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ABSTRACT
This chapter provides a relatively low-level introduction to the problem of rare event

simulation with Monte Carlo methods and to a class of methods known as variance

reduction techniques that have been devised to deal with this problem. Special emphasis is

given to importance sampling, but several other techniques are also presented, including

the cross-entropy method, rejection sampling, and Markov chain Monte Carlo methods

such as theMetropolis method and Gibbs sampling. A brief discussion is also given about

asymptotic eficiency and the connections with large deviations theory.
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1 INTRODUCTION: MONTE CARLO METHODS, RARE EVENT
SIMULATION, AND VARIANCE REDUCTION TECHNIQUES

Since its introduction almost 70 years ago (Metropolis and Ulam, 1949) (see

Metropolis, 1987 for a historical review), the Monte Carlo (MC) method has

been extensively used in engineering and scientiic computing. In their most gen-

eral interpretation,MCmethods are a way to compute integrals. They comprise a

collection of techniques for generating random samples on a computer as well as

their application to solve a variety of problems. In essence, they involve drawing

random or pseudo-random samples from a speciic distribution and using them

to estimate one or more quantities of interest. Such methods are especially
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advantageous over numerical quadrature methods when the dimensionality of

the problem is large. As a result, and thanks to their lexibility, such methods

have found a wide range of applications (e.g., see Fishman, 1996; Fishman,

2006; Kroese et al., 2011; Landau and Binder, 2000).

A common challenge in MC simulation is that of rare event simulation, also

referred to as the problem of rare events, where very small probabilities need

to be accurately estimated—for example, in reliability analysis, or performance

analysis of telecommunication systems. In a nutshell, the problem is that if one

needs to quantify the probability of one or more events that occur very rarely, an

exceedingly large number of samples are needed even to just produce the desired

events, and an even larger number of samples are required to obtain accurate

estimates. Other applications that call for rare event simulation are queueing

systems (to avoid excessively long waiting times), nuclear physics (avoiding

catastrophic accident), security systems (false alarms in radar), material science

(technical defects), mathematical science, and insurance.

One approach to overcome the problem of rare events is the use of vari-

ance reduction techniques (VRTs) (e.g., see the monographs: Bucklew, 2004;

Fishman, 1996; Kroese et al., 2011 for general reviews). The general idea behind

all of these techniques is to modify the selection of the random samples in

such a way that the desired events occur more frequently than they would

normally, while simultaneously taking these changes into account in order to

obtain unbiased estimates.

Perhaps the most famous VRT is the importance sampling (IS) (Fishman,

1996; Kroese et al., 2011; Srinivasan, 2002). The main idea behind IS is to

select an appropriate biasing distribution (i.e., a change of probability measure)

from which to draw the MC samples so that most of the distribution mass

falls on the regions of interest. This ensures that many of the MC samples

will produce the rare events sought. At the same time, the contribution from

each sample is weighted according to the likelihood ratio, which ensures that

unbiased estimates are obtained.

Of course, for IS to be effective, a good biasing distribution must be chosen.

This requires knowledge of which system conigurations are likely to produce

the rare events of interest. Even though such knowledge is not always available,

in many cases it is enough to leverage what is known about the system’s behavior

in order to guide the choice of biasing distribution, and indeed IS has been used

with success in a variety of applications (Biondini et al., 2004; Li et al., 2007;

Moore et al., 2008; Smith et al., 1997). (Note that, often, exact knowledge of

the most likely failure conigurations may not be needed, and an approximate

knowledge may be suficient, since the statistical nature of the MC sampling

allows one to take into account the contributions of nearby points in sample

space.)

Many other VRTs have also been used with success in various applications,

such as multicanonical MCmethods (Yevick, 2002), Markov chainMonte Carlo

(MCMC) methods (Secondini and Forestieri, 2005), and Gibbs sampling. See
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Fishman (1996), Landau and Binder (2000), and MacKay (2003) for a general

overview of these methods. The common thread among those VRTs is that they

are adaptive. In essence, such methods attempt to ind the important regions

of sample space numerically. These methods can be applied to problems for

which no good choice of biasing distribution is known. When IS is available,

however, it is generally advantageous over other methods, because: (i) IS

allows one to compute precise error estimates, if desired; (ii) adaptive methods

typically require tweaking certain parameters, on which IS is less dependent;

and (iii) IS is usually faster than adaptive methods, since, in adaptive methods,

a certain portion of numerical simulations needs to be used to look for the most

important regions in state space. Indeed, the speed advantage of IS was veriied

directly in a few cases by a detailed comparison between different methods

(Biondini and Kath, 2005; Lima et al., 2005). We should also mention that it

is not always necessary to choose between IS and adaptive VRTs. Indeed, yet

another technique which has proven to be especially useful in recent years is the

cross-entropymethod (deBoer et al., 2005; Rubinstein andKroese, 2004).While

it is a useful VRT on its own right, in some cases, the cross-entropy method can

also be combined with IS to afford the user the advantages of both IS and those

of adaptive techniques.

