
6 | Continuous Functions

Let X , Y be topological spaces. Recall that a function f : X → Y is continuous if for every openset U ⊆ Y the set f−1(U) ⊆ X is open. In this chapter we study some properties of continuousfunctions. We also introduce the notion of a homeomorphism that plays a central role in topology: fromthe topological perspective interesting properties of spaces are the properties that are preserved byhomeomorphisms.
6.1 Proposition. Let X , Y be topological spaces. A function f : X → Y is continuous if and only if for
every closed set A ⊆ Y the set f−1(A) ⊆ X is closed.

Proof. Assume that f : X → Y is a continuous function and let A ⊆ Y be a closed set. We have
f−1(A) = X r f−1(Y r A)

The set Y r A is open in Y so by continuity of f the set f−1(Y r A) ⊆ X is open in X . It follows that
f−1(A) is closed in X .Conversely, assume that f : X → Y is a function such that for every closed set A ⊆ Y the set f−1(A) ⊆ Xis closed. Let U ⊆ Y be an open set. We have

f−1(U) = X r f−1(Y r U)
The set Y r U is closed in Y so by assumption the set f−1(Y r U) is closed in X . If follows that
f−1(U) is open in X . Therefore f is a continuous function.
For metric spaces continuous functions are precisely the functions that preserve convergence ofsequences:
6.2 Proposition. Let (X, ρ) be a metric space, let Y be a topological space, and let f : X → Y be a
function. The following conditions are equivalent:

1) f is continuous.
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2) For any sequence {xn} ⊆ X if xn → y for some y ∈ X then f (xn)→ f (y).

x1 x2 y

X

f (x1)
f (x2) f (y)Yf

Proof. 1) ⇒ 2) Exercise.2) ⇒ 1) Let A ⊆ Y be a closed set. We will show that the set f−1(A) is closed in X . By Proposition5.8 it suffices to show that if {xn} ⊆ f−1(A) is a sequence and xn → x then x ∈ f−1(A).If xn → x then by assumption we have f (xn)→ f (x). Since {f (xn)} ⊆ A and A is a closed set, thus byProposition 5.8 we obtain that f (x) ∈ A, and so x ∈ f−1(A).
The implication 1) ⇒ 2) in Proposition 6.2 holds for maps between general topological spaces:
6.3 Proposition. Let f : X → Y be a continuous function of topological spaces. If {xn} ⊆ X is a
sequence and xn → x for some x ∈ X then f (xn)→ f (x).
Proof. Exercise.
6.4 Example. We will show that the implication 2) ⇒ 1) in Proposition 6.2 is not true if X is a generaltopological space. Let X be the space defined in Example 5.16: X = R with the topology

T = {U ⊆ R | U = ∅ or U = (Rr S) for some countable set S ⊆ R}

Recall that if {xn} is a sequence in X then xn → x if and only if there exists N > 0 such that xn = xfor all n > N . Let f : X → X be a function given by
f (x) = {0 if x ∈ (0, 1)1 if x 6∈ (0, 1)

This function is not continuous since the set {0} is closed in X and the set (0, 1) = f−1({0}) is notclosed in X . On the other hand let {xn} ⊆ X be a sequence and let xn → x . There is N > 0 such that
xn = x for n > N , so f (xn) = f (x) for all n > N and so f (xn)→ f (x).
6.5 Proposition. If f : X → Y and g : Y → Z are continuous functions then the function gf : X → Z is
also continuous.

Proof. Exercise.
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Frequently functions f : X → Y are constructed by gluing together several functions defined onsubspaces of X . The next two facts are useful for verifying that functions obtained in this way arecontinuous.
6.6 Open Pasting Lemma. Let X , Y be topological spaces and let {Ui}i∈I be a family of open sets in
X such that

⋃
i∈I Ui = X. Assume that for i ∈ I we have a continuous function fi : Ui → Y such that

fi(x) = fj (x) if x ∈ Ui ∩ Uj . Then the function f : X → Y given by f (x) = fi(x) for x ∈ Ui is continuous.

