
22 | Mapping Spaces

22.1 Definition. Let X , Y be topological spaces. By Map(X, Y ) we will denote the set of all continuousfunctions f : X → Y .
Our main goal in this chapter is to show how the set Map(X, Y ) can be given the structure of atopological space. Most of the constructions of new topological spaces from existing spaces that wehave already encountered were motivated by the choice of continuous functions from or into the newspace that we wanted to have. For example, the product topology is defined in such way, that a map
f : Y → ∏

i∈I Xi is continuous if and only if its compositions with all projection maps pif : Y → Xiare continuous (12.8). Similarly, the quotient topology on a space X/∼ is defined so that a function
f : X/∼ → Y is continuous if and only if its composition with the quotient map fπ : X → Y is continuous(19.13). The choice of topology on Map(X, Y ) will be based on similar considerations.Denote by Func(X, Y ) the set of all functions (continuous or not) X → Y . Any function F : Z ×X → Ydefines a function F∗ : Z → Func(X, Y ), where for z ∈ Z the function F∗(z) : X → Y is given by
F∗(z)(x) = F (z, x). Conversely, any function F∗ : Z → Func(X, Y ) defines a function F : Z × X → Ygiven by F (z, x) = F∗(z)(x). For any spaces X, Y , Z the assignment F 7→ F∗ gives a bijectivecorrespondence: ( functions

Z × X → Y

)
∼= ( functions

Z → Func(X, Y )
)

If F : Z ×X → Y is a continuous function, then for any z ∈ Z the function F∗(z) : X → Y is continuous.This shows that in this case we get a well defined function
F∗ : Z → Map(X, Y )

With this in mind, it is reasonable to attempt to define a topology on Map(X, Y ) in such way, that forany function F : Z × X → Y the induced function F∗ : Z → Map(X, Y ) is continuous if any only if F iscontinuous. This motivates the following definition:
22.2 Definition. Let X, Y be a topological spaces, and let T be a topology on Map(X, Y ).

142



22. Mapping spaces 143

1) We will say that the topology T is lower admissible if for any continuous function F : Z ×X → Ythe function F∗ : Z → Map(X, Y ) is continuous.2) We will say that the topology T is upper admissible if for any function F : Z × X → Y if thefunction F∗ : Z → Map(X, Y ) is continuous then F is continuous.3) We will say that the topology T is admissible if it is both lower and upper admissible.
The definition of upper admissible topology can be reformulated using the notion of the evaluation map:
22.3 Definition. Let X , Y be topological spaces. The evaluation map is the function

ev : Map(X, Y )× X → Y

given by ev((f , x)) = f (x).
Notice that ev∗ : Map(X, Y )→ Map(X, Y ) is the identity function. We have:
22.4 Lemma. Let X, Y be topological spaces, and let T be a topology on Map(X, Y ). The following
conditions are equivalent:

1) The topology T is upper admissible.
2) The evaluation map ev : Map(X, Y )× X → Y is continuous.

Proof. 1)⇒ 2) For any choice of topology on Map(X, Y ) the identity function idMap(X,Y ) : Map(X, Y )→Map(X, Y ) is continuous. Since by assumption T is upper admissible and ev∗ = idMap(X,Y ) this impliesthat ev is continuous.2) ⇒ 1) Assume that ev in continuos, and let F : Z × X → Y be a function such that F∗ is continuous.Then F∗ × idX : Z ×X → Map(X, Y )×X is a continuous function. Since F = ev ◦ (F∗ × idX ) it followsthat F is continuous.
22.5 Example. Let X, Y be topological spaces. If we consider Map(X, Y ) with the antidiscrete topologythen every function Z → Map(X, Y ) is continuous. Therefore the antidiscrete topology on Map(X, Y )is lower admissible.On the other hand, consider Map(X, Y ) with the discrete topology. We will show that this topology isupper admissible. By Lemma 22.4 it suffices to verify that the evaluation map ev : Map(X, Y )×X → Y
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is continuous, i.e. that for any open set U ⊆ Y the set ev−1(U) is open in Map(X, Y )×X . Notice that
ev−1(U) = {(f , x) ∈ Map(X, Y )× X | f (x) ∈ U}= {(f , x) ∈ Map(X, Y )× X | x ∈ f−1(U)}= ⋃

f∈Map(X,Y ){f} × f
−1(U)

For any f ∈ Map(X, Y ) the set f−1(U) is open in X , and since the topology on Map(X, Y ) is discretethe set {f} is open in Map(X, Y ). It follows that ev−1(U) is open in Map(X, Y )× X .
22.6 Proposition. Let X, Y be topological spaces.