The remainder of this chapter aims to put the above discussion on a more

precise mathematical setting.

2 MC METHODS AND THE PROBLEM OF RARE EVENTS

2.1 MC Estimators

We start with a simple one-dimensional (1D) example. Let X be a random

variable (RV) with probability density function (pdf) px(x) (Papoulis, 1991).

If one deines Y = y(X), where y(x) =
∫ x
−∞ px(x) dx, it is easy to show that

Y is uniform in [0,1]. [To see this, note that py(y) dy = px(x) dx, with dy =
(dy/dx) dx. But dy/dx = px(x), so py(y) = 1.]

Now suppose that we wish to calculate the probability Q that X falls in a

range R of interest, namely Q = P[X ∈ R ], where R ⊂ R. We can write Q as

Q =
∫

IR(x)px(x) dx . (1)

The function IR(x) is the so-called indicator function (or characteristic function)

of the set R: namely, IR(x) = 1 if x ∈ R and IR(x) = 0 otherwise. (Hereafter

we will drop the subscript R on I whenever that will not cause ambiguity.

Also, integrals without limits are always intended as complete—i.e., over all

of sample space—unless speciically noted otherwise.) In particular, we are

interested in situations in which it is dificult to compute the above integral

analytically.
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Making the substitution x �→ y, we can express Q as Q =
∫

I(x(y)) dy. It is

therefore natural to try to estimate Q using a frequency count. That is, we draw

N independent identically distributed (i.i.d.) random samples Y1, . . . ,YN from

a uniform distribution and we write the estimate Q̂N = F/N, where F is the

number of samples which fall in the region of interest. More speciically, the

above MC estimator is Q̂N = (1/N)
∑N

n=1 I(x(Yn)). Equivalently, we can forget

about Y and write the above estimator as

Q̂N = 1

N

N
∑

n=1

I(Xn) , (2)

where the i.i.d. random samples X1, . . . ,XN are drawn according to the distri-

bution px(x). Note that, while Q is a deterministic quantity, Q̂N is itself a RV. In

fact, it is easy to show that

E[Q̂N] = 1

N

N
∑

n=1

E[I(Xn)] = E[I(X)] = Q ,

where E[Z] =
∫

Z(x)px(x) dx denotes the expectation value with respect to the

pdf px(·), which shows that the expectation value of our estimator is indeed the

quantity of interest, and

var[Q̂N] = E[Q̂2
N] − E[Q̂N]2 = 1

N2

N
∑

n=1

N
∑

m=1

E[I(Xn)I(Xm)] − Q2

= 1

N
var[I(X)] ,

where we used the fact that E[I(Xn)2] = var[I(X)] + Q2 and E[I(Xn)I(Xm)] =
Q2 when n 
= m (because Xn and Xm are statistically independent). Note that the

above two results are true more generally, i.e., independently of I(·) being an

indicator. For an indicator function, in particular, it is E[I(Xn)2] = Q (because

I2(x) = I(x)) and therefore

var[Q̂N] = 1

N
(Q− Q2) .

The above results are easily extended to the multidimensional case. Let X =
(X1, . . . ,XD)T be a vector of RVs with joint pdf px(x), and suppose that we are

interested in the probability Q = P[ y(X) ∈ R ], where y(x) is some real-valued

function:

Q =
∫

IR(y(x))px(x)(dx) , (3)

where (dx) = dx1 · · · dxD is the volume element inRD. More generally, consider

integrals of the type
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Q =
∫

f (x)px(x)(dx) , (4)

where f (x) is a generic real-valued function. Situations for which calculating

the above integral analytically is practically impossible are very common: The

dimensionality of the system might be very large, the function f (·) might be

complicated, and/or the region R might be complicated.

By analogy with the 1D case, we can deine the MC estimator

Q̂N = 1

N

N
∑

n=1

f (Xn) . (5)

As in the 1D case, we have

E[Q̂N] = E[f (X)] = Q , var[Q̂N] = 1

N
var[f (X)] . (6)

Then, if in particular f (X) = I(y(x)), we have var[Q̂N] = (Q− Q2)/N . The

above result implies that the accuracy of a MC estimator is simply proportional

to 1/
√
N independently of the number of dimensions. This is one of the main

advantages of MC methods to compute multidimensional integrals compared to

deterministic integration methods.

In passing, we note that

var[f (X)] =
∫

(

f (x) − Q
)2
px(x)(dx) .

But since in practice we do not know the theoretical variance, we can deine a

MC estimator for it:

σ̂ 2
N = 1

N − 1

N
∑

n=1

(

f (Xn) − Q̂N
)2
.

