11 | Tietze Extension
Theorem

The main goal of this chapter is to prove the following fact which describes one of the most useful
properties of normal spaces:

11.1 Tietze Extension Theorem (v.1). Let X be a normal space, let A C X be a closed subspace,
and let f: A — [a, b] be a continuous function for some [a, b] C R. There exits a continuous function
f: X —[a, b] such that f|a = f.

The main idea of the proof is to use Urysohn Lemma 10.1 to construct functions f,: X — [a, b] for
n=1,2,... such that as n increases )_‘n|A gives ever closer approximations of f. Then we take f to be
the limit of the sequence {f,}. We start by looking at sequences of functions and their convergence.

11.2 Definition. Let X, Y be a topological spaces and let {f,: X — Y} be a sequence of functions.
We say that the sequence {f,} converges pointwise to a function f: X — Y if for each x € X the
sequence {f,(x)} C Y converges to the point f(x).

11.3 Note. If {f,: X — Y} is a sequence of continuous functions that converges pointwise to f: X — Y
then f need not be continuous. For example, let f,:[0,1] — R be the function given by f,(x) = x".
Notice that f,(x) — O for all x € [0, 1) and that f,(1) — 1. Thus the sequence {f,} converges pointwise
to the function f: [0, 1] — R defined by

f(x) = {0 for x £1

1 forx=1

The functions f, are continuous but f is not.

11.4 Definition. Let X be a topological space, let (Y, g) be a metric space, and let {f,: X — Y} be a
sequence of functions. We say that the sequence {f,} converges uniformly to a function f: X — Y if
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for every € > 0 there exists N > 0 such that
o(f(x), fa(x)) < €
for all x € X and for all n > N.

11.5 Note. If a sequence {f,} converges uniformly to f then it also converges pointwise to f, but the
converse is not true in general.

11.6 Proposition. Let X be a topological space and let (Y, ) be a metric space. Assume that
{fa: X = Y} is a sequence of functions that converges uniformly to f: X — Y. If all functions f, are
continuous then f is also a continuous function.

Proof. Let U C Y be an open set. We need to show that the set f~1(U) C X is open. If suffices to
check that each point xg € f~1(U) has an open neighborhood V such that V' C f~'(U). Since U is
an open set there exists € > 0 such B(f(xo), €) € U. Choose N > 0 such that g(f(x), fn(x)) < § for
all x € X, and take V = fﬁ(B(fN(xo), £)). Since fy is a continuous function the set V' is an open
neighborhood of xp in X. It remains to show that V C f~1(U). For x € V we have:

e(f(x), f(x0)) < a(f(x), Iin(x)) + e(fn(x), In(x0)) + @(fn(x0), F(x0)) < S+ 5+ 5 =€
This means that f(x) € B(f(xo), €) C U, and so x € f~1(U).

v | E

\\/ = 5 (B(fn(x0), £)) LB(f/\/(XO)r 5)

O

11.7 Lemma. Let X be a normal space, A C X be a closed subspace, and let f: A — R be a continuous
function such that for some C > 0 we have |f(x)| < C for all x € A. There exists a continuous function
g: X — R such that |g(x)| < %C for all x € X and |f(x) — g(x)| < %C for all x € A.

Proof. Define Y := f~1(—C, —%C]), Z = f_1([%C, C)). Since f: A — R is a continuous function these
sets are closed in A, but since A is closed in X the sets Y and Z are also closed in X. Since YNZ =@
by the Urysohn Lemma 10.1 there is a continuous function h: X — [0, 1] such that h(Y) C {0} and
h(Z) C {1}. Define g: X - R by
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Proof of Theorem 11.1. Without loss of generality we can assume that [a, b] =[0,1]. Forn =1,2, ...
we will construct continuous functions g,: X — R such that

) [gn(x)] < 3 (%)’771 for all x € X;

M) |[f(x) =Y gix)| < (3)" forall x € A
We argue by induction. Existence of g4 follows directly from Lemma 11.7. Assume that for some n > 1
we already have functions g1, ..., gp satisfying (i) and (ii). In Lemma 11.7 take f to be the function

f—3 7 ,giand take C = ( ) Then we can take g,+1 := g where g is the function given by the
lemma.

