
21 | Embeddings
of Manifolds

We have seen so far several examples of manifolds. Some of them (e.g. Sn) are defined as subspacesof a Euclidean space Rm for some m, but some other (e.g. the Klein bottle (19.20), or the projectivespaces (19.22)) are defined more abstractly. A natural question is if every manifold is homeomorphic toa subspace of some Euclidean space Rm, or equivalently if it can be embedded into Rm. Our next goalis to show that this is in fact true, at least in the case of compact manifolds.We begin with some technical preparation.
21.1 Definition. Let X be a topological space and let f : X → R be a continuous function. The supportof f is the closure of the subset of X consisting of points with non-zero values:

supp(f ) = {x ∈ X | f (x) 6= 0}
21.2 Definition. Let X be a topological space and let U = {Ui}i∈I be an open cover of X . A partition
of unity subordinate to U is a family of continuous functions {λi : X → [0, 1]}i∈I such that(i) supp(λi) ⊆ Ui for each i ∈ I;(ii) each point x ∈ X has an open neighborhood Ux such that Ux ∩ supp(λi) 6= ∅ for finitely many

i ∈ I only;(iii) for each x ∈ X we have ∑i∈I λi(x) = 1.
21.3 Note. Condition (iii) makes sense since by (ii) we have λi(x) 6= 0 for finitely many i ∈ I only.
Partitions of unity are a very useful tool for gluing together functions defined on subsets of X to obtaina function defined on the whole space X :
21.4 Lemma. Let X be a topological space, let U = {Ui}i∈I be an open cover of X and let {λi}i∈I be
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a partition of unity subordinate to U.
1) Let i ∈ I and let fi : Ui → Rn be a continuous function. Then the function f̃i : X → Rn given by

f̃i(x) = {λi(x)fi(x) for x ∈ Ui0 for x ∈ X r Ui

is continuous.
2) Assume that for each i ∈ I we have a continuous function fi : Ui → Rn, and let f̃i : X → Rn be

the function defined as above. Then the function f̃ : X → Rn given by

f̃ (x) =∑
i∈I

f̃i(x)
is continuous.

Proof. Exercise.
21.5 Proposition. Let X be a normal space. For any finite open cover {U1, . . . , Un} of X there exists
a partition of unity subordinate to this cover.

The proof of Proposition 21.5 will use the following fact:
21.6 Finite Shrinking Lemma. Let X be a normal space and let {U1, . . . , Un} be a finite open cover
of X . There exists an open cover {V1, . . . , Vn} of X such that V i ⊆ Ui for each i ≥ 1.

Proof. We will argue by induction. Assume that for some k < n we already have open sets V1, . . . , Vksuch that V i ⊆ Ui for all 1 ≤ i ≤ k and that {V1, . . . , Vk , Uk+1, . . . , Un} is a cover of X (at the start ofinduction we set k = 0). We will show that there exists an open set Vk+1 such that V k+1 ⊆ Uk+1 andthat {V1, . . . , Vk+1, Uk+2 . . . , Un} still covers X . Take the set
W = V1 ∪ · · · ∪ Vk ∪ Uk+2 ∪ · · · ∪ Un

Notice that W ∪ Uk+1 = X . Therefore X rW ⊆ Uk+1. Since X rW is a closed set by Lemma 10.3there exists an open set V such that X rW ⊆ V and V ⊆ Uk+1. The first of these properties gives
W ∪ V = X , which means that {V1, . . . , Vk , V , Uk+2 . . . , Un} is an open cover of X . Therefore we cantake Vk+1 = V .
Lemma 21.6 can be generalized to infinite covers of normal spaces as follows:
21.7 Shrinking Lemma. Let X be a normal space and let {Ui}i∈I be a open cover of X such that each
point of X belongs to finitely many sets Ui only. There exists an open cover {Vi}i∈I of X such that
V i ⊆ Ui for all i ∈ I .
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Proof. Exercise.
Proof of Proposition 21.5. By Lemma 21.6 there exists an open cover {V1, . . . , Vn} of X such that
Vi ⊆ Ui for all i ≥ 1. Since X is a normal space by Lemma 10.3 for each i ≥ 1 we can find an openset Wi such that V i ⊆ Wi and W i ⊆ Ui. Using Urysohn Lemma 10.1 we get continuous functions
µi : X → [0, 1] such that µi(V i) ⊆ {1} and µi(X rWi) ⊆ {0}. Notice that supp(µi) ⊆ W i ⊆ Ui. Let
µ =∑n

i=1 µi. We claim that µ(x) > 0 for all x ∈ X . Indeed, if x ∈ X then x ∈ Vj for some j ≥ 1 andso µj (x) = 1. For i = 1, . . . , n let λi : X → [0, 1] be the function given by
λi(x) = µi(x)

µ(x)
The family {λ1, . . . , λn} is a partition of unity subordinate to the cover {U1, . . . , Un} (exercise).
21.8 Corollary. If X is a compact Hausdorff space then for every open cover U of X there exists an
partition of unity subordinate to U.

Proof. Let U = {Ui}i∈I . Since X is compact we can find a finite subcover {Ui1 , . . . , Uin} of U. ByTheorem 14.19 the space X is normal, so using Proposition 21.5 we obtain a partition of unity
{λi1 , . . . , λin} subordinate to the cover {Ui1 , . . . , Uin}. For i ∈ I r {i1, . . . , in} let λi : X → [0, 1] be theconstant zero function. The family of functions {λi}i∈I is a partition of unity subordinate to the cover
U.
We are now ready to prove the embedding theorem for compact manifolds. We will consider first thecase of manifolds without boundary:
21.9 Theorem. If M is a compact manifold without boundary then for some N ≥ 0 there exists an
embedding j : M → RN .