X

U1 U2

U3 Yf

Proof. Let V ⊆ Y be an open set. We will show that the set f−1(V ) ⊆ X is open. Since ⋃i∈I Ui = Xwe have
f−1(V ) = ⋃

i∈I
f−1(V ) ∩ Ui =⋃

i∈I
f−1
i (V )

Since fi : Ui → Y is a continuous function the set f−1
i (V ) is open in Ui. Also, since Ui is open in X byExercise 5.8 we obtain that the set f−1

i (V ) is open in X . Thus f−1(V ) is an open set.
6.7 Closed Pasting Lemma. Let X , Y be topological spaces and let A1, A2 ⊆ X be closed sets such
that A1 ∪ A2 = X. Assume that for i = 1, 2 we have a continuous function fi : Ai → Y such that
f1(x) = f2(x) if x ∈ A1 ∩A2. Then the function f : X → Y given by f (x) = fi(x) for x ∈ Ai is continuous.

Proof. Exercise.
6.8 Example. Let f : R→ R be the absolute value function, f (x) = |x|. On the set A1 = (−∞, 0] thisfunction is given by f |A1(x) = −x , and on A2 = [0,+∞) it is given by f |A2(x) = x . Since both f |A1 and
f |A2 are continuous functions and A1, A2 are closed sets in R by the Closed Pasting Lemma 6.7 weobtain that f : R→ R is continuous.
6.9 Note. Lemma 6.7 holds if instead of two closed sets we take any finite number of sets A1, . . . , Ansuch that ⋃n

i=1 Ai = X . On the other hand the statement of the lemma does not hold in general if thecollection of sets {Ai} is infinite.
6.10 Definition. A homeomorphism is a continuous function f : X → Y such that f is a bijection andthe inverse function f−1 : Y → X is continuous.
6.11 Proposition. 1) For any topological space the identify function idX : X → X given by idX (x) = x
is a homeomorphism.
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2) If f : X → Y and g : Y → Z are homeomorphisms then the function gf : X → Z is also a
homeomorphism.

3) If f : X → Y is a homeomorphism then the inverse function f−1 : Y → X is also a homeomorphism.

4) If f : X → Y is a homeomorphism and Z ⊆ X then the function f|Z : Z → f (Z ) is also a homeomor-
phism.

Proof. Exercise.
6.12 Note. If f : X → Y is a continuous bijection then f need not be a homeomorphism since theinverse function f−1 may be not continuous. For example, let X = {x1, x2} be a space with the discretetopology and let Y = {y1, y2} be a space with the antidiscrete topology. Let f : X → Y be given by
f (xi) = yi. The function f is continuous but f−1 is not continuous since the set {x1} is open in X , butthe set (f−1)−1({x1}) = {y1} is not open in Y .
6.13 Proposition. Let f : X → Y be a continuous bijection. The following conditions are equivalent:

(i) The function f is a homeomorphism.
(ii) For each open set U ⊆ X the set f (U) ⊆ Y is open.

(iii) For each closed set A ⊆ X the set f (A) ⊆ Y is closed.

Proof. Exercise.
6.14 Example. Recall that S1 denotes the unit circle:

S1 = {(x1, x2) ∈ R2 | x21 + x22 = 1}The function f : [0, 1)→ S1 given by f (x) = (cos 2πx, sin 2πx) is a continuous bijection, but it is not ahomeomorphism since the set U = [0, 12 ) is open in [0, 1), but f (U) is not open in S1.

0 12 1
U

f (0)f ( 12 )

f (U)
f

6.15 Definition. We say that topological spaces X , Y are homeomorphic if there exists a homeomorphism
f : X → Y . In such case we write: X ∼= Y .
6.16 Note. Notice that if X ∼= Y and Y ∼= Z then X ∼= Z .
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6.17 Example. For any a < b and c < d the open intervals (a, b), (c, d) ⊆ R are homeomorphic. Tosee this take e.g. the function f : (a, b)→ (c, d) defined by
f (x) = (c − da − b

)
x +(ad − bca − b

)
This function is a continuous bijection. Its inverse function f−1 : (c, d)→(a, b) is given by

f−1(x) = (a − bc − d

)
x +(cb − dac − d

)
so it is also continuous. By the same argument for any a < b and c < d the closed intervals[a, b], [c, d] ⊆ R are homeomorphic.

d

c

a b

y = f (x)

6.18 Note. In Chapter 7 we will show that an open interval (a, b) is not homeomorphic to a closedinterval [c, d].
6.19 Example.