(The N−1 in the denominator is necessary for σ̂ 2
N to be an unbiased estimator,

i.e., so that E[σ̂ 2
N] = var[f (x)].) Note also that an eficient way to compute σ̂ 2

n is

to use the recursion relation

(n− 1) σ̂ 2
n = (n− 2) σ̂ 2

n−1 +
(

1 − 1

n

)

(

f (Xn) − Q̂n−1

)2
.

Using this formula, one can compute both the sample mean and variance in a

single iteration.

As a simple example of an application of MCmethods, one can approximate

the value of π as follows. The area of the portion of the unit disk in the irst

quadrant is π/4. We can write this area as an integral of the form (3), where x =
(x1, x2) and px(x) ≡ 1 (i.e., x1 and x2 are independent uniform RVs in [0,1]), and

with y(x) = ‖x‖2 = x21 + x22 andR = {y ∈ R : 0 ≤ y ≤ 1}.We can then estimate

this integral with MC methods by simply taking random samples and counting

the fraction of samples that fall inside the disk.
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2.2 The Problem of Rare Events

While the variance of a MC estimator provides an absolute measure of how

widely distributed it is around its mean value, in most cases a relative measure

of the relative accuracy of the MC estimator is more useful. Such a measure is

provided by the coeficient of variation (cv) of a RV Z, which is deined as

cv[Z] = stdev[Z] /E[Z] ,

where as usual stdev[Z] = √
var[Z] is the standard deviation. More precisely,

the cv gives the number of samples that are necessary on average to achieve a

given accuracy.

To apply this concept in our case, suppose Z = Q̂N . Since var[Q̂N] =
var[f (X)]/N, we have cv[Q̂N] = cvQ/

√
N, where (with some abuse of notation)

we denoted cvQ = stdev[f ]/Q. Therefore, if we want cv[Q̂] to be below a target

value cvo, on average wewill needN > (cvQ/cvo)
2. In particular, for an indicator

function the above calculations yield cv[Q̂] = √
(1 − Q)/(NQ).

We can now see the problem of rare event simulation in a more quantitative

way: IfQ ≪ 1, the number of samples needed on average to obtain a given value

of cv is N ∼ 1/(Qcv2o ). For example, if Q ∼ 10−6 and we want a cv of 0.1, we

need N = 108 samples. In other words, the problem is that, if Q ≪ 1, the events

that make I(y(x)) = 1 have a very low probability of occurring, and therefore, a

large number of samples is needed even to observe one such event, and an even

larger number of samples is needed to obtain a reliable estimate.

As mentioned in Section 1, VRTs are a collection of methods aimed at

overcoming (or at least alleviating) this problem. In the following, we will look

in some detail at two of them, namely IS and the cross-entropy method.

3 IMPORTANCE SAMPLING

3.1 Importance-Sampled MC Estimators

As mentioned earlier, the idea behind IS is simple: We want to improve the

eficiency of MC methods by pushing (biasing) the simulations to favor the

rare events of interest so that they will occur more frequently than they would

otherwise. Of course, we must do this in a proper way in order to still have an

unbiased estimator (i.e., an estimator whose expectation value is still the quantity

of interest).

We do so by introducing a modiied density p∗(x), called the biasing

distribution, and by rewriting the integral in Eq. (4) that deines the quantity

of interest as

Q =
∫

f (x)L(x)p∗(x) (dx) . (7)
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The ratio L(x) = px(x)/p∗(x) is called the importance function or likelihood

ratio (or even weight function in some works). An equivalent way to write the

integral in Eq. (7) is

Q = E∗[f (X)L(X)] , (8)

where E∗[·] denotes expectation values with respect to the density p∗(x). We

then deine an importance-sampled MC estimator as

Q̂∗
N = 1

N

N
∑

n=1

f (X∗
n)L(X

∗
n) ,

where the samples X∗
n are now drawn from the biasing distribution p∗(x).

Importantly, note that a necessary requirement in order to carry out the change of

measure from (4) to (7) is that the support of f (x)p∗(x) includes that of f (x)p(x)
[i.e., f (x)p∗(x) 
= 0 whenever f (x)p(x) 
= 0]. Otherwise Q̂∗

N will not converge

to the correct value in general. Conversely, it should be obvious that, as long as

this condition is satisied, E∗[Q̂∗
N] = Q, thanks to Eq. (8). That is, we still have

an unbiased estimator for the quantity of interest.

The reason for biasing the sampling distribution can be seen by looking at

the variance of our new estimator, namely

var∗[f (X)L(X)] =
∫

(

f (x)L(x)−Q
)2
p∗(x)(dx) =

∫

f 2(x)L(x)px(x)(dx)−Q2.

(9)

Thus,

var[f (X)] − var∗[f (X)L(X)] =
∫

f 2(x)
(

1 − L(x)
)

px(x)(dx) . (10)

Looking at the integrand in Eq. (9) we see that if p∗(x) = f (x)px(x)/Q, wewould

have var∗[f (X)L(X)] = 0. Thus, in this case our importance-sampled estimator

would have zero variance: every sample would always yield the same result,

namely the exact value of the quantity Q of interest!

