
5 | Closed Sets,
Interior, Closure,
Boundary

5.1 Definition. Let X be a topological space. A set A ⊆ X is a closed set if the set X r A is open.
5.2 Example. A closed interval [a, b] ⊆ R is a closed set since the set Rr [a, b] = (−∞, a)∪ (b,+∞)is open in R.
5.3 Example. Let TZa be the Zariski topology on R. Recall that U ∈ TZa if either U = ∅ or U = RrSwhere S ⊂ R is a finite set. As a consequence closed sets in the Zariski topology are the whole space
R and all finite subsets of R.
5.4 Example. If X is a topological space with the discrete topology then every subset A ⊆ X is closedin X since every set X r A is open in X .
5.5 Proposition. Let X be a topological space.

1) The sets X , ∅ are closed.
2) If Ai ⊆ X is a closed set for i ∈ I then

⋂
i∈I Ai is closed.

3) If A1, A2 are closed sets then the set A1 ∪ A2 is closed.

Proof. 1) The set X is closed since the set X r X = ∅ is open. Similarly, the set ∅ is closed sincethe set X r∅ = X is open.2) We need to show that the set X r
⋂
i∈I Ai is open. By De Morgan’s Laws (1.13) we have:
X r

⋂
i∈I
Ai =⋃

i∈I
(X r Ai)
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By assumption the sets Ai are closed, so the sets X r Ai are open. Since any union of open sets isopen we get that X r
⋂
i∈I Ai is an open set.3) Exercise.

5.6 Note. By induction we obtain that if {A1, . . . , An} is a finite collection of closed sets then the set
A1 ∪ · · · ∪ An is closed. It is not true though that an infinite union of closed sets must be closed. Forexample, the sets An = [ 1n , 1] are closed in R, but the set ⋃∞n=1 An = (0, 1] is not closed.
In metric spaces closed sets can be characterized using the notion of convergence of sequences:
5.7 Definition. Let (X, ρ) be a metric space, and let {xn} be a sequence of points in X . We say that
{xn} converges to a point y ∈ X if for every ε > 0 there exists N > 0 such that ρ(y, xn) < ε for all
n > N . We write: xn → y.Equivalently: xn → y if for every ε > 0 there exists N > 0 such that xn ∈ B(y, ε) for all n > N .

ε

x1 x2 y

X

5.8 Proposition. Let (X, ρ) be a metric space and let A ⊆ X . The following conditions are equivalent:
1) The set A is closed in X .
2) If {xn} ⊆ A and xn → y then y ∈ A.

Proof. Exercise.
5.9 Example. Take R with the Euclidean metric, and let A = (0, 1]. Let xn = 1

n . Then {xn} ⊆ A, but
xn → 0 6∈ A. This shows that A is not a closed set in R.
The notion of convergence of a sequence can be extended from metric spaces to general topologicalspaces by replacing open balls with center at a point y with open neighborhoods of y:
5.10 Definition. Let X be a topological space and y ∈ X . If U ⊆ X is an open set such that y ∈ Uthen we say that U is an open neighborhood of y.
5.11 Definition. Let X be a topological space. A sequence {xn} ⊆ X converges to y ∈ X if for every
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open neighborhood U of y there exists N > 0 such that xn ∈ U for n > N .

x1 x2 y

X
U

5.12 Note. In general topological spaces a sequence may converge to many points at the same time.For example let (X,T) be a space with the antidiscrete topology T = {X,∅}. Any sequence {xn} ⊆ Xconverges to any point y ∈ X since the only open neighborhood of y is whole space X , and xn ∈ Xfor all n. The next proposition says that such situation cannot happen in metric spaces:
5.13 Proposition. Let (X, ρ) be a metric space and let {xn} be a sequence in X . If xn → y and xn → z
for some y, z ∈ X then y = z.

Proof. Exercise.
5.14 Proposition. Let X be a topological space and let A ⊆ X be a closed set. If {xn} ⊆ A and
xn → y then y ∈ A.

