
18 | Compactification

We have seen that compact Hausdorff spaces have several interesting properties that make this classof spaces especially important in topology. If we are working with a space X which is not compact wecan ask if X can be embedded into some compact Hausdorff space Y . If such embedding exists we canidentify X with a subspace of Y , and some arguments that work for compact Hausdorff spaces willstill apply to X . This approach leads to the notion of a compactification of a space. Our goal in thischapter is to determine which spaces have compactifications. We will also show that compactificationsof a given space X can be ordered, and we will look for the largest and smallest compactifications of X .
18.1 Proposition. Let X be a topological space. If there exists an embedding j : X → Y such that
Y is a compact Hausdorff space then there exists an embedding j1 : X → Z such that Z is compact
Hausdorff and j1(X ) = Z .

Proof. Assume that we have an embedding j : X → Y where Y is a compact Hausdorff space. Let j(X )be the closure of j(X ) in Y . The space j(X ) is compact (by Proposition 14.13) and Hausdorff, so wecan take Z = j(X ) and define j1 : X → Z by j1(x) = j(x) for all x ∈ X .
18.2 Definition. A space Z is a compactification of X if Z is compact Hausdorff and there exists anembedding j : X → Z such that j(X ) = Z .
18.3 Corollary. Let X be a topological space. The following conditions are equivalent:

1) There exists a compactification of X .
2) There exists an embedding j : X → Y where Y is a compact Hausdorff space.

Proof. Follows from Proposition 18.1.
18.4 Example. The closed interval [−1, 1] is a compactification of the open interval (−1, 1). with theembedding j : (−1, 1)→ [−1, 1] is given by j(t) = t for t ∈ (−1, 1).
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X j
{1} × J

18.5 Example. The unit circle S1 = {(x1, x2) ∈ R2 | x21 + x22 = 1} is another compactification of theinterval (−1, 1). The embedding j : (−1, 1)→ S1 is given by j(t) = (sinπt,− cosπt).

X j

{1} × J
18.6 Example. A more complex compactification of the space X = (−1, 1) can be obtained as follows.Let J = [−1, 1]. Consider the function j : X → J × J given by

j(t) = (t, cos ( |t|1−|t|))
The map j is an embedding, and so j(X ) ⊆ J × J is a compactification of X . We have:

j(X ) = {−1} × J ∪ j(X ) ∪ {1} × J

X j

j(X ){−1} × J {1} × J
18.7 Theorem. A space X has a compactification if and only if X is completely regular (i.e. it is a
T31/2-space).

Proof. (⇒) Assume that X has a compactification. Let j : X → Y be an embedding where Y is acompact Hausdorff space. By Theorem 14.19 the space Y is normal, so it is completely regular. Sincesubspaces of completely regular spaces are completely regular (exercise) we obtain that j(X ) ⊆ Y iscompletely regular. Finally, since j(X ) ∼= X we get that X is completely regular.(⇐) Assume that X is completely regular. We need to show that there exists an embedding j : X → Ywhere Y is a compact Hausdorff space. Let C (X ) denote the set of all continuous functions f : X → [0, 1].
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Complete regularity of X implies that C (X ) is a family of functions that separates points from closedsets in X (12.13). Consider the map
jX : : X → ∏

f∈C (X )[0, 1]
given by jX (x) = (f (x))f∈C (X ). By the Embedding Lemma 12.14 we obtain that this map is an embedding.It remains to notice that by Corollary 17.17 the space ∏f∈C (X )[0, 1] is compact Hausdorff.
18.8 Note. In the part (⇒) of the proof of Theorem 18.7 we used the fact that subspaces of completelyregular spaces are completely regular. An analogous property does not hold for normal spaces: asubspace of a normal space need not be normal. For this reason it is not true that a space that has acompactification must be a normal space.
18.9 Definition. Let X be a completely regular space and let jX : X →∏

f∈C (X )[0, 1] be the embeddingdefined in the proof of Theorem 18.7 and let β(X ) be the closure of jX (X ) in ∏f∈C (X )[0, 1]. Thecompactification jX : X → β(X ) is called the Čech-Stone compactification of X .
The Čech-Stone compactification is the largest compactification of a space X in the following sense:
18.10 Definition. Let X be a space and let i1 : X → Y1, i2 : X → Y2 be compactifications of X . Wewill write Y1 ≥ Y2 if there exists a continuous function g : Y1 → Y2 such that i2 = gi1:

X

Y1 Y2
i1 i2

g

18.11 Proposition. Let i1 : X → Y1, i2 : X → Y2 be compactifications of a space X.

1) If Y1 ≥ Y2 then there exists only one map g : Y1 → Y2 satisfying i2 = gi1. Moreover g is onto.

2) Y1 ≥ Y2 and Y2 ≥ Y1 if and only if the map g : Y1 → Y2 is a homeomorphism.

Proof. Exercise.
18.12 Theorem. Let X be a completely regular space and let jX : X → β(X ) be the Čech-Stone
compactification of X . For any compactification i : X → Y of X we have β(X ) ≥ Y .