Of course, the above choice of biasing distribution is not practical, because

it requires the advance knowledge of the value ofQ (which is the desired result).

On the other hand, Eq. (10) implies if we can choose p∗(x) so that p∗(x) > px(x)

wherever f 2(x)px(x) is large and p∗(x) < px(x) wherever f
2(x)px(x) is small,

the variance of our importance-sampled estimator will be much smaller than

the original variance. This corresponds to redistributing the probability mass in

accordance with its relative importance as measured by the weight f 2(x)px(x).

The zero-variance choice is just an ultimate case of this redistribution.

An estimator of the importance-sampled variance can be written using the

same methods as before:

σ̂ ∗2
N = 1

N − 1

N
∑

n=1

(

f (X∗
n)L(X

∗
n) − Q̂∗

N

)2
,
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which again can be computed recursively as

(n− 1) σ̂ ∗2
n = (n− 2) σ̂ ∗2

n−1 + (1 − 1/n)
(

f (X∗
n)L(X

∗
n) − Q̂∗

n−1

)2
.

A case in which the likelihood ratio can be computed particularly easily is

the common situation in which the components of bothX andX∗ are statistically
independent, for in this case it is px(x) = ∏D

j=1 pxj(xj) and similarly for p∗(x),

yielding the likelihood ratio simply as L(x) = ∏D
j=1 pxj(xj)/p∗j(xj).

Of course, a key question is how to make the choice of a biasing distribution

in practice. We will see shortly how IS works in a simple example, but

unfortunately there are no general rules that work in all cases, and the task of

choosing good biasing distributions is the most dificult step in applying IS.

Also note that choosing a bad biasing distribution can make the problem worse

and make the variance of the importance-sampled estimator much bigger than

the original one. This is why it is occasionally said that IS (like all of computer

simulation; Knuth, 2011) is an art. Nonetheless, there are general principles that

one can follow to select a biasing distribution, and indeed IS has been used with

success in a large variety of problems.

3.2 A Simple Example

As an illustration of the concepts discussed above, it will be useful to consider

a speciic example: a 1D symmetric random walk (RW). Let X = (X1, . . . ,XD)

and

y(X) =
D

∑

j=1

Xj ,

where, for j = 1, . . . ,D,

Xj =
{+1 with probability 1/2 ,

−1 with probability 1/2 .

That is, we consider a sequence of D random steps, each one unit to the right

or to the left with probability 1/2, and we are interested in computing the inal

position. In particular, suppose we want to compute the probability that the inal

position will be to the right of some given threshold:

Q = P[ y(X) ≥ C ] .
To make things more concrete, supposeD = 100 and C = 70. This is equivalent

to asking the probability that by lipping a coin 100 times we get at least

85 heads.

We can try to estimate the pdf of the inal position (and therefore our desired

probability) by performing MC simulations. That is, we use Eq. (5) with

f (X) = H(y(X) − C) ,
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where H(·) is the Heaviside step function: H(s) = 1 for s > 0 and H(s) = 0 for

s < 0. The histogram of the inal position in a simulation with N = 100, 000

samples is shown in Fig. 1. The problem is that no samples occurred with

inal position greater than 50. That, of course, is because our desired event is

extremely rare, and therefore, we are very unlikely to see it with a reasonable

number of samples.

To obviate this problem, we can simulate a biased RW: given 0 < q < 1, for

j = 1, . . . ,D we take

Xj =
{+1 with probability q ,

−1 with probability 1 − q .

The value q = 1/2 reproduces the unbiased case. If q > 1/2, however, steps

to the right will be more prevalent, which means that we are pushing the inal

position to the right (which is what we want). The histogram of the inal position

in a biased simulation with q = 0.7 is shown in Fig. 2. The results show we

now get a lot more samples with inal positions to the right. But of course now

we cannot simply take the relative frequency of our event as an estimator of

the desired probability, and we need to use the likelihood ratios instead. The

individual likelihood ratio for a single step is given by

ℓ(Xj) =
{

1/(2q) if Xj = 1 ,

1/[2(1 − q)] if Xj = −1 ,
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FIGURE 1 Histogram of the inal position in an unbiased MC simulation of a symmetric 1D

random walk with N = 100, 000 samples.



38 PART A Modeling and Analytics

−60 −40 −20 0 20 40 60 80 100
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

Final position

R
e
la

ti
v
e
 f
re

q
u
e
n
c
y

Biased
Unbiased

FIGURE 2 Histogram of the inal position (in red (light gray in the print version)) in a biased MC

random walk with q = 0.7, with N = 100, 000 samples. For comparison, the blue (dark gray in the

print version) histogram shows the unbiased case.

and the overall likelihood ratio for a single sample RW is L(X) = ∏D
j=1 ℓ(Xj).