Proof. Exercise.
5.15 Note. For a general topological space X the converse of Proposition 5.14 is not true. That is,assume that A ⊆ X is a set with the property that if {xn} ⊆ A and xn → y then y ∈ A. The nextexample shows that this does not imply that the set A must be closed in X .
5.16 Example. Let X = R with the following topology:

T = {U ⊆ R | U = ∅ or U = (Rr S) for some countable set S ⊆ R}

Closed sets in X are the whole space R and all countable subsets of R. If {xn} ⊆ X is a sequencethen xn → y if and only if there exists N > 0 such that xn = y for all n > N (exercise). It follows thatif A is any (closed or not) subset of X , {xn} ⊆ A, and xn → y then y ∈ A.
5.17 Definition. Let X be a topological space and let Y ⊆ X .
• The interior of Y is the set Int(Y ) := ⋃ {U | U ⊆ Y and U is open in X}.
• The closure of Y is the set Y := ⋂ {A | Y ⊆ A and A is closed in X}.
• The boundary of Y is the set Bd(Y ) := Y ∩ (X r Y ).
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5.18 Example. Consider the set Y = (a, b] in R:
Y

a b

R

We have:
a b

RInt(Y )
Int(Y ) = (a, b)

a b

RY

Y = [a, b]
a b

RBd(Y )
Bd(Y ) = {a, b}

5.19 Example. Consider the set Y = {(x1, x2) ∈ R2 | a < x1 ≤ b, c ≤ x2 < d} in R2:
d

c

a b

Y

We have:
d

c

a b

Int(Y )

Int(Y ) = (a, b)× (c, d)

d

c

a b

Y

Y = [a, b]× [c, d]

d

c

a b

Bd(Y )

Bd(Y ) = [a, b]× {c, d}
∪{a, b} × [c, d]

5.20 Proposition. Let X be a topological space and let Y ⊆ X .
1) The set Int(Y ) is open in X . It is the biggest open set contained in Y : if U is open and U ⊆ Y

then U ⊆ Int(Y ).
2) The set Y is closed in X . It is the smallest closed set that contains Y : if A is closed and Y ⊆ A

then Y ⊆ A.

Proof. Exercise.
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5.21 Proposition. Let X be a topological space, let Y ⊆ X , and let x ∈ X . The following conditions
are equivalent:

1) x ∈ Int(Y )
2) There exists an open neighborhood U of x such that U ⊆ Y .

U
x

X
Y

Proof. 1) ⇒ 2) Assume that x ∈ Int(Y ). Since Int(Y ) is an open set and Int(Y ) ⊆ Y we can take
U = Int(Y ).2) ⇒ 1) Assume that x ∈ U for some open set U such that U ⊆ Y . Since Int(Y ) is the union of allopen sets contained in Y thus U ⊆ Int(Y ) and so x ∈ Int(Y ).
5.22 Proposition. Let X be a topological space, let Y ⊆ X , and let x ∈ X . The following conditions
are equivalent:

1) x ∈ Y
2) For every open neighborhood U of x we have U ∩ Y 6= ∅.

U1
x1U2

x2

X
Y

Proof. Exercise.
5.23 Proposition. Let X be a topological space, let Y ⊆ X , and let x ∈ X . The following conditions
are equivalent:

1) x ∈ Bd(Y )
2) For every open neighborhood U of x we have U ∩ Y 6= ∅

and U ∩ (X r Y ) 6= ∅.
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U
x

X
Y

Proof. This follows from the definition of Bd(Y ) and Proposition 5.22.
5.24 Definition. Let X be a topological space. A set Y ⊆ X is dense in X if Y = X .
5.25 Proposition. Let X be a topological space and let Y ⊆ X . The following conditions are equivalent:

1) Y is dense in X
2) If U ⊆ X is an open set and U 6= ∅ then U ∩ Y 6= ∅.