1) If U,U′ are two topologies on Map(X, Y ) such that U ⊆ U′ and U is upper admissible, then U′

also is upper admissible.
2) If L,L′ are two topologies on Map(X, Y ) such that L′ ⊆ L and L is lower admissible, then L′

also is lower admissible.
3) If U, L are two topologies on Map(X, Y ) such that U is upper admissible and L is lower admissible

then L ⊆ U.

Proof. Proofs of 1) and 2) are straightforward. To prove part 3), denote by Map(X, Y )U and Map(X, Y )Lthe set Map(X, Y ) equipped with the topology, respectively, U and L. Since U is upper admissiblethe evaluation map ev : Map(X, Y )U × X → Y is continuous. Since L is lower admissible we get thatidMap(X,Y ) = ev∗ : Map(X, Y )U → Map(X, Y )L is continuous. Therefore any set U open in Map(X, Y )Lis also open in Map(X, Y )U, and so L ⊆ U.
22.7 Corollary. Given spaces X and Y , if there exists an admissible topology on Map(X, Y ) then such
topology is unique.

Proof. This follows directly from Proposition 22.6.
The next proposition shows that in general an admissible topology on Map(X, Y ) may not exist:
22.8 Proposition. Let X be completely regular space. If there exist an admissible topology onMap(X,R) then X is locally compact.

22.9 Example. Since the space Q of rational numbers is completely regular but not locally compact(Exercise 18.4), there is no admissible topology on Map(Q,R).
The proof Proposition 22.8 will depend on the following fact:
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22.10 Definition. Let X, Y be topological spaces. For sets A ⊆ X and B ⊆ Y denote
P(A,B) = {f ∈ Map(X, Y ) | f (A) ⊆ B}

22.11 Lemma. Let X, Y topological spaces, and let U = {Ui}i∈I be an open cover of X . Let T be a
topology on Map(X, Y ) with subbasis given by all sets P(A, V ) where A ⊆ X is a closed set such that
A ⊆ Ui for some i ∈ I, and V ⊆ Y is an open set. If X is a regular space then T upper admissible.

Proof. Exercise.
Proof of Proposition 22.8. Let A be an admissible topology on Map(X,R), and let Map(X,R)A denoteMap(X,R) taken with this topology. Take x0 ∈ X . We need to show that there exists an open set
V ⊆ X such that x0 ∈ V and V is compact.Let f : X → R be a constant function given by f (x) = 0 for all x ∈ X . Then ev((f , x0)) ∈ (−1, 1). Since(−1, 1) is open in R and the function ev : Map(X,R)A × X → R is continuous, there exist open sets
W ⊆ Map(X,R)A and V ⊆ X such that f ∈ W , x0 ∈ V , and ev (W × V ) ⊆ (−1, 1). We will provethat V is compact. It will suffice to show that if U is an open cover of X then V ⊆ Ui1 ∪ . . .Uin forsome i1, . . . , in ∈ I (Exercise 14.3). Let U = {Ui}∈I be such open cover, and let T be a topology onMap(X,R) with subbasis consisting of all sets P(A, Z ) where A ⊆ X is a closed, A ⊆ Ui for some i ∈ I ,and Z ⊆ R is an open set. By Lemma 22.11 T is upper admissible. Since A is lower admissible, byProposition 22.6 we obtain that A ⊆ T. This implies that there exist elements P(A1, Z1), . . . P(An, Zn)of the subbasis of T such that f ∈ ⋂n

k=1 P(Ak , Zk ) ⊆ W . Notice that since f (Ak ) = 0 for all k , we musthave 0 ∈ ⋂n
k=1 Zk . Assume that there exists a point y ∈ V r

