
15 | Heine-Borel
Theorem

We have seen already that a closed interval [a, b] ⊆ R is a compact space (14.12). Our next goal is toprove Heine-Borel Theorem 15.3 which gives a simple description of compact subspaces of Rn.
15.1 Definition. Let (X, ρ) be a metric space. A set A ⊆ X is bounded if there exists an open ball
B(x0, r) ⊆ X such that A ⊆ B(x0, r).
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15.2 Proposition. Let (X, ρ) be a metric space and let A ⊆ X . The following conditions are equivalent:
1) A is bounded.
2) For each x ∈ X there exists rx > 0 such that A ⊆ B(x, rx ).
3) There exists R > 0 such that ρ(x1, x2) < R for all x1, x2 ∈ A.

Proof. Exercise.
15.3 Heine-Borel Theorem. A set A ⊆ Rn is compact if and only if A is closed and bounded.

15.4 Note. The statement of Heine-Borel Theorem is not true if we replace Rn by an arbitrary metricspace. Take e.g. X = (0, 1) with the usual metric d(x, y) = |x − y|. Let A = X . The set A is closed in
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X . Also, A is bounded since d(x, y) < 1 for all x, y ∈ A. However A is not compact.
The proof of Heine-Borel Theorem will make use of the following fact:
15.5 Theorem. If X , Y are compact spaces then the space X × Y is also compact.

Proof. Let U = {Ui}i∈I be an open cover of X × Y . Assume first that each set Ui is of the form
Ui = Vi ×Wi with Vi open in X , and Wi is open in Y . We will show that U has a finite subcover,
Step 1. We will show first that for every point x ∈ X there is an open set Zx ⊆ X such that Zx × Ycan be covered by a finite number of elements of U. Consider the subspace {x} × Y ⊆ X × Y . Since
{x} × Y ∼= Y is compact there is a finite number of sets Vi1 × Wi1 , . . . , Vin × Win ∈ U such that
{x} × Y ⊆

⋃n
j=1 Vij ×Wij . We can take Zx = ⋂n

j=1 Vij .
X
x

Y

Zx

X × Y

Step 2. The family {Zx}x∈X is a on open cover of X . Since X is compact we have X = ⋃m
k=1 Zxk forsome x1, . . . , xm ∈ X . It follows that X × Y = ⋃m

k=1(Zxk × Y ). Since each set Zxk × Y is covered by afinite number of elements of U it follows that X ×Y is also covered by a finite number of elements of U.Assume now that U = {Ui}i∈I is an arbitrary open cover of X × Y . For every point (x, y) ∈ X × Y let
V(x,y) ×W(x,y) be a set such that V(x,y) is open in X , W(x,y) is open in Y , (x, y) ∈ V(x,y) ×W(x,y) and
V(x,y) ×W(x,y) ⊆ Ui for some i ∈ I:

(x, y)
X × Y

Ui

V(x,y) ×W(x,y)

The family {V(x,y) ×W(x,y)}(x,y)∈X×Y is an open cover of X × Y . By the argument above we can find
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points (x1, y1), . . . , (xn, yn) ∈ X × Y such that X × Y = ⋃n
j=1 V(xj ,yj ) ×W(xj ,yj ). For j = 1, . . . , n let

Uij ∈ U be a set such that V(xj ,yj ) ×W(xj ,yj ) ⊆ Uij . We have
X × Y = n⋃

j=1V(xj ,yj ) ×W(xj ,yj ) ⊆
n⋃
j=1Uij

which means that {Uj1 , . . . , Ujn} is a finite subcover of U.
15.6 Corollary. If X1, . . . , Xn are compact spaces spaces then the space X1 × · · · × Xn is compact.

Proof. Follows from Theorem 15.5 by induction with respect to n.
15.7 Corollary. For i = 1, . . . , n let [ai, bi] ⊆ R be a closed interval. The closed box

[a1, b1]× · · · × [an, bn] ⊆ Rn

is compact.

Proof. This follows from Proposition 14.12 and Corollary 15.6.
Proof of Theorem 15.3. (⇒) Exercise.(⇐) If A ⊆ Rn is a closed and bounded set then A ⊆ B(0, r) for some r > 0. Notice that B(0, r) ⊆ Jnwhere J = [−r, r] ⊆ R. As a consequence A is a closed subspace of Jn. By Corollary 15.7 the space Jnis a compact. Since closed subspaces of compact spaces are compact (Proposition 14.13) we obtainthat A is compact.

Exercises to Chapter 15

E15.1 Exercise. Prove the implication (⇒) of Theorem 15.3.
E15.2 Exercise. Let X , Y be topological spaces. Show that the converse of Theorem 15.5 holds. Thatis, show that if X × Y is a compact space then X and Y are compact spaces.
E15.3 Exercise. Let f : X × [0, 1]→ Y be a continuous function, and let U ⊆ Y be an open set. Showthat the set

V = {x ∈ X | f ({x} × [0, 1]) ⊆ U}is open in X .
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E15.4 Exercise. Let A,B be compact subspaces of Rn. Show that the set
A+ B = {x + y ∈ Rn | x ∈ A, y ∈ B}

is also compact.
E15.5 Exercise. In Chapter 13 while proving that topological manifolds are metrizable we omitted theproof of Lemma 13.21. We are now in position to fill this gap. Prove Lemma 13.21.