Proof. This follows directly from Proposition 5.22.
5.26 Example. The set of rational numbers Q is dense in R.

Exercises to Chapter 5

E5.1 Exercise. Prove Proposition 5.8
E5.2 Exercise. Prove Proposition 5.13
E5.3 Exercise. Let (X, ρ) be a metric space. A sequence {xn} is called a Cauchy sequence if for any
N > 0 there exists ε > 0 such that if n,m > N then ρ(xm, xn) < ε. Show that if {xn} is a sequence in
X that converges to some point x0 ∈ X then {xn} is a Cauchy sequence.
E5.4 Exercise. Prove Proposition 5.14
E5.5 Exercise. Let X be the topological space defined in Example 5.16 and let {xn} be a sequence in
X . Show that xn → y for some y ∈ X iff there exists N > 0 such that xn = y for all n > N .
E5.6 Exercise. Prove Proposition 5.22
E5.7 Exercise. Let X be a topological space and let Y be a subspace of X . Show that a set A ⊆ Y isclosed in Y if and only if there exists a set B closed in X such that Y ∩ B = A.
E5.8 Exercise. Let X be a topological space and let Y ⊆ X be a subspace.
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a) Assume that Y is open in X . Show that if U ⊆ Y is open in Y then U is open in X .b) Assume that Y is closed in X . Show that if A ⊆ Y is closed in Y then A is closed in X .
E5.9 Exercise. Let (X, ρ) be a metric space. The closed ball with center at a point x0 ∈ X and radius
r > 0 is the set

B(x0, r) = {x ∈ X | ρ(x0, x) ≤ r}a) Show that for any x0 ∈ X and any r > 0 the closed ball B(x0, r) is a closed set.b) Consider Rn with the Euclidean metric d. Show that for any x0 ∈ Rn and any r > 0 the closed ball
B(x0, r) is the closure of the open ball B(x0, r) (i.e. B(x0, r) = B(x0, r)).c) Give an example showing that in a general metric space (X, ρ) the closed ball B(x0, r) need not bethe closure of the open ball B(x0, r).
E5.10 Exercise. Consider the following subset of R:

Y = {−1
n

∣∣∣∣ n ∈ Z, n ≥ 1}
Describe Int(Y ), Y , and Bd(Y ) in the following topological spaces:a) R with the Euclidean topology.b) R with the Zariski topology.c) R with the arrow topology.d) R with the discrete topology.e) R with the antidiscrete topology.f) R with the topology defined in Example 5.16.
E5.11 Exercise. Let (X, ρ) be a metric space. We say that a set Y ⊆ X is bounded if there exists anopen ball B(x, r) ⊆ X such that Y ⊆ B(x, r). Show that if Y is a bounded set then Y is also bounded.
E5.12 Exercise. Let X be a topological space and let Y1, Y2 ⊆ X .a) Show Y 1 ∪ Y 2 = Y1 ∪ Y2b) Is it true always true that Y 1 ∩ Y 2 = Y1 ∩ Y2? Justify your answer.
E5.13 Exercise. Let X be a topological space and let Y ⊆ X be a dense subset of X . Show thatif f , g : X → R are continuous functions such that f (x) = g(x) for all x ∈ Y then f (x) = g(x) for all
x ∈ X .
E5.14 Exercise. Let X be a topological space, and let A,B ⊆ X . Show that if B ⊆ Int(A) then
X = Int(X r B) ∪ Int(A).
E5.15 Exercise. Let RAr denote the set of real numbers with the arrow topology (4.8). The goal ofthis exercise is to show that this space is not metrizable.
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a) Recall that a space X is second countable if it has a countable basis. We say that a space Xis separable if there is a set Y ⊆ X such that Y is countable and dense in X. Show that if X is ametrizable space then X is separable if and only if X is second countable.b) Show that RAr is a separable space.Since by Exercise 4.11 RAr is not second countable this implies that RAr is not metrizable.