The proof Theorem 18.12 will use the following fact:
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18.13 Lemma. If f : X1 → X2 is a continuous map of compact Hausdorff spaces then f (A ) = f (A) for
any A ⊆ X1 .

Proof. Exercise.
Proof of Theorem 18.12. Let i : X → Y be a compactification of X . We need to show that there existsa map g : β(X )→ Y such that the following diagram commutes:

X

β(X ) Y

jX i

g

Let C (X ), C (Y ) denote the sets of all continuous functions X → [0, 1] and Y → [0, 1] respectively.Consider the continuous functions jX : X →∏
f∈C (X )[0, 1] and jY : Y →∏

f ′∈C (Y )[0, 1] defined as in theproof of Theorem 18.7. Notice that we have a continuous function
i∗ : ∏

f∈C (X )[0, 1]→ ∏
f ′∈C (Y )[0, 1]

given by i∗((tf )f∈C (X )) = (sf ′)f ′∈C (Y ) where sf ′ = tif ′ . Moreover, the following diagram commutes:
X Y

∏
f∈C (X )[0, 1] ∏

f ′∈C (Y )[0, 1]

i

jX jY

i∗

We have:
i∗(β(X )) = i∗(jX (X )) = i∗jX (X ) = jY i(X ) = jY (i(X )) = jY (Y )Here the first equality comes from the definition of β(X ), the second from Lemma 18.13, the thirdfrom commutativity of the diagram above, the fourth again from Lemma 18.13, and the last from theassumption that i : X → Y is a compactification. Since the map jY : Y →∏

f ′∈C (Y )[0, 1] is embeddingthe map jY : Y → jY (Y ) is a homeomorphism. We can take g = j−1
Y i∗ : β(X )→ Y .

Motivated by the fact that Čech-Stone compactification is the largest compactification of a space Xone can ask if the smallest compactification of X also exists. If X is a non-compact space then weneed to add at least one point to X to compactify it. If adding only one point suffices then it gives anobvious candidate for the smallest compactification:
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18.14 Definition. A space Z is a one-point compactification of a space X if Z is a compactification of
X with embedding j : X → Z such that the set Z r j(X ) consists of only one point.
18.15 Example. The unit circle S1 is a one-point compactification of the open interval (0, 1).
18.16 Proposition. If a space X has a one-point compactification j : X → Z then this compactification
is unique up to homeomorphism. That is, if j ′ : X → Z ′ is another one-point compactification of X then
there exists a homeomorphism h : Z → Z ′ such that j ′ = hj.

Proof. Exercise.
Our next goal is to determine which spaces admit a one-point compactification.
18.17 Definition. A topological space X is locally compact if every point x ∈ X has an openneighborhood Ux ⊆ X such that the the closure Ux is compact.
18.18 Note. 1) If X is a compact space then X is locally compact since for any x ∈ X we can take
Ux = X .2) The real line R is not compact but it is locally compact. For x ∈ R we can take Ux = (x − 1, x + 1),and then Ux = [x − 1, x + 1] is compact. Similarly, for each n ≥ 0 the space Rn is a non-compact butlocally compact.3) The set Q of rational numbers, considered as a subspace of the real line, is not locally compact(exercise).
18.19 Theorem. Let X be a non-compact topological space. The following conditions are equivalent:

1) The space X is locally compact and Hausdorff.
2) There exists a one-point compactification of X .

Proof. 1)⇒ 2) Assume that X locally compact and Hausdorff. We define a space X+ as follows. Pointsof X+ are points of X and one extra point that we will denote by ∞:
X+ := X ∪ {∞}

A set U ⊆ X+ is open if either of the following conditions holds:(i) U ⊆ X and U is open in X(ii) U = {∞} ∪ (X r K ) where K ⊆ X is a compact set.The collection of subsets of X+ defined in this way is a topology on X+ (exercise). One can checkthat the function j : X → X+ given by j(x) = x is continuous and that it is an embedding (exercise).Moreover, since X is not compact for every open neighborhood U of ∞ we have U ∩ X 6= ∅, so
j(X ) = X+.
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To see that X+ is a compact space assume that U = {Ui}i∈I is an open cover of X+. Let Ui0 ∈ U be aset such that ∞ ∈ Ui0 . By the definition of the topology on X+ we have X+ r Ui0 = K where K ⊆ Xis a compact set. Compactness of K gives that
K ⊆ Ui1 ∪ · · · ∪ Uinfor some U1, . . . , Uin ∈ U. It follows that {Ui0 , Ui1 , . . . , Uin} is a finite cover of X+.It remains to check that X+ is a Hausdorff space (exercise).2) ⇒ 1) Let j : X → Z be a one-point compactification of X . Since X ∼= j(X ) it suffices to show thatthe space j(X ) is locally compact and Hausdorff. We will denote by ∞ the unique point in Z r j(X ).Since Z is a Hausdorff space and subspaces of a Hausdorff space are Hausdorff we get that j(X ) is aHausdorff space.Next, we will show that j(X ) is locally compact. Let x ∈ j(X ). Since Z is Hausdorff there are sets

U,V ⊆ Z open in Z such that x ∈ U , ∞ ∈ V , and U ∩ V = ∅. Since ∞ 6∈ U the set U is open in X .Let U denote the closure of U in X . We will show that U is a compact set. Notice that we have
U ⊆ Z r V ⊆ ZSince Z r V is closed in the compact space Z thus it is compact by Proposition 14.13. Also, since Uis a closed subset of Z r V , thus U is compact by the same result.

