14 | Compact Spaces

14.1 Definition. Let X be a topological space. A cover of X is a collection Y = {Y;}ics of subsets of
X such that | J,o, Yi = X.

iel

2 Y,

If the sets Y; are open in X for all i € [ then Y is an open cover of X. If Y consists of finitely many
sets then Y is a finite cover of X.

14.2 Definition. Let Y = {Y;},c/ be a cover of X. A subcover of Y is cover Y of X such that every
element of Y is in Y.

14.3 Example. Let X = R. The collection
Y={(mn) CR|mneZ m<n}
is an open cover of R, and the collection
Y={(-nnCR|n=12...}

is a subcover of Y.
14.4 Definition. A space X is compact if every open cover of X contains a finite subcover.

14.5 Example. A discrete topological space X is compact if and only if X consists of finitely many
points.
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14.6 Example. Let X be a subspace of R given by
X={0tu{lin=12..}

The space X is compact. Indeed, let U = {U;};c/ be any open cover of X and let 0 € Uy. Then there
exists N > 0 such that % € U, foralln > N. Forn=1,...,N let U;, € U be a set such that
% € U,,. We have:

X = U[OUU,'1 U"'UU[N

so {U, Uiy, ..., Ui} is a finite subcover of U.

14.7 Example. The real line R is not compact since the open cover
Y={n-1.n+1)CR|neZ}
does not have any finite subcover.

14.8 Proposition. Let f: X — Y be a continuous function. If X is compact and f is onto then Y is
compact.

Proof Exercise. O

14.9 Corollary. Let f: X — Y be a continuous function. If A C X is compact then f(A) C Y is compact.

Proof. The function f|4: A — f(A) is onto, so this follows from Proposition 14.8. O

14.10 Corollary. Let X, Y be topological spaces. If X is compact and Y = X then Y is compact.

Proof. Follows from Proposition 14.8. O
14.11 Example. For any a < b the open interval (a, b) C R is not compact since (a, b) = R.

14.12 Proposition. For any a < b the closed interval [a, b] C R is compact.

Proof. Let U be an open cover of [a, b] and let
A = {x €[a, b] | the interval [a, x] can be covered by a finite number of elements of U}
Let xp := sup A.

Step 1. We will show that xo > a. Indeed, let U € U be a set such that a € U. Since U is open we
have [a, a + €) C U for some € > 0. It follows that x € A for all x € [a, a + €). Therefore xp > a + €.
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Step 2. Next, we will show that xg € A. Let Uy € U be a set such that xg € Up. Since U is open and
xo > a there exists €1 > 0 such that (xo — €1, x0] C Up. Also, since xo = sup A there is x € A such
that x € (xo — €1, x0]. Notice that

[a, x0] = [a, x] U (xo — &1, x0]

By assumption the interval [a, x] can be covered by a finite number of sets from U and (xo — €1, xo] is
covered by Up € U. As a consequence [a, xo] can be covered by a finite number of elements of U, and
so xp € A

Step 3. In view of Step 2 it suffices to show that xo = b. To see this take again Uy € U to be a set
such that xo € U. If xo < b then there exists €2 > 0 such that [xo, xo + €2) C Up. Notice that for any
X € (xo, x0 + €2) the interval [a, x] can be covered by a finite number of elements of U, and thus x € A.
Since x > xg this contradicts the assumption that xo = sup A.

O

14.13 Proposition. Let X be a compact space. If Y is a closed subspace of X then Y is compact.

Proof. Exercise. O

14.14 Proposition. Let X be a Hausdorff space and let Y C X. If Y is compact then it is closed in X.

Proposition 14.14 is a direct consequence of the following fact:

14.15 Lemma. Let X be a Hausdorff space, let Y C X be a compact subspace, and let x € X \ Y.
There exists open sets U,V C X such thatx e U, Y CVandUNV = @.

Proof. Since X is a Hausdorff space for any point y € Y there exist open sets U, and V,, such that
x € Uy, yeV,and U, NV, = 3. Notice that Y C Vy. Since Y is compact we can find a finite
number of points y1,...,y, € Y such that

yey

Y CV,U---UV,

Take V=V, U---uV, and U:= Uy, N---NU,.
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O

Proof of Proposition 14.14. By Lemma 14.15 for each point x € X\ Y we can find an open set Uy, C X
such that x € Uy and Uy C X . Y. Therefore X \\ Y is open and so Y is closed. O

14.16 Corollary. Let X be a compact Hausdorff space. A subspace Y C X is compact if and only if Y
is closed in X.

Proof. Follows from Proposition 14.13 and Proposition 14.14. O

14.17 Proposition. Let f: X — Y be a continuous function, where X is a compact space and Y is a
Hausdorff space. For any closed set A C X the set f(A) is closed in Y.

