21 | Embeddings
of Manifolds

We have seen so far several examples of manifolds. Some of them (e.g. S") are defined as subspaces
of a Euclidean space R"™ for some m, but some other (e.g. the Klein bottle (19.20), or the projective
spaces (19.22)) are defined more abstractly. A natural question is if every manifold is homeomorphic to
a subspace of some Euclidean space R", or equivalently if it can be embedded into R™. Our next goal
is to show that this is in fact true, at least in the case of compact manifolds.

We begin with some technical preparation.

21.1 Definition. Let X be a topological space and let f: X — R be a continuous function. The support
of f is the closure of the subset of X consisting of points with non-zero values:

supp(f) = [x € X [ 1(x) # 0}

21.2 Definition. Let X be a topological space and let U = {U;}ic/ be an open cover of X. A partition
of unity subordinate to U is a family of continuous functions {A;: X — [0, 1]};c/ such that

(i) supp(A;) C U; for each i € [;
(ii) each point x € X has an open neighborhood Uy such that U, N supp(A;) # @ for finitely many
i €l only;
(i) for each x € X we have )} ,,; Ai(x) = 1.

21.3 Note. Condition (iii) makes sense since by (it) we have A;(x) # O for finitely many i € / only.

Partitions of unity are a very useful tool for gluing together functions defined on subsets of X to obtain
a function defined on the whole space X:

21.4 Lemma. Let X be a topological space, let U = {U;}ies be an open cover of X and let {A;}ic/ be
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a partition of unity subordinate to U.

1) Leti e I and let f;: U; — R" be a continuous function. Then the function f;: X — R" given by

F(x) = Ai(x)fi(x)  for x € U;
0 for x € X ~ U;

is continuous.

2) Assume that for each i € | we have a continuousN function f;: U; — R", and let )~‘,<: X — R" be
the function defined as above. Then the function f: X — R" given by

flx) =) filx)

iel
is continuous.
Proof. Exercise. O
21.5 Proposition. Let X be a normal space. For any finite open cover {Us, ..., U,} of X there exists

a partition of unity subordinate to this cover.

The proof of Proposition 21.5 will use the following fact:

21.6 Finite Shrinking Lemma. Let X be a normal space and let {Us,..., Uy} be a finite open cover
of X. There exists an open cover {V, ..., V,} of X such that V; C U; for each i > 1.

Proof. We will argue by induction. Assume that for some k < n we already have open sets V;,..., Vi
such that V; C U; for all 1 < i < k and that {V4,..., Vi, Uks1,..., U,} is a cover of X (at the start of
induction we set k = 0). We will show that there exists an open set Vi1 such that Vis1 C Ugyq and
that {V4, ..., Vis1, Uks2 ..., Uy} still covers X. Take the set

W=ViUu---UVeUUgrU---UU,

Notice that W U Ux4q1 = X. Therefore X ~ W C Uj4q. Since X ~ W is a closed set by Lemma 10.3
there exists an open set V such that X ~. W C V and V C Uyyq. The first of these properties gives
WU V = X, which means that {V4,..., Vk, V, Uks2..., Uy} is an open cover of X. Therefore we can
take Vi = V. O

Lemma 21.6 can be generalized to infinite covers of normal spaces as follows:

21.7 Shrinking Lemma. Let X be a normal space and let {U;}ic; be a open cover of X such that each
point of X belongs to finitely many sets U; only. There exists an open cover {Vi}tier of X such that
Vi C U foralliel
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Proof. Exercise. O

Proof of Proposition 21.5. By Lemma 21.6 there exists an open cover {V4,..., V,} of X such that
V; C U; for all i > 1. Since X is a normal space by Lemma 10.3 for each i > 1 we can find an open
set W; such that V; C W; and W, C U.. Using Urysohn Lemma 10.1 we get continuous functions
pi: X = [0,1] such that p;(V;) C {1} and p(X ~ W;) C {0}. Notice that supp(y;) € W; C U;. Let
p =3[, ui. We claim that p(x) > 0 for all x € X. Indeed, if x € X then x € Vj for some j > 1 and
so pj(x) =1. Fori=1,...,n let A;: X — [0, 1] be the function given by

pi(x)
Ai(x) =
=
The family {A1,...,A,} is a partition of unity subordinate to the cover {Us,..., U,} (exercise).

O

21.8 Corollary. If X is a compact Hausdorff space then for every open cover U of X there exists an
partition of unity subordinate to U.