⋃n
k=1 Ak . Since the set ⋃n

k=1 Ak is closedin X and the space X is completely regular, this would give a continuous function g : X → R such that
g(⋃n

k=1 Ak ) = 0 (and so g ∈ ⋂n
k=1 P(Ak , Zk ) ⊆ W ) and g(y) = 1. This is however impossible, since bythe choice of W and V we have h(v ) ∈ (−1, 1) for every h ∈ W and v ∈ V . Therefore V ⊆ ⋃n

k=1 Ak ,and since ⋃n
k=1 Ak is closed, also V ⊆ ⋃n

k=1 Ak . By assumption for each k = 1, . . . , n there exists
Uik ∈ U such that Ak ⊆ Uik . This gives V ⊆ ⋃n

k=1 Uik .
In view of Proposition 22.8 a natural question is whether an admissible topology on Map(X, Y ) existswhen X is a completely regular, locally compact space. The condition that X is completely regularcan replaced by the condition that X is Hausdorff, since every locally compact Hausdorff space iscompletely regular (18.20). Our next goal is to show that under these assumptions on X the setMap(X, Y ) has an admissible topology, and that this topology can be described as follows:
22.12 Definition. Let X, Y be topological spaces. The compact-open topology on Map(X, Y ) is thetopology defined by the subbasis consisting of all sets P(A,U) where A ⊆ X is compact and U ⊆ Y isan open set.
22.13 Theorem. For any spaces X, Y the compact-open topology on Map(X, Y ) is lower admissible.
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Proof. Consider Map(X, Y ) as a space with compact-open topology, and let F : Z × X → Y be acontinuous function. We need to show that if F∗ : Z → Map(X, Y ) is continuous. By Proposition 4.14it is enough to show that for any compact set A ⊆ Y and an open set U ⊆ Y the set F−1
∗ (P(A,U)) isopen in Z . It will suffice to check that for any z0 ∈ F−1

∗ (P(A,U)) there exists an open neighborhood
V ⊆ Z such that V ⊆ F−1

∗ (P(A,U)). Notice that
F−1
∗ (P(A,U)) = {z ∈ Z | F ({z} × A) ⊆ U}= {z ∈ Z | {z} × A ⊆ F−1(U)}In particular, since z0 ∈ F−1
∗ (P(A,U)) we have {z0} × A ⊆ F−1(U). The set F−1(U) is open in

Z × Y , so F−1(U) = ⋃
i∈I (Vi ×Wi) for some open sets Vi ∈ Z and Wi ∈ X . Since {z0} × A ∼= A iscompact, there exist i1, . . . in ∈ I such that {z0} × A ⊆ ⋃n

k=1(Vik ×Wik ). Take V = ⋂n
k=1 Vik . Then

V × A ⊆
⋃n
k=1 Vik ×Wik ⊆ F−1(U), and so V ⊆ F−1

∗ (P(A,U)).
22.14 Theorem. Let X, Y be topological spaces. If X is locally compact Hausdorff space then the
compact-open topology on Map(X, Y ) is upper admisible.

Proof. Let C denote the compact-open topology on Map(X, Y ). Let U = {Ui} be an open cover of Xsuch that U i is compact for each i ∈ I . Such open cover exists by the assumption that X is locallycompact. Let T be the topology on Map(X, Y ) with subbasis consisting of all sets P(A, V ) where
A ⊆ X is a closed, A ⊆ Ui for some i ∈ I , and V ⊆ Y is an open. Notice that by Proposition 14.13for any such P(A, V ) the set A is compact, since A ⊆ U i for some i ∈ I , and U i is compact. Therefore
P(A, V ) ∈ C, and so T ⊆ C.By Lemma 22.11 the topology T is upper admissible. Since by Theorem 22.13 C is lower admissibleusing Proposition 22.6 we obtain that C ⊆ T. This shows that C = T, and so C is upper admissible.
22.15 Corollary. If X is a locally compact Hausdorff space and Y is any space then the compact-open
topology on Map(X, Y ) is admissible.