21.10 Note. A compact manifold without boundary is called a closed manifold.
Proof of Theorem 21.9. Assume that M is an n-dimensional manifold. Since M is compact we can finda finite collection of coordinate charts {φi : Ui → Rn}mi=1 on M such that {Ui}mi=1 is an open cover of M .By Corollary 21.8 there exists a partition of unity {λi}mi=1 subordinate to this cover. For i = 1, . . . , mlet φ̃i : M → Rn be the function obtained from φi as in part 1) of Lemma 21.4. Consider the continuousfunction j : M → Rmn+m defined as follows:

j(x) = (φ̃1(x), . . . , φ̃m(x), λ1(x), . . . , λm(x))
We will show that j is a 1-1 function. Since M is a compact and Rmn+m is a Hausdorff space byProposition 14.18 this will imply that j is a homeomorphism onto j(M) ⊆ Rmn+m, and so it is an
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embedding. Assume then that x, y ∈ M are points such that j(x) = j(y). This means that φ̃i(x) = φ̃i(y)and λi(x) = λi(y) for all i = 1, . . . , m. Since ∑m
i=1 λi(x) = 1 there exists 1 ≤ i0 ≤ m such that

λi0(x) 6= 0, and so also λi0(y) 6= 0. Since supp(λi0) ⊆ Ui0 we obtain that x, y ∈ Ui0 . By definition of
φ̃i0 we have φ̃i0(z) = λi0(z)φi0(z) for all z ∈ Ui0 . Therefore we get

λi0(x)φi0(x) = φ̃i0(x) = φ̃i0(y) = λi0(y)φi0(y)Dividing both sides by λi0(x) = λi0(y) we obtain φi0(x) = φi0(y). However, φi0 : Ui0 → Rn is ahomeomorphism, so in particular it is a 1-1 function. This shows that x = y.
It is straightforward to generalize the proof of Theorem 21.9 to the case when M is a compact manifoldwith boundary. We will use however a slightly different argument to show that such manifolds can beembedded into Euclidean spaces.
21.11 Definition. Let M be a manifold with boundary ∂M . The double of M is the topological space

DM = M × {0, 1}/∼where {0, 1} is the discrete space with two points and ∼ is the equivalence relation on M × {0, 1}given by (x, 0) ∼ (x, 1) for all x ∈ ∂M .

M M × {0, 1} DM

21.12 Proposition. If M is an n-dimensional manifold with boundary then DM is an n-dimensional
manifold without boundary. Moreover, if M is compact then so is DM .

Proof. Exercise.
21.13 Corollary. If M is a compact manifold with boundary then for some N > 0 there exists an
embedding M → RN .

Proof. Take the double DM of M . By Proposition 21.12 DM is a closed manifold, so using Theorem21.9 we obtain an embedding j : DM → RN for some N ≥ 0. Notice that we also have an embedding
πi : M → DM where i : M → M×{0, 1} is the function given by i(x) = (x, 0) and π : M×{0, 1} → DMis the quotient map. Therefore we obtain an embedding

jπi : M → RN
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21.14 Note. Theorem 21.9 and Corollary 21.13 can be extended to non-compact manifolds: one canshow that any manifold (compact or not, with or without boundary) can be embedded into the Euclideanspace RN for some N ≥ 0. Moreover, it turns out that any n-dimensional manifold can be embeddedinto R2n+1. An interesting question is, given some specific manifold M (e.g. M = RPn) what is thesmallest number N such that M can be embedded into RN .

Exercises to Chapter 21

E21.1 Exercise. Prove Lemma 21.4.
E21.2 Exercise. Prove Proposition 21.12.
E21.3 Exercise. Recall that Hn is the subspace of Rn given by Hn = {(x1, . . . , xn) ∈ Rn | xn ≥ 0}and that ∂Hn = {(x1, . . . , xn) ∈ Hn | xn = 0}. Let M be a compact manifold with boundary ∂M .Show that for some N ≥ 0 there exists an embedding j : M → HN such that j(∂M) ⊆ ∂HN and
j(M r ∂M) ⊆ HN r ∂HN .

∂Hn

Hn

j(M)
M

j

E21.4 Exercise. The goal of this exercise is to prove the general Shrinking Lemma 21.7. Let X bea normal space and let {Ui}i∈I be an open cover of X such that every point of X belongs to finitelymany sets Ui only.a) Let S be the set consisting of all pairs (J, {Vj}j∈J ) where J is a subset of I and {Vj}j∈J is acollection of open sets in X such that V j ⊆ Uj for all j ∈ J , and {Vj}j∈J ∪ {Ui}i∈IrJ is a cover of
X . We define a partial order on S as follows. If (J, {Vj}j∈J ) and (J ′, {V ′j }j∈J ′) are elements of S then(J, {Vj}j∈J ) ≤ (J ′, {V ′j }j∈J ′) if J ⊆ J ′ and if Vj = V ′j for all j ∈ J . Use Zorn’s Lemma 17.15 to show thatthe set S has a maximal element.b) Let S be the set defined above. Show that if (J, {Vj}j∈J ) is a maximal element of S then J = I . Thisgives that {Vj}j∈J is an open cover of X such that V i ⊆ Ui for all i ∈ I .