Now recall that if q > 1/2, on average there will be more samples for which

the inal position is to the right. Since 1/(2q) < 1, we can therefore expect the

overall likelihood ratio for those samples to be less than 1 as well. In fact, we

will see that the likelihood ratios can get quite small.

The results in Fig. 2 should already demonstrate that use of an appropriate

biasing distribution can yield a distinct advantage over standardMC simulations.

Roughly speaking, the reason why IS is effective is that, generically, it is much

better to estimate a quantity by using a large number of samples each of which

contributes a little to the inal result (by virtue of the likelihood ratios), rather

than using a very small number of result which gives a binary contribution (one

or zero). (This is true as long as the contributions are not too small, as we will

discuss later.) The results, however, also suggest that perhaps one could get an

even better result by further increasing the value of q. The natural question is

then: What is the optimal value of q? This question raises again the key issue in

properly applying IS: How does one choose a good biasing distribution?Usually,

this requires some analytical knowledge about the behavior of the system. We

turn to this issue next.
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3.3 The Optimal Biasing Distribution

The case of a symmetric 1D RW is simple enough that analytical expressions

can be derived for the pdf of the inal position. Comparison with these analytical

results will then provide some insight into the issue of how to best choose a

biasing distribution.

It is easy to see that if D is odd and m is even or vice versa, it is P[ y(X) =
m ] = 0. If D and m are both even or both odd, instead,

P[ y(X) = m ] = 1

2D

(

D

(D+ m)/2

)

.

The factor 1/2D arises because we are taking D steps, each of which has a

probability 1/2 of being either to the left or to the right. The binomial coeficient

arises because, for the inal position to equal m, we need a total of (D+ m)/2

steps to the right and (D− m)/2 steps to the left, and there are exactly D choose

(D+ m)/2 ways to arrange this. Taking the sum over all possible results above

the threshold, we then simply have

Q = 1

2D

D
∑

m=C

′
(

D

(D+ m)/2

)

, (11)

where the prime indicates that the sum should be taken only on even values of

m or only on odd values of m depending on whether D is even or odd.

In particular, for D = 100 and C = 70, we then get P[y(X) ≥ C] = 2.4 ×
10−13. Recalling the discussion about the cv in Section 2.2, we then see that,

even in a simple example as this, it would be almost hopeless to try to accurately

estimate the desired probability numerically, except perhaps on the fastest

supercomputers.

The above discussion, however, does not answer our question of what is

the optimal choice of biasing. To answer that question, we need to dig a little

deeper. Fortunately, our example is simple enough that we can actually calculate

analytically the variance of the biased estimator. Note irst that

var∗[f (X)L(X)] = E∗[f 2(X)L2(X)] −
(

E∗[f (X)L(X)]
)2

= E[f (X)L(X)] −
(

E[f (X)]
)2

,

where we used that f (·) is an indicator and we rewrote expectations with respect
to p∗(x) as expectations with respect to px(x). We then have

var∗[f (X)L(X)] = −Q2 + 1

2D

D
∑

m=C

′
(

D

(D+ m)/2

)

1

(2q)(D+m)/2 [2(1 − q)](D−m)/2
,
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where Q is given by Eq. (11). Note that the last part of the sum is precisely the

likelihood ratio of a sample with inal position m.

We can now look at this variance as a function of q. Even better, we can plot

the biased cv; i.e., the ratio cv∗ = stdev∗[fL]/Q. The corresponding results are

given in Fig. 3. (Note that these results agree very well with numerical estimates

of the variance as a function of q.)

Figure 4 shows that the likelihood ratios when q > 1/2 are indeed much

smaller than unity, as anticipated. Thus, each sample that ends past the threshold

will only give a small contribution to the estimator. (It should be noted that,

in our example, the value of the likelihood ratio is the same for all paths that

lead to the same value of inal position, but this is not true in more general

situations.)

From Fig. 3, we see that optimal value of q is 0.85. At that value, the cv is

just 2.32, whereas for the unbiased RW (q = 0.5) it is 2.04 × 106. Now recall

that the number of MC samples needed on average to get a given value of

the cv is N = (cvj/cvo)
2 or, for importance-sampled MC, N = (cv∗/cvo)2.

Using the optimal value q = 0.85, one can therefore obtain a cv of 0.1 using

just a few hundred samples. On the other hand, to obtain the same level of

accuracy with unbiasedMC simulations, one would need over 1014 samples. So,

in our example IS increases the eficiency of the MC simulations by 10 orders

of magnitude! Such a huge increase in eficiency is not a luke, but has been

realized in practical applications (e.g., see Biondini et al., 2004; Marzec et al.,

2013; Moore et al., 2008).

The general message that we should take from this example is that the

optimal biasing choice is to concentrate the MC samples around the most likely
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FIGURE 3 The ratio cv∗ = stdev∗[Q]/Q as a function of q for the 1D random walk.
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FIGURE 4 Relative frequency of the likelihood ratios in a simulation with q = 0.85 and N =
100, 000.

path that leads to the desired event. The reason why this is so is that the event

with the largest value of p(x) among all those for which I(y(x)) 
= 0 is the one

that provides the dominant contribution to the integral that deines Q. (Note that

in many cases of interest, p(x) decays exponentially away from its maximum.)