Proof. Follows from Theorem 22.13 and Theorem 22.14 .
22.16 Note. Let X, Y , Z be topological spaces. By Corollary 22.15 if X is locally compact Hausdorffand Map(X, Y ) is taken with the compact-open topology then the mapΨ: Map(Z × X, Y )→ Map(Z,Map(X, Y ))given by Ψ(F ) = F∗ is a well defined bijection. One can show that if in addition Z is a Hausdorffspace, and both Map(Z × X, Y ) and Map(Z,Map(X, Y )) are considered as topological spaces withcompact-open topology, then Ψ is a homeomorphism.
In some cases the compact open-topology on Map(X, Y ) can be described more explicitly. Let X bea topological space and let S be a set. Recall (1.18) that the Cartesian product ∏s∈S X is formallydefined as the set of all functions S → X . We have:
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22.17 Proposition. Let X be a topological space, and let S be a set considered as a discrete topological
space. There exists a homeomorphism

Map(S, X ) ∼= ∏
s∈S

X

where Map(S, X ) is taken with the compact-open topology, and
∏
s∈S X with the product topology.

Proof. Exercise.
22.18 Note. In the special case where S = {∗} is a set consisting of a single point we obtain ahomeomorphism Map({∗}, X ) ∼= X .
Next, let X be a topological space and (Y , ρ) be a metric space. If f , g : X → Y are continuous functionthen the function Φf ,g : X → R given by Φf ,g(x) = ρ(f (x), g(x)) is continuous (exercise). If X is acompact space then by Exercise 14.6 this function attains its maximum value at some point x0 ∈ X .We have:
22.19 Proposition. Let X be a compact Hausdorff space, and let (Y , ρ) be a metric space. For
f, g ∈ Map(X, Y ) define

d(f , g) = max{ρ(f (x), g(x)) | x ∈ X}
Then d is a metric on Map(X, Y ). Moreover, in the topology induced by this metric is the compact-open
topology.

Proof. Exercise.
We conclude this chapter with a result that says that compact-open topology behaves well with respectto composition of functions:
22.20 Theorem. Let X, Y , Z be topological spaces. Let

Φ: Map(X, Y )×Map(Y , Z )→ Map(X, Z )
be a function given by Φ(f , g) = g ◦ f. If Y is a locally compact Hausdorff space, and all mapping
spaces are equipped with the compact-open topology then Φ is continuous.

The proof will use the following fact:
22.21 Lemma. Let X be a locally compact Hausdorff space, and let A,W ⊆ X be sets such that A is
compact, W is open, and A ⊆ W . Then there exists an open set V ⊆ X such that A ⊆ V , V ⊆ W , and
V is compact.
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Proof. Exercise.
Proof of Theorem 22.20. Let A ⊆ X be a compact set, U ⊆ Z be an open set, and let (f , g) ∈Φ−1(P(A,U)). It will suffice to show that (f , g) has an open neighborhood contained in Φ−1(P(A,U)).Since g ◦ f (A) ⊆ U , thus f (A) ⊆ g−1(U). By (14.9) the set f (A) is compact, so using Lemma22.21 we obtain that there exists an open set V ⊆ Y such that f (A) ⊆ V , V ⊆ g−1(U), and V iscompact. It remains to notice that the set P(A, V ) × P(V ,U) is an open neighborhood of (f , g) inMap(X, Y )×Map(Y , Z ), and P(A, V )× P(V ,U) ⊆ Φ−1(P(A,U)).

Exercises to Chapter 22

E22.1 Exercise. Prove Proposition 22.8.
E22.2 Exercise. Prove Proposition 22.17.
E22.3 Exercise. Prove Proposition 22.19.
E22.4 Exercise. Prove Proposition 22.21.
E22.5 Exercise. Let X, Y be topological spaces, and let A ⊆ X , B ⊆ Y be closed sets. Show that inthe compact-open topology on Map(X, Y ) the set P(A,B) is closed.
E22.6 Exercise. Let X, Y , Z be topological spaces, and let f : X → Y be a continuous function.a) Define a function f∗ : Map(Z, X )→ Map(Z, Y ) by f∗(g) = f ◦ g. Show that f∗ is continuous.b) Define a function f∗ : Map(Y , Z )→ Map(X, Z ) by f∗(g) = g ◦ f . Show that f∗ is continuous.All mapping spaces are considered with the compact-open topology.
E22.7 Exercise. Let X , Yi, i ∈ I be topological spaces. Show that there is a homeomorphism:

Map(X,∏i∈I Yi) '∏i∈I Map(X, Yi)
All mapping spaces are taken with the compact-open topology.


