
13 | Metrization
of Manifolds

Manifolds are among the most important objects in geometry in topology. In this chapter we introducemanifolds and look at some of their basic examples and properties. In particular, as an application ofthe Urysohn Metrization Theorem, we show that every manifold is a metrizable space.
13.1 Definition. A topological manifold of dimension n is a topological space M which is a Hausdorff,second countable, and such that every point of M has an open neighborhood homeomorphic to an opensubset of Rn (we say that M is locally homeomorphic to Rn).
13.2 Note. Let M be a manifold of dimension n. If U ⊆ M is an open set and φ : U → V is ahomeomorphism of U with some open set V ⊆ Rn then we say that U is a coordinate neighborhoodand φ is a coordinate chart on M .
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13.3 Lemma. If M is an n-dimensional manifold then:
1) for any point x ∈ M there exists a coordinate chart φ : U → V such that x ∈ U , V is an open

ball V = B(y, r), and φ(x) = y;
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2) for any point x ∈ M there exists a coordinate chart ψ : U → V such that x ∈ U , V = Rn, and
ψ(x) = 0.

Proof. Exercise.
13.4 Example. A space M is a manifold of dimension 0 if and only if M is a countable (finite orinfinite) discrete space.
13.5 Example. If U is an open set in Rn then U is an n-dimensional manifold. The identity mapid : U → U is then a coordinate chart defined on the whole manifold U . In particular Rn is an
n-dimensional manifold.
13.6 Example. The n-dimensional sphere

Sn := {(x1, . . . , xn+1) ∈ Rn+1 | x21 + · · ·+ x2
n+1 = 1}

is an n-dimensional manifold. Indeed, let x = (x1, . . . , xn+1) ∈ Sn. We need to show that there exists anopen neighborhood of x which is homeomorphic to an open subset of Rn. Choose i ∈ {1, 2, . . . , n+ 1}such that xi 6= 0. Assume that xi > 0. Take U+
i = {(y1, . . . , yn+1) ∈ Sn | yi > 0}. The set U+

i is openin Sn and x ∈ U+
i . We have a continuous map

h+
i : U+

i → B(0, 1) ⊆ Rn

given by h(y1, . . . , yn+1) = (y1, . . . , yi−1, yi+1, . . . , yn+1). This map is a homeomorphism with theinverse (h+
i )−1 : B(0, 1)→ U+

i given by
(h+
i )−1(t1, . . . , tn) = (t1, . . . , ti−1,√1− (t21 + · · ·+ t2n), ti, . . . tn,)

If xi < 0 then we can construct in a similar way a coordinate chart h−i : U−i → B(0, 1) where
U−i = {(y1, . . . , yn+1) ∈ Sn | yi < 0}.
13.7 Proposition. If M is an m-dimensional manifold and N is an n-dimensional manifold then M×N
is an m+ n-dimensional manifold.

Proof. Exercise.
13.8 Example. The torus is the space T 2 := S1 × S1. Since S1 is a manifold of dimension 1, thus byProposition 13.7 T 2 is a manifold of dimension 2. Similarly, for any n ≥ 2 the n-dimensional torus
T n :=∏n

i=1 S1 is a manifold of dimension n.
13.9 Note. There exist topological spaces that are locally homeomorphic to Rn, but do not satisfy thethe other conditions of the definition of a manifold (13.1). For example, the line with double origin is
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a topological space L defined as follows. As a set L consist of all points of the real line R and oneadditional point that we will denote by 0̃:
R0

0̃

A basis B of the topology on L consists of the following sets:1) any open set in R is in B;2) for any a < 0 and b > 0 the set (a, 0) ∪ {0̃} ∪ (0, b) is in B.Notice that L is locally homeomorphic to R. Indeed, since R is an open set in L thus any point of Lr{0̃}has an open neighborhood homeomorphic to R. Also, for any a < 0 < b the set (a, 0) ∪ {0̃} ∪ (0, b) isan open neighborhood of 0̃ which is homeomorphic to the open interval (a, b). On the other hand L isnot a Hausdorff space since the point 0̃ cannot be separated by open sets from 0 ∈ R. Therefore L isnot a manifold. There exist also spaces (e.g. Alexandroff long line) that are locally homeomorphic to
Rn and are Hausdorff, but are not second countable.
The following theorem says that the dimension of a manifold is well defined:
13.10 Invariance of Dimension Theorem. If M is a non-empty topological space such that M is a
manifold of dimension m and M is also a manifold of dimension n then m = n.

In other words if a space is locally homeomorphic to Rm then if cannot be locally homeomorphic to Rnfor n 6= m. While this sounds obvious the proof for arbitrary m and n is actually quite involved andgoes beyond the scope of this course. The proof is much simpler for m = 0 and m = 1 (exercise).An slight generalization of the notion of a manifold is a manifold with boundary. Let Hn denote thesubspace of Rn given by Hn = {(x1, . . . , xn) ∈ Rn | xn ≥ 0}.
13.11 Definition. A topological n-dimensional manifold with boundary is a topological space Mwhich is a Hausdorff, second countable, and such that every point of M has an open neighborhoodhomeomorphic to an open subset of Hn.
As before, if M is a manifold with boundary, U is an open set in M , V is an open set in Hn and
φ : U → V is a homeomorphism then we say that φ is a coordinate chart on M .
13.12 Let ∂Hn = {(x1, . . . , xn) ∈ Hn | xn = 0}. If M is an n-dimensional manifold with boundary,
φ : U → V is a coordinate chart, and x ∈ U then there are two possibilities:
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1) φ(x) ∈ ∂Hn2) φ(x) 6∈ ∂Hn
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In the first case we say that the point x is a boundary point of M , and in the the second case that x isan interior point of M . The next theorem says that a point cannot be a boundary point and an interiorpoint of M at the same time:
13.13 Theorem. Let M be an n-dimensional manifold with boundary, let x0 ∈ M and let φ : U → V
be a local coordinate chart such that x0 ∈ U . If φ(x0) ∈ ∂Hn then for any other local coordinate chart
ψ : U ′ → V ′ such that x0 ∈ U ′ we have ψ(x0) ∈ ∂Hn.

