17 | Tychonoff Theorem

We have seen already that a product of finitely many compact spaces is compact (15.6) . The main
goal here is to show that the same is true for arbitrary products of compact spaces:

17.1 Tychonoff Theorem. If {Xs}ses is a family of topological spaces and Xs is compact for each
s € S then the product space [ |,os Xs is compact.

The proof of Theorem 17.1 involves two main ideas. The first is reformulation of compactness in terms
of closed sets.

17.2 Definition. Let A be a family of subsets of a space X. The family A is centered if for any finite
number of sets Ay,..., A, € Awe have AiN---NA, O

17.3 Example. If A = {A;}ic/ is a family of subsets of X such that (., A; # @ then A is centered.

17.4 Example. Let X = R. For n = 1,2,... define A, = [n,+0o0). Then the family {A,} ez is
centered even though (°2; A, = @.

n=1

17.5 Lemma. Let X be a topological space. The following conditions are equivalent:

1) The space X is compact.
2) For any centered family A of closed subsets of X we have (4 A # @.

Proof. 2) = 1) Let W = {U,}ics be an open cover of X. We need to show that U has a finite subcover.
For i € | define A; := X ~ U;. This gives a family A = {A;}ic/ of closed sets in X. We have:

NA=X~U)=X~|JU=X"X=0
iel iel iel

This implies that A is not a centered family, so there exist sets A;,, ..., A;, € A such that A;N---NA;, =

ln
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. This gives:

G=A, N NA, =X~ U)n-nX~U)=X~ (U, U--UU)

tn

Therefore X = U;, U---U U;,, and so {U;,,..., U; } is a finite subcover of 1.

1) = 2) Follows from a similar argument. O

Having Lemma 17.5 at our disposal we can try to prove the Theorem 17.1 in the following way. Given a
centered family A of subsets of [ ],c5 Xs we need to show that (4 A # @. Let pgy: [ ocs Xs = Xy,
be the projection onto the sg-th factor. For each s € S the family { ps(A) }aca is a centered family of
closed subsets of X,. Since Xs is compact we can find xs € X, such that x; € [z ps(A). If we can
show that the point (xs)ses € [ |,cs Xs is in (44 A then we are done.

X2
X1 X Xz

X2 ¢ (x>

X1 )(1

The problem with this approach is that in general not every choice of points xs € (e 4 Ps(A) will give
a point (xs)ses that belongs to (4.4 A:

X2
X1 X Xz

X20 [ (X1 , Xz)

This brings in the second main idea of the proof of Tychonoff Theorem, which (modulo a few technical
details) can be outlined as follows. We will start with an arbitrary centered family A of closed subsets
of [ ],e5 Xs, but then we will replace it by a certain family M such that A C M. This inclusion will
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give (peneM € (Naea A so it will be enough to show that (), M # @. The advantage of working
with the family M will be that for any choice of points xs € (e Ps(M) the point (xs)ses will belong
to mMeM M, which will let us avoid the issues indicated above.

The main difficulty is to show that for a given centered family A we can find a family M that has the
above propreties. This will be accomplished using Zorn’s Lemma. This lemma is a very useful result in
set theory that appears in proofs of many theorems in various areas of mathematics. Here is a concise
introduction to Zorn's Lemma:

17.6 Definition. A partially ordered set (or poset) is a set S equipped with a binary relation <
satisfying
(i) x < x forall x € S (reflexivity)

(i) if x <y and y < x then y = x (antisymmetry)
(iii) if x <y and y < z then x < z (transitivity).

17.7 Definition. A linearly ordered set is a poset (S, <) such that for any x, y € S we have either
x<yory<x

17.8 Example. If Ais a set and S is the set of all subsets of A then S is a poset with ordering given
by inclusion of subsets.

17.9 Definition. If (S, <) is a poset then an element x € S is a maximal element of S if we have
x < y only for y = x.

17.10 Example. If S is the set of all subsets of a set A ordered by inclusion then S has only one
maximal element: the whole set A.

If we take S’ to be the set of all proper subsets of a A then S’ has many maximal elements: for every
a € A the set A— {a} is a maximal element of S'.

17.11 Example. In general a poset does not need to have any maximal elements. For example, take
the set of integers Z with the usual ordering <. The set Z does not have any maximal elements since
for every number n € Z we can find a larger number (e.g. n +1).

17.12 Note. If (S,<) is a poset and T C S then T is also a poset with ordering inherited from S.

17.13 Definition. Let (S, <) is a poset and let T C S. An upper bound of T is an element x € S such
that y < xforally € T.

17.14 Definition. If (S, <) is a poset. A chainin S is a subset T C S such that T is linearly ordered.

1715 Zorn’s Lemma. /f (S, <) is a non-empty poset such that every chain in S has an upper bound
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in S then S contains a maximal element.
Proof. See any book on set theory. O]
We are finally ready for the proof of the Tychonoff Theorem:

Proof of Theorem 17.1. Let X = [],c5 Xs where X is a compact space for each s € S. Let A be a
centered family of closed subsets of X. We will show that there exists x = (xs)ses € X such that
X € (Naea A Let T denote the set consisting of all centered families JF of (not necessarily closed)
subsets of X such that A C J. The set T is partially ordered by the inclusion.