1

−1

y = f (x)

We will show that for any a < b the open interval (a, b) is homeomorphic to R. Since(a, b) ∼= (−1, 1) it will be enough to check that R ∼= (−1, 1). Take the function f : R→ (−1, 1) given by
f (x) = x1 + |x|This function is a continuous bijection with the inverse function

f−1 : (−1, 1)→ R is given by
f−1(x) = x1− |x|Since f−1 is continuous we obtain that f is a homeomorphism.

6.20 Note. If spaces X and Y are homeomorphic then usually there are many homeomorphisms X → Y .For example, the function g : (−1, 1)→ R given by
g(x) = tan (π2 x)is another homeomorphism between the spaces (−1, 1) and R.

6.21 Example. We will show that for any point x0 ∈ S1 there is a homeomorphism S1 r {x0} ∼= R.Denote by S1(0,1) ⊆ R the circle of radius 1 with the center at the point (0, 1) ∈ R2:
S1(0,1) := {(x1, x2) ∈ R2 | x21 + (x2 − 1)2 = 1}

It is easy to check that for x0 ∈ S1 the space S1r{x0} is homeomorphic to the space X = S1(0,1)r{(0, 2)}.Likewise, it is easy to check that R is homeomorphic to the subspace Y ⊆ R2 that consists of all pointsof the x-axis:
Y := {(x1, 0) ∈ R2 | x1 ∈ R}
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It is then enough to show that X ∼= Y . A homeomorphism p : X → Y can be constructed as follows. Forany point x ∈ X there is a unique line in R2 that passes through x and though the point (0, 2) ∈ R2.We define p(x) to be the point of intersection of this line with the x-axis:
(0, 2)

p(x)

x

The function p is called the stereographic projection.In a similar way we can construct a stereographic projection in any dimension n ≥ 1 that gives ahomeomorphism between the space Sn r {x0} (i.e. the n-dimensional sphere with one point deleted)and the space Rn:
(0, 0, 2)

x

p(x)

Exercises to Chapter 6

E6.1 Exercise. Consider the set of rational numbers Q as a subspace of R. Show that Q is nothomeomorphic to a space with the discrete topology.
E6.2 Exercise. Prove Proposition 6.3.
E6.3 Exercise. Prove Proposition 6.5.
E6.4 Exercise. Prove Lemma 6.7.
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E6.5 Exercise. Prove Proposition 6.13.
E6.6 Exercise. Let X be a topological space and let f , g : X → R be continuous functions.a) Show that the set

A = {x ∈ X | f (x) ≥ g(x)}is closed in X .b) Let h : X → R be a function given by h(x) = max{f (x), g(x)}. Show that h is continuous.
E6.7 Exercise. Let f , g : R→ R be continuous functions such that f (x) > g(x) for all x ∈ R. Definesubspaces X , Y of R2 as follows.

X := {(x, y) ∈ R2 | g(x) ≤ y ≤ f (x)} Y := {(x, y) ∈ R2 | 0 ≤ y ≤ 1}
Show that X ∼= Y .
E6.8 Exercise. Let x0 = (0, 0) ∈ R2 and let B(x0, 1) ⊆ R2 be a closed ball defined by the Euclideanmetric d:

B(x0, 1) = {x ∈ R2 | d(x, x0) ≤ 1}Define subspaces X, Y ⊆ R2 as follows:
X := R2 r {x0} Y := R2 r B(x0, 1)

Show that X ∼= Y .
E6.9 Exercise. Let (X, ρ) be a metric space. A subspace Y ⊆ X is a retract of X if there exists acontinuous function r : X → Y such that r(x) = x for all x ∈ Y . Show that if Y ⊆ X is a retract of Xthen Y is a closed in X .