Proof. Let U = {U,}ics. Since X is compact we can find a finite subcover {U,,, ..., U} of U. By
Theorem 14.19 the space X is normal, so using Proposition 21.5 we obtain a partition of unity
{Aiy, ..., A, } subordinate to the cover {U;,,..., U, }. Forie I~ {i,..., in} let A;: X — [0, 1] be the
constant zero function. The family of functions {A;};e/ is a partition of unity subordinate to the cover
Uu. O

We are now ready to prove the embedding theorem for compact manifolds. We will consider first the
case of manifolds without boundary:

21.9 Theorem. If M is a compact manifold without boundary then for some N > 0 there exists an
embedding j: M — RN.

21.10 Note. A compact manifold without boundary is called a closed manifold.

Proof of Theorem 21.9. Assume that M is an n-dimensional manifold. Since M is compact we can find
a finite collection of coordinate charts {¢;: Ui — R"}7, on M such that {U;}[”, is an open cover of M.
By Corollary 21.8 there exists a partition of unity {A;}!"; subordinate to this cover. Fori=1,..., m
let p;: M — R” be the function obtained from ¢; as in part 1) of Lemma 271.4. Consider the continuous
function j: M — R™*™ defined as follows:

JX¥) =(@1(x), s Pm(x), Arlx), ooy Am(X))

We will show that j is a 1-1 function. Since M is a compact and R™*" is a Hausdorff space by
Proposition 14.18 this will imply that j is a homeomorphism onto j(M) C R™*" and so it is an
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embedding. Assume then that x, y € M are points such that j(x) = j(y). This means that @;(x) = @i(y)
and Ai(x) = Ai(y) forall i =1,..., m. Since Y ", Ai(x) = 1 there exists 1 < ip < m such that
Aip(x) # 0, and so also A;(y) # 0. Since supp(4;) C U;, we obtain that x, y € U;,. By definition of
i, we have @;)(z) = Aiy(2)@iy(2) for all z € U;,. Therefore we get

Aig(X)@ig (X) = @ig (X) = Pig (Y) = i (y) Pip (y)

Dividing both sides by A;(x) = A, (y) we obtain ¢;(x) = @i,(y). However, ¢;,: U, — R" is a
homeomorphism, so in particular it is a 1-1 function. This shows that x = y. O

It is straightforward to generalize the proof of Theorem 271.9 to the case when M is a compact manifold

with boundary. We will use however a slightly different argument to show that such manifolds can be

embedded into Euclidean spaces.

21.11 Definition. Let M be a manifold with boundary dM. The double of M is the topological space
DM =M x {0,1}/~

where {0,1} is the discrete space with two points and ~ is the equivalence relation on M x {0,1}
given by (x,0) ~ (x, 1) for all x € oM.

M M x {0,1} DM

21.12 Proposition. If M is an n-dimensional manifold with boundary then DM is an n-dimensional
manifold without boundary. Moreover, if M is compact then so is DM.

Proof Exercise. O

21.13 Corollary. If M is a compact manifold with boundary then for some N > 0 there exists an
embedding M — RN,

Proof. Take the double DM of M. By Proposition 21.12 DM is a closed manifold, so using Theorem
21.9 we obtain an embedding j: DM — RN for some N > 0. Notice that we also have an embedding
sti: M — DM where i: M — Mx {0, 1} is the function given by i(x) = (x,0) and 7: Mx {0,1} - DM
is the quotient map. Therefore we obtain an embedding

jmi: M — RN
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21.14 Note. Theorem 21.9 and Corollary 21.13 can be extended to non-compact manifolds: one can
show that any manifold (compact or not, with or without boundary) can be embedded into the Euclidean
space RN for some N > 0. Moreover, it turns out that any n-dimensional manifold can be embedded
into R?"*1. An interesting question is, given some specific manifold M (e.g. M = RP") what is the
smallest number N such that M can be embedded into RV,

Exercises to Chapter 21

E21.1 Exercise. Prove Lemma 21.4.
E21.2 Exercise. Prove Proposition 21.12.

E21.3 Exercise. Recall that H" is the subspace of R" given by H" = {(x1,...,x,) € R" | x, > 0}
and that 0H" = {(x1,...,x,) € H" | x, = 0}. Let M be a compact manifold with boundary oM.
Show that for some N > 0 there exists an embedding j: M — HN such that j(OM) C dHN and
jM~ oM) € HN < oHN.

aHn

E21.4 Exercise. The goal of this exercise is to prove the general Shrinking Lemma 21.7. Let X be
a normal space and let {U;}ic; be an open cover of X such that every point of X belongs to finitely
many sets U; only.

a) Let S be the set consisting of all pairs (/, {V,};e)) where J is a subset of / and {V/};e; is a
collection of open sets in X such that V; C U; for all j € J, and {V;};c; U {Ui}ie/y is a cover of
X. We define a partial order on S as follows. If (J, {Vj};e)) and (/', {V/};ey) are elements of S then
U AVitien) < U {V/}ey) H1C S and if V; = V] forall j € J. Use Zorn's Lemma 17.15 to show that
the set S has a maximal element.

b) Let S be the set defined above. Show that if (/, {V}};e)) is a maximal element of S then /= /. This
gives that {V,},c/ is an open cover of X such that V; C U; for all i € I.