Claim. Every chain in T has an upper bound.

Indeed, if {J;};e/ is a chain in T then take J = Ujes Fj- Since F is a centered family (exercise) and
F; € TJ for all j € J thus F is an upper bound of {JF;},¢/.

By Zorn's Lemma 17.15 we obtain that the set T contains a maximal element M. We will show that
there exists x € X such that o
X € ﬂ M

MeM

Since A C M and A consists of closed sets we have (y;cp M C (Naca A- Therefore it will follow that
X € (aea A and thus (e A+ 2.

Construction of the element x proceeds as follows. For s € S let ps: X — X5 by the projection onto
the s-th coordinate. For each s € S the family {ps(M)}men is a centered family of closed subsets of

Xs, s0 by compactness of X; there is x; € X; such that xs € (e Ps(M). We set x = (xg)ses.

In order to see that x € (e M notice that M has the following property:
if BC X and BNM # @& for all M € M then Be M (%)

Indeed, if M = MU {B} then M’ € T (exercise) and M C M/, so by the maximality of M we must
have M = M.

For s € S let Us; C X5 be an open neighborhood of xs. Since xs € ps(M) for all M € M, thus
Us N ps(M) # & for all M € M. Equivalently, p7'(Us) N M # @ for all M € M. By property () we
obtain that p~1(Us) € M for all s € S. Since M is a centered family we obtain

p (Us)N---np (U, )NM# @ forall M e M (%)

Recall that by (12.9) the sets of the form p~"(Us,)N---Np~"(Us,). are precisely the open neighborhoods
of x that belong to the basis of the product topology on X, and thus any open neighborhood of X
contains a neighborhood of this type. Therefore using (x+) we obtain that if M € M then for any open
neighborhood U of x we have M N U # @. This means that for every M € M we have x € M, and
thus x € (Myen M-
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O
17.16 Proposition. If X; is a Hausdorff space for each i € | then the product space [ ], Xi is also
Hausdorff.
Proof. Exercise. O

17.17 Corollary. If X; is a compact Hausdorff space space for each i € | then the product space
[ 1;c; Xi is also compact Hausdorff

Proof. Follows from Tychonoff Theorem 17.1 and Proposition 17.16. O

Exercises to Chapter 17

E17.1 Exercise. This problem does not involve topology, it is an exercise in using Zorn's Lemma 17.15.
A subset H C R is a subgroup of R if it satisfies three conditions:

1) 0e H
2) if x € Hthen —x € H
3) ifx,ye Hthenx+y e H
For example, the set of integers Z and the set of rational numbers @@ are subgroups of R. Show that for

any real number r # 0 there exists a subgroup H C R such that r ¢ H, but r € H' for any subgroup
H’ such that H C H and H # H'.

E17.2 Exercise. This is another exercise on Zorn's Lemma. Recall (1.24) that any binary relation on
a set S is formally defined as a subset R C S x S. We say that R is a partial order relation if S
equipped with this relation is a partially ordered set (17.6). In the subset notation this mean that R
satisfies the following conditions:

(i) (x,x) € Rforallxe S
(i) if (x,y) € Rand (y,x) € S then x =y
(iii) if (x,y) € R and (y,z) € R then (x,z) € R.
A partial order relation R is a linear order relation if X equipped with this relation becomes a linearly

ordered set (17.7) . Explicitly, this mean that R satisfies conditions (i) - (iii), and that for any x,y € S
either (x,y) € Ror (y,x) € R.

If R, R’ are binary relations on S then we will say that R extends R if R C R’

a) Show that if R is a partial order relation on S and xp, yo € S are elements such that (xo, yo) € R
and (yo, xo) ¢ R then R can be extended to a partial order relation R’ such that (xp, yo) € R’
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b) Show that if R is a partial order relation on a set S then R can be extended to a linear order
relation R on S.

E17.3 Exercise. The goal of this exercise is to complete two details in the proof of the Tychonoff
Theorem 17.1.

a) For j € J let 7} be a centered family of subsets of a space X. Show that if the set {J;} ¢/ is linearly
ordered with respect to inclusion then J = Ujej J; is a centered family.

b) Let T denote the collection of all centered families of subsets of X. Consider T with ordering given
by inclusion. Let M be a maximal element in T, and let A C X be s set such that AN M #+ @ for all

M € M. Show that the family M’ = M U {A} is centered.
E17.4 Exercise. Prove Proposition 17.16.

E17.5 Exercise. The Cantor set is the subspace C of the real line defined as follows. Take Ap = [0, 1]
The set Ay is then obtained by removing the open middle third subinterval of Ag:

A1 =[0,1] (3, 9) =[0, 3]U[5.1]

Next, A, is obtained from A; by removing open middle third subinterval out of each connected component
of Ay. Explicitly:

A, =10, 51U, 3]U[Z, 2]V I8, 1]
Inductively we construct A,41 from A, by removing the middle third open subintervals from all connected
components of A,. Then we define C = ﬂﬁozo A,.

Show that the Cantor set is homeomorphic to the space [ 72, D where D is the discrete space with
two elements D = {0, 1}.