Let f, := Y [ ,g, and let f := Y 2, g,. Using condition (i) we obtain that the sequence {f,}
converges uniformly to f (exercise). Since each of the functions f, is continuous, thus by Proposition
11.6 we obtain that f is a continuous function. Also, using (ii) be obtain that f(x) = f(x) for all x € A
(exercise). O

Here is another useful reformulation of Tietze Extension Theorem:

11.8 Tietze Extension Theorem (v.2). Let X be a normal space, let A C X be a closed subspace, and
let f: A — R be a continuous function. There exits a continuous function f: X — R such that f|a = f.

Proof. It is enough to show that for any continuous function g: A — (—1,1) we can find a continuous
function g: X — (—1,1) such that g|a = g. Indeed, if this holds then given a function f: A — R let

g = hf where h: R — (—1,1) is an arbitrary homeomorphism. Then we can take f = h™'g.

Assume then that g: A — (—1,1) is a continuous function. By Theorem 171.1 there is a function
g1: X = [=1,1] such that g1|a = g. Let B:= g7 ({—1,1}). The set B'is closed in X and AN B = &
since g1(A) = g(A) € (—1,1). By Urgsohn Lemma 10.1 there is a continuous function k: X — [0, 1]
such that B C k~1({0}) and A C k~1({1}). Let g(x) := k(x) - g1(x). We have:

1) if g1(x) € (—1,1) then g(x) € (—1.,1)
2) if g1(x) € {—1,1} then x € Bso g(x) =0-g1(x) =0

It follows that g: X — (—1,1). Also, g is a continuous function since k and g1 are continuous. Finally,
if x € Athen g(x) =1-g1(x) = g(x), so gla=g. O

Tietze Extension Theorem holds for functions defined on normal spaces. It turns out the function
extension property is actually equivalent to the notion of normality of a space:

11.9 Theorem. Let X be a space satisfying T1. The following conditions are equivalent:

1) X is a normal space.
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2) For any closed sets A, B C X such that AN B = @ there is a continuous function f: X — [0, 1]
such that such that A C f~1({0}) and B C f~1({1}).

3) If AC X is a closed set then any continuous function f: A — R can be extended to a continuous
function f: X — R.

Proof. The implication 1) = 2) is the Urysohn Lemma 10.1 and 2) = 1) is Proposition 9.15. The
implication 1) = 3) is the Tietze Extension Theorem 11.8. The proof of implication 3) = 1) is an
exercise.

O]

Exercises to Chapter 11

E11.1 Exercise. Prove implication 3) = 1) of Theorem 11.9.

E11.2 Exercise. Let X be a normal space, let A C X be a closed subspace, and let f: A — R be a
continuous function.

a) Assume that g: X — R is a continuous function such that f(x) < g(x) for all x € A. Show that there
exists a continuous function F: X — R satisfying F|a = f and F(x) < g(x) for all x € X.

b) Assume that g, h: X — R are a continuous function such that h(x) < f(x) < g(x) for all x € A and
h(x) < g(x) for all x € X. Show that there exists a continuous function F': X — R satisfying F'|a = f
and h(x) < F'(x) < g(x) for all x € X.

E11.3 Exercise. Recall that if X is a topological space then a subspace Y C X is a called a retract of
X if there exists a continuous function r: X — Y such that r(x) = x for all x € Y. Let X be a normal
space and let Y C X be a closed subspace of X such that Y = R. Show that Y is a retract of X.

E11.4 Exercise. Let X be topological space. Recall from Exercise 10.3 that a set A C X is a Gs-set if
there exists a countable family of open sets Uy, Uy, ... such that A = ﬂzo:1 U,.

a) Show that if X is a normal space and A C X is a closed Ggs-set then there exists a continuous
function f: X — [0, 1] such that A = f=1({0}).

b) Show that if X is a normal space and A, B C X are closed Gs-sets such that AN B = & then there
exists a continuous function f: X — [0, 1] such that A = f~'({0}) and B = f~"({1}).



