map(X, Y) is admissible.

Proof Follows from Theorem 21.13 and Theorem 21.14 . O

21.16 Note. Let X, Y, Z be topological spaces. By Corollary 21.15 if X is locally compact Hausdorff
and Map(X, Y) is taken with the compact-open topology then the map

Y: Map(Z x X, Y) = Map(Z,Map(X, Y))

given by W(F) = F, is a well defined bijection. One can show that if in addition Z is a Hausdorff
space, and both Map(Z x X, Y) and Map(Z,Map(X, Y)) are considered as topological spaces with
compact-open topology, then W is a homeomorphism.

In some cases the compact open-topology on Map(X, Y) can be described more explicitly. Let X be
a topological space and let S be a set. Recall (1.18) that the Cartesian product [ ].o.s X is formally
defined as the set of all functions S — X. We have:
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21.17 Proposition. Let X be a topological space, and let S be a set considered as a discrete topological
space. There exists a homeomorphism

Map(S, X) Z [ ] X

seS

where Map(S, X) is taken with the compact-open topology, and [ |,cs X with the product topology.

Proof Exercise O

21.18 Note. In the special case where S = {x} is a set consisting of a single point we obtain a
homeomorphism Map({x}, X) = X.

Next, let X be a topological space and (Y, g) be a metric space. If f,g: X — Y are continuous function
then the function ®s,: X — R given by & 4(x) = o(f(x), g(x)) is continuous (exercise). If X is a
compact space then by Exercise 14.6 this function attains its maximum value at some point xo € X.
We have:

21.19 Proposition. Let X be a compact Hausdorff space, and let (Y, ) be a metric space. For
f, g € Map(X, Y) define
d(f, g) = max{e(f(x), g(x)) | x € X}

Then d is a metric on Map(X, Y). Moreover, in the topology induced by this metric is the compact-open
topology.

Proof Exercise. O

We conclude this chapter with a result that says that compact-open topology behaves well with respect
to composition of functions:

21.20 Theorem. Let X, Y, Z be topological spaces. Let
®: Map(X, Y) x Map(Y, Z) —» Map(X, 2)

be a function given by ®(f,g) = gof. If Y is a locally compact Hausdorff space, and all mapping
spaces are equipped with the compact-open topology then ® is continuous.

The proof will use the following fact:

21.21 Lemma. Let X be a locally compact Hausdorff space, and let A, W C X be sets such that A is
compact, W is open, and A C W. Then there exists an open set V. C X such that AC V, V C W, and
V is compact.
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Proof. Exercise. O

Proof of Theorem 21.20. Let A C X be a compact set, U C Z be an open set, and let (f,g) €
d~1(P(A, U)). It will suffice to show that (f, g) has an open neighborhood contained in ®~1(P(A, U)).
Since g o f(A) C U, thus f(A) C ¢g~'(U). By (14.9) the set f(A) is compact, so using Lemma
21.21 we obtain that there exists an open set V C Y such that f(A) C V, V C g~ '(U), and V is
compact. It remains to notice that the set P(A, V) x P(V, U) is an open neighborhood of (f, g) in
Map(X, Y) x Map(Y, Z), and P(A, V) x P(V, U) C o~1(P(A, U)). O]

Exercises to Chapter 21

E21.1 Exercise. Prove Proposition 21.8.

E21.2 Exercise. Prove Proposition 21.17.
E21.3 Exercise. Prove Proposition 21.19.
E21.4 Exercise. Prove Proposition 21.21.

E21.5 Exercise. Let X, Y be topological spaces, and let A C X, B C Y be closed sets. Show that in
the compact-open topology on Map(X, Y) the set P(A, B) is closed.

E21.6 Exercise. Let X, Y, Z be topological spaces, and let f: X — Y be a continuous function.
a) Define a function f,.: Map(Z, X) — Map(Z, Y) by f.(g) = f o g. Show that f, is continuous.

b) Define a function f*: Map(Y, Z) — Map(X, Z) by f*(g) = g o f. Show that f* is continuous.
All mapping spaces are considered with the compact-open topology.

E21.7 Exercise. Let X, Y;, i € | be topological spaces. Show that there is a homeomorphism:
Map(X, ['ie; Vi) = [ic/Map(X, Y))

All mapping spaces are taken with the compact-open topology.
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