Proof. Let A C X be a closed set. By Proposition 14.13 A is a compact space and thus by Corollary
14.9 f(A) is a compact subspace of Y. Since Y is a Hausdorff space, using Proposition 14.14 we obtain
that f(A) is closed in Y. O

14.18 Proposition. Let f: X — Y be a continuous bijection. If X is a compact space and Y is a
Hausdorff space then f is a homeomorphism.

Proof. This follows from Proposition 6.13 and Proposition 14.18. O]

14.19 Theorem. If X is a compact Hausdorff space then X is normal.

Proof. Step 1. We will show first that X is a reqular space (9.9). Let A C X be a closed set and
let x € X . A. We need to show that there exists open sets U, V C X such that x € U, A C V and
UnNnV = @. Notice that by Proposition 14.13 the set A is compact. Since X is Hausdorff existence of
the sets U and V follows from Lemma 14.15.

Step 2. Next, we show that X is normal. Let A, B C X be closed sets such that AN B = @. By Step 1
for every x € A we can find open sets U, and V, such that x € Uy, B C V, and U, NV = @. The
collection U = {Uy}xea is an open cover of A. Since A is compact there is a finite number of points



1%. Compact Spaces 92

X1, ..., Xm € Asuch that {Uy,, ..., Uy, } is a cover of A. Take U :=J/L; Uy, and V :=(_; Vi. Then
Uand V are opensets, ACU, BCVand UNV =2. O

Exercises to Chapter 14

E14.1 Exercise. Prove Proposition 14.8.
E14.2 Exercise. Prove Proposition 14.13.

E14.3 Exercise. Let X be a Hausdorff space and let A C X. Show that the following conditions are
equivalent:
(1)) A is compact

(it)) A'is closed in X and in any open cover {U;}ie/ of X there exists a finite number of sets U, , ..., U;
such that A C | J{_, U,,.

n

E14.4 Exercise. a) Let X be a compact space and for i =1,2,... let A; C X be a non-empty closed
set. Show that if Aiyq C A; for all i then (72, A; # @.

b) Give an example of a (non-compact) space X and closed non-empty sets A; C X satisfying Aiy1 C A;
for i=1,2,... such that N2, Ai = @.

E14.5 Exercise. a) Let X be a compact Hausdorff space and for i =1,2,... let A; C X be a closed,
connected set. Show that if A;;1 C A; for all i then ﬂf’; A; is connected.

b) Give an example of a space X and subspaces A1 C A, C ... C X such that A; is connected for each
i but (24 A; is not connected.

E14.6 Exercise. The goal of this exercise is to show that if f: X — R is a continuous function and X
is a compact space then there exist points x1, x2 € X such that f(xq) is the minimum value of f and
f(x2) is the maximum value.

Let X be a compact space and let f: X — R be a continuous function.
a) Show that there exists C > 0 such that |f(x)| < C for all x € X.

b) By part a) there exists C > 0 such that f(X) C [—C, C]. This implies that inff(X) # —oo
and sup f(X) # +oo. Show that there are points x1,x> € X such that f(xq) = inff(X) and that
f(x2) = sup f(X).

E14.7 Exercise. Let (X, o) be a compact metric space, and let f: X — X be a function such that
o(f(x), f(y)) < o(x,y) forall x,y € X, x # y.

a) Show that the function ¢: X — R given by ¢(x) = o(x, f(x)) is continuous.
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b) Show that there exists a unique point xg € X such that f(xp) = xo.

E14.8 Exercise. Let f: X — Y be a continuous map such for any closed set A C X the set f(A) is
closed in Y.

a) Let y € Y. Show that if U C X is an open set and f~'(y) C U then there exists an open set V C Y
such that y € V and f~1(V) C U.

b) Show that if Y is compact and f~'(y) is compact for each y € Y then X is compact.

E14.9 Exercise. Let X, Y be topological spaces, and let p1: X x Y — X be the projection map:
pi(x, y) = x. Show that if Y is compact then for any closed set A C X x Y the set p1(A) C X is closed
in X.

E14.10 Exercise. A continuous function f: X — Y is a local homeomorphism if for each point x € X
there exists an open neighborhood Uy, C X such that f(Uy) is open in Y and f|y,: Uy — f(Uy) is a
homeomorphism.

a) Assume that f: X — Y is a local homeomorphism where X is a compact space. Show that for each
y € Y the set f~'(y) consists of finitely many points.

b) Assume that f: X — Y is a local homeomorphism where X is a compact Hausdorff space and Y is a
Hausdorff space. Let y € Y be a point such that f~'(y) consists of n points. Show that there exists an
open set V C Y such that y € V and that for each y’ € V the set f~'(y’) consists of n points.