The proof in the general case requires similar machinery as the proof of Theorem 13.10, and so we willomit it here. The case when n = 1 is much simpler (exercise).
13.14 Definition. Let M be a manifold with boundary. The subspace of M consisting of all boundarypoints of M is called the boundary of M and it is denoted by ∂M .
13.15 Example. The space Hn is trivially an n-dimensional manifold with boundary.
13.16 Example. For any n the closed n-dimensional ball

Bn = {(x1, . . . , xn) ∈ Rn | x21 + · · ·+ x2
n ≤ 1}

is an n-dimensional manifold with boundary (exercise). In this case we have ∂Bn = Sn−1.
13.17 Example. If M is a manifold (without boundary) then we can consider it as a manifold withboundary. where ∂M = ∅.
13.18 Example. If M is an m-dimensional manifold with boundary and N is an n-dimensional manifoldwithout boundary then M ×N is an (m+ n)-dimensional manifold with boundary (exercise). In suchcase we have: ∂(M ×N) = ∂M ×N . For example the solid torus B2 × S1 is a 3-dimensional manifoldwith boundary, and ∂(B2 × S1) = S1 × S1 = T 2.
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Even more generally, if M is an m-dimensional manifold with boundary and N is an n-dimensionalmanifold with boundary then M×N is an (m+n)-dimensional manifold with boundary and ∂(M×N) =(∂M ×N) ∪ (M × ∂N) (exercise).
13.19 Proposition. If M is an n-dimensional manifold with boundary then:

1) M r ∂M is an open subset of M and it is an n-dimensional manifold (without boundary);
2) ∂M is a closed subset of M and it is an (n− 1)-dimensional manifold (without boundary).

Proof. Exercise.
13.20 Theorem. Every topological manifold (with or without boundary) is metrizable.

Our argument will use the following fact, the proof of which will be postponed until later (see Exercise15.5).
13.21 Lemma. Let M be an n-dimensional topological manifold, and let φ : U → V be a coordinate
chart on M . If B(x, r) is a closed ball in Rn such that B(x, r) ⊆ V then the set φ−1(B(x, r)) is closed
in M .

Proof of Theorem 13.20. We will use Urysohn Metrization Theorem 12.17. Since by definition everymanifold is second countable it will be enough to prove that manifolds are regular topological spaces.Let M be an n-dimensional manifold, let A ⊆ M be a closed set, and let x ∈ M be a point suchthat x 6∈ A. We need to show that there exists open sets W,W ′ ⊆ M such that A ⊆ W , x ∈ W ′and W ∩W ′ = ∅. Assume first that x does not belong to the boundary of M . We can find an openneighborhood U of x and homeomorphism φ : U → Rn such that φ(x) = 0. Since A is closed in M theset A∩U is closed in U , and so φ(A∩U) is closed in Rn. Therefore the set Rnrφ(A∩U) is open in Rn.Since 0 = φ(x) ∈ Rn r φ(A ∩ U) we can find an open ball B(0, ε) such that B(0, ε) ⊆ Rn r φ(A ∩ U):MTH427p005
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Take W = M r φ−1(B(0, ε2 )) and W ′ = φ−1(B(0, ε2 )). Notice that x ∈ W ′. Also, since W ′ is open in



13. Metrization of Manifolds 87

U and U is open in M we obtain that W ′ is open in M . Next, by Lemma 13.21 the set φ−1(B(0, ε2 )) isclosed in M , so W is open in M . Moreover, since W ′ ⊆ φ−1(B(0, ε2 )) we obtain that W ∩W ′ = ∅. Itremains to show that A ⊆ W , or equivalently that A ∩ φ−1(B(0, ε2 )) = ∅. If y ∈ A and y 6∈ U then
y 6∈ φ−1(B(0, ε2 )) since φ−1(B(0, ε2 )) ⊆ U . Also, if y ∈ A ∩U then y 6∈ φ−1(B(0, ε2 )) by the choice of ε,and so we are done. In case when x ∈ ∂M we can use a similar argument.

Exercises to Chapter 13

E13.1 Exercise. Prove Lemma 13.3.
E13.2 Exercise. Let M be an n-dimensional manifold, let x0 ∈ M and let W ⊆ M be an open set suchthat x0 ∈ W . Show that there exists a coordinate neighborhood U ⊆ M such that x0 ∈ U and U ⊆ W .
E13.3 Exercise. The goal of this exercise is to prove the Invariance of Dimension Theorem 13.10 insmall dimensions.a) Let M be a manifold of dimension 0. Show that M is not locally homeomorphic to Rn for any n 6= 0.b) Let M be a manifold of dimension 1. Show that M is not locally homeomorphic to Rn for any n 6= 1.
E13.4 Exercise. Prove Theorem 13.13 in the case when M is a 1-dimensional manifold with boundary.
E13.5 Exercise. Let M be an m-dimensional manifold with boundary and N an n-dimensionalmanifold with boundary Show that M × N is an (m + n)-dimensional manifold with boundary and
∂(M ×N) = (∂M ×N) ∪ (M × ∂N)
E13.6 Exercise. Prove Proposition 13.19.