In our example, the most likely way to obtain at least 85 heads (the desired

event) is to obtain exactly 85 heads. So, the optimal biasing choice is to bias the

simulations around this value.

3.4 Common Biasing Choices and Their Drawbacks

We next discuss two simple and commonly mentioned approaches to selecting

a biasing distribution: variance scaling and mean translation.

With variance scaling, one raises the variance of the input RVs in order to

increase the chance that some samples will hit the desired event. For exam-

ple, if the input RVs X ∈ R
D are normal, i.e., p(x) = pσ (x), with pσ (x) =

e−x·x/2σ 2
/(

√
2πσ)D, one may try to choose p∗(x) = pσ∗(x), with σ∗ > σ . In

simple situations (such as the 1D case, i.e.,D = 1), variance scaling can be quite

effective. The applicability of the method is rather limited, however, because of

its well-known dimensionality problem. Generally speaking, the problem is that,

in many situations, the area over which the samples can “spread” grows faster
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than that of the region of interest with the number of dimensions increases.

Therefore, while it may intuitively seem that increasing the variance would

increase the probability of reaching the desired region compared to the unbiased

distribution, this probability will in fact decrease. The end result is that, in

dimensions larger than one, the best variance is typically the unscaled one—i.e.,

the unbiased distribution—and all other biasing choices yield worse results than

unbiasedMC simulations (i.e., the variance of the importance-sampled estimator

is larger than that of the standardMC estimator). For this reason, variance scaling

has largely been superseded by the mean translation method.

Withmean translation, one adds a mean to the input RVs in order to increase

the chance that some samples will hit the desired event, e.g., with normal RVs,

one would choose p∗(x) = pσ (x − m), with the vectorm being themean shift. If

m is chosen correctly, mean translation can be very effective in many situations.

This method also has some drawbacks, however.When the dimensionality of the

problem is large and/or the indicator function of the desired event has a nontrivial

geometry in sample space, the optimal translation point might be impossible to

ind analytically. In this case, one must resort to hybrid or adaptive methods.

Also, problems can arise when the symmetry of the problem leads to degeneracy,

e.g., suppose one is interested in the total norm of the sum of the RVs. In this

case, there is no single choice of translation point that can lead to the correct

result. (In the parlance of large deviations theory, which will be briely discussed

in Section 8, this is an example of a situation in which there are multiple—in

this case an ininity of—minimum rate points, and no single dominating point;

e.g., see Bucklew, 2004 for a discussion of this issue).

We will return to the problem of selecting a good biasing point in Sections 5

and 8.

4 MULTIPLE IS

In some cases of interest, no single choice of biasing distribution can eficiently

capture all the regions of sample space that give rise to the events of interest.

In these cases, it is necessary to use IS with more than one biasing distribution.

The simultaneous use of different biasing methods (which is similar to the use

of a mixture density) is called multiple importance sampling.

4.1 Multiple IS: General Formulation

Suppose wewant to use J biasing distributions p∗1(x), . . . , p∗J(x), each of which
allows us to eficiently reach a given region of sample space. The issue arises of

how to correctly weight the results coming from these different distributions.

One possible solution to this problem is to assign a weight wj(x) to each

distribution and rewrite Q as:



An Introduction to Rare Event Simulation and Importance Sampling Chapter | 2 43

Q =
J

∑

j=1

Qj =
J

∑

j=1

∫

wj(x)f (x)Lj(x)p
∗
j (x)(dx) , (12)

where Lj(x) = p(x)/p∗j(x) is the likelihood ratio for the jth distribution. Note

that the right-hand side of Eq. (12) equals Q for any choice of weights such

that
∑J

j=1 wj(x) = 1 for all x ∈ R
D. Each choice of weights corresponds to a

different way of partitioning of the total probability.

From (12), a multiply-importance-sampled MC estimator for Q can now be

written as

Q̂ =
J

∑

j=1

Q̂j =
J

∑

j=1

1

Nj

Nj
∑

n=1

wj(Xj,n)f (Xj,n)Lj(Xj,n) , (13)

where Nj is the number of samples drawn from the jth distribution p∗j(x), and
Xj,n is the nth such sample. Also, one can show that, similar to before, an

unbiased estimator of its variance is

σ̂ 2

Q̂
=

J
∑

j=1

1

Nj(Nj − 1)

Nj
∑

n=1

(

wj(Xj,n)Lj(Xj,n)f (Xj,n) − Q̂j
)2
.