18.20 Corollary. If X is a locally compact Hausdorff space then X is completely regular.

Proof. Follows from Theorem 18.7 and Theorem 18.19.
18.21 Corollary. Let X be a topological space. The following conditions are equivalent:

1) The space X is locally compact and Hausdorff .
2) There exists an embedding i : X → Y where Y is compact Hausdorff space and i(X ) is an open

set in Y .

Proof. 1) ⇒ 2) If X is compact then we can take i to be the identity map idX : X → X . If X is notcompact take the one-point compactification j : X → X+. By the definition of topology on X+ the set
j(X ) is open in X+.2) ⇒ 1) exercise.
The next proposition says that one-point compactification, when it exists, is the smallest compactificationof a space in the sense of Definition 18.10:
18.22 Proposition. Let X be a non-compact, locally compact space and let j : X → X+ be the one-point
compactification of X . For every compactification i : X → Y of X we have Y ≥ X+.
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Proof. Exercise.
One can also show that if a space X is not locally compact (and so it does not have a one-pointcompactification) then no compactification of X has the property of being the smallest (see Exercise18.14).
Exercises to Chapter 18

E18.1 Exercise. Show that a subspace of a completely regular space is completely regular (this willcomplete the proof of Theorem 18.7).
E18.2 Exercise. Prove Proposition 18.11.
E18.3 Exercise. Prove Lemma 18.13.
E18.4 Exercise. Consider the set Q of rational numbers with the subspace topology of the real line.Show that Q is not locally compact.
E18.5 Exercise. Prove Proposition 18.16.
E18.6 Exercise. The goal of this exercise is to fill one of the gaps left in the proof of Theorem 18.19.Let X be a locally compact Hausdorff space and let X+ = X ∪ {∞} be the space defined in part 1) ⇒2) of the proof of (18.19). Show that X+ is a Hausdorff space.
E18.7 Exercise. Prove the implication 2) ⇒ 1) of Corollary 18.21.
E18.8 Exercise. A continuous function f : X → Y is proper if for every compact set A ⊆ Y theset f−1(A) ⊆ X is compact. Let X, Y be locally compact, Hausdorff spaces and let X+, Y+ be theirone-point compactifications. Let f : X → Y be a continuous function. Show that the following conditionsare equivalent:1) The function f is proper.2) The function f+ : X+ → Y+ given by f+(x) = f (x) for x ∈ X and f+(∞) =∞ is continuous.
E18.9 Exercise. Let (X, ρ), (Y , µ) be metric spaces and let f : X → Y be a continuous function. Showthat the following conditions are equivalent:1) f is proper (Exercise 18.8)2) If {xn} ⊆ X is a sequence such that {f (xn)} ⊆ Y converges then {xn} ⊆ X has a convergentsubsequence.
E18.10 Exercise. Let X, Y be locally compact Hausdorff spaces, and let j : X → Y be an embedding
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such that j(X ) is an open in Y . Define j] : Y+ → X+ as follows:
j](y) = {j−1(y) if y ∈ j(X )

∞ otherwise
Show that j] is a continuous function.
E18.11 Exercise. Let X, Y be locally compact, Hausdorff spaces and let X+, Y+ be their one-pointcompactifications. Let f : X+ → Y+ be a continuous function such f (∞) =∞. Show that there existsan open set U ⊆ X such f = g+j] where j : U → X is the inclusion map, g = f |U : U → Y is a propermap, j] : X+ → U+ is obtained form j as in Exercise 18.10, and g+ : U+ → Y+ obtained from g as inExercise 18.8.
E18.12 Exercise. Let X be topological space and let j : X → Y be a compactification of X . Show thatif X is locally compact the set j(X ) is open in Y .
E18.13 Exercise. Prove Proposition 18.22.
E18.14 Exercise. The goal of this exercise is to show that the smallest compactification of a non-compact space X exists only if X has a one-point compactification (i.e. if X is a locally compactspace).Let X be a completely regular non-compact space. Assume that there exists a compactification j : X → Yof X such that for any other compactification i : X → Z we have Z ≥ Y . Show that Y is a one-pointcompactification of X . As a consequence X must be locally compact. (Hint: Assume that Y is not aone-point compactification of X and let y1, y2 ∈ Y r j(X ). Show that the space W = Y r {y1, y2} hasa one-point compactification k : W →W+ and that kj : : X → W+ is a compactification of X . Showthat it is not true that W+ ≥ Y ).