As before, recursion relations can also be written so that this quantity can be

obtained without the need of storing all the individual samples until the end of

the simulation:

σ̂ 2

Q̂
=

J
∑

j=1

1

Nj(Nj − 1)
Ŝj,Nj ,

with Q̂ = ∑J
j=1 Q̂j,Nj and [in the special case f (x) = I(y(x))]

Q̂j,n = n− 1

n
Q̂j,n−1 + 1

n
w2
j (Xj,n)L

2
j (Xj,n)I(y(Xj,n)) ,

Ŝj,n = Ŝj,n−1 + n− 1

n

(

w2
j (Xj,n)L

2
j (Xj,n)I(y(Xj,n)) − Q̂j,n−1

)2
.

4.2 The Balance Heuristics

Of course, several ways exist to choose the weights wj(x) when using multiple

IS. And the choice of weights is almost as important as the choice of biasing

distributions pj(x). Different weighting functions result in different values for

the variance of the combined estimator. A poor choice of weights can result

in a large variance, thus partially negating the gains obtained by IS. The best

weighting strategies are of course the ones that yield the smallest variance.

The simplest possibility is just to setwj(x) = 1/J for all x, meaning that each

distribution is assigned an equal weight in all regions of sample space. This

choice is not advantageous, however, as we will see shortly. Another simple
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choice is that in which the weighting functions are constant over the whole

sample space. In this case, one would have

Q =
J

∑

j=1

wj

∫

I(y(x))Lj(x)(dx) =
J

∑

j=1

wj E∗j[I(y(x))Lj(x)] .

The corresponding importance-sampled estimator is then simply a weighted

combination of the estimators obtained by using each of the biasing distribu-

tions. Unfortunately, the variance of Q is also a weighted sum of the individual

variances: σ 2
j = ∑J

j=1 wjσ
2
j , and if any of the sampling techniques is bad in a

given region, then Q will also have a high variance. Then, one may be tempted

to deine the weights according to the actual number of samples from each

distribution that fall in a given region. It is important to realize, however, that

this is not a good choice, as it does not produce a unbiased estimator (i.e., one

whose expectation value is the desired quantity).

On the other hand, there is a relatively simple and particularly useful choice

of weights: the balance heuristics (Owen and Zhou, 2000; Veach, 1997). In this

case, the weights wj(x) are assigned according to

wj(x) = Njp∗j(x)
∑J

j′=1 Nj′p
∗
j′(x)

. (14)

Note that the quantity Njp∗j(x) is proportional to the expected number of hits

from the jth distribution. Thus, the weight associated with a sample x with the

balance heuristics is given by the relative likelihood of realizing that sample

with the jth distribution relative to the total likelihood of realizing that same

sample with all distributions. Hence, Eq. (14) weights each p∗j(x) most heavily

in those regions of sample space where p∗j(x) is largest. [Note Eq. (14) can also
be written in terms of likelihood ratios, a form which is particularly convenient

in Eq. (13).]

The balance heuristics has been shown to be close to optimal in most

situations (Veach, 1997). Of course, other strategies are possible, and some

of these alternatives do perform better in speciic cases (Veach, 1997). It is

dificult to tell a prioriwhich choice will be best in any given situation, however.

Therefore, the balance heuristics is frequently used in practice because of its

effectiveness and simplicity.

4.3 Application: Numerical Estimation of Probability Density
Functions

In some cases, one is not just interested in one speciic probability, but rather

would like to numerically estimate the whole pdf of a quantity of interest

which is a complicated function of the RVs. As an application of multiple IS,

here we briely discuss the strategy that can be used to set up the numerical

simulations.
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In our example of a 1D RW, suppose that we want to numerically estimate

the pdf of the inal position y(X). (Of course, in this case we already did it

analytically, but the example will serve to illustrate the procedure.)

The desired result now is more than a single number; instead, we are trying

to simultaneously estimate all the integrals

pk = 1

�yk

∫

Rk

py(y) dy = 1

�yk

∫

IRk(y(x))px(x) (dx) , (15)

for k = 1, . . . ,K, where yk = yo + �yk−1, with �yk = yk+1 − yk, and Rk =
[yk, yk+1]. Note that the integrals in Eq. (15) are of the same type as that in

Eq. (3). Thus, we can apply the IS techniques presented earlier. It should be

clear, however, that no single biasing distribution can eficiently generate the

whole range of possible values of y, and therefore, one needs to resort to multiple

IS. The procedure is then to:

1. choose a set of J biasing distributions p∗1(x), . . . , p∗J(x);
2. perform a predetermined number Nj of MC simulations for each distri-

bution, keeping track of the likelihood ratio and the weights for each

sample;

3. sort the results of all the MC samples into bins and combine the individual

samples using one of the weighting strategies presented earlier.

Note that it is not necessary to ix the number of bins and the precise bin locations

in advance of the simulations, and one can choose them a posteriori to optimize

the results.

Figure 5 shows the results obtained from each of three individual

importance-sampled MC simulations of the same 1D RW described earlier,

together with the corresponding coeficient of variation. Note that, as is often

the case in similar situations, one of the biasing distributions was chosen to be

the unbiased one, to make sure that the simulations recover the main portion

of the desired pdf. As expected, different values of the biasing parameter

target different regions of the pdf. (Negative values of inal position can

obviously be targeted just as easily by choosing q < 1/2.) Note how the cvs for

each simulations become large near the edges of the region targeted by each

simulation, where the expected number of samples is small.

Figure 6 shows the corresponding pdf obtained when the results from the

individual simulations are combined into a single multiply-importance-sampled

estimator using the balance heuristics. One can see that indeed the combined

results have a low cv throughout the range of values desired.

5 THE CROSS-ENTROPY METHOD

As we have seen earlier, in order for IS methods to be effective, it is crucial to

choose a good biasing strategy, as poor biasing strategies can lead to incorrect

results and/or performance that is even poorer than that of standardMC. In some
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FIGURE 5 The portions of pdf of the 1D random walk as reconstructed from three IS-MC

runs with N = 10, 000 each. Blue (dark gray in the print version): q = 0.5; red (gray in the print

version): q = 0.72; magenta (light gray in the print version): q = 0.9. Inset: The cv for each of the

simulations.

cases, however, it may be dificult to ind such a strategy. A possible alternative

in such cases is the use of the cross-entropy method (de Boer et al., 2005;

Rubinstein and Kroese, 2004).

Recall that the theoretical optimal biasing distribution, popt = IR(y(x))

p(x)/Q, is not practical, as it requires knowledge of Q in advance. Often,

however, one can ind a good biasing distribution by requiring it to be “close” to

the optimal biasing distribution. This can be accomplished by minimizing the

Kullback–Leibler distance (Kullback and Leibler, 1951):
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FIGURE 6 The pdf of the 1D random walk as reconstructed by combining the three simulations

into a single multiply-importance-sampled run. Inset: The overall coeficient of variation.

D(popt, p∗) = Epopt

[

ln
popt(x)

p∗(x)

]

=
∫

ln(popt(x)) popt(x)(dx) −
∫

ln(p∗(x)) popt(x)(dx) , (16)

which is also known as the cross-entropy between two probability distributions.

Minimizing D(popt, p∗) is equivalent to maximizing
∫

ln(p∗(x))popt(x) (dx) .

(Note that D is not a true “distance,” as it is not symmetric in its two argu-

ments.) In turn, recalling the expression for popt, this problem is equivalent to

maximizing E[IR(y(x)) ln p∗(x) ] .
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Suppose that, as is typically the case in practice, the biasing distributions

are selected from a family {p∗(x; v)}v∈V parametrized by a vector v, where V is

the corresponding parameter space, and suppose p∗(x;u) = p(x) is the unbiased

distribution. Based on the above discussion, one must maximize the integral

D(v) =
∫

IR(y(x)) ln(p∗(x; v))p(x) (dx) . (17)

This is usually done numerically. Since the optimal biasing distribution is

typically far from the unbiased distribution, however, the region R of interest

is generally also far from the region in sample space where the unbiased

distribution p(x) is large. Thus, determining the best choice for v also becomes

a rare event simulation.

The solution to this problem is to use a sequence of intermediate regions Rj
that reach the desired region iteratively. (For an alternative approach, see Chan

and Kroese, 2012.) Let Dj(v) be the integral in Eq. (17) with R replaced by Rj.

Starting with the unbiased distribution, one uses MC sampling to minimize the

CE distance between the parametrized distribution and the optimal distribution

that reaches R1. This step, which is done by inding the maximum of D1(v)

over this irst set of samples, will give a parameter value w2. One then uses this

value to deine a biasing distribution and performs an MC simulation with this

distribution to minimize the CE distance between the parametrized distribution

and the optimal distribution that reaches R2. Since a biasing distribution is being

used, each step of the procedure is an IS simulation of a stochastic optimization.

That is, at step j, one must compute

wj+1 = max
v∈V

D̂j(v) , (18)

where

D̂j(v) = 1

M

M
∑

m=1

IRj(y(x
(m))) ln(p∗(x(m); v))L(x(m)) , (19)

and where x(1), . . . , x(M) are i.i.d. samples generated according to p∗(x;wj). The

optimal biasing distribution can then be adaptively determined by performing

the following steps:

1. Set j = 0 and the initial parameter w0 = u;

2. Generate MC samples according to p∗(x;wj);

3. Solve Eq. (18) to ind wj+1;

4. If the iteration has converged, stop; otherwise, increase j to j+ 1 and reiterate

from step 2.

Once the iteration has converged, one can then perform IS-MC simulations using

the biasing distribution p∗(x;winal).

The regions Rj can be deined in terms of sample quantiles of some quantity

of interest (de Boer et al., 2005). A major issue associated with the above
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algorithm, however, is how to accomplish step 3. Solving (18) is in general

complicated. IfD(v) is convex and differentiable, however, the solutions of (18)

can be obtained by solving a system of algebraic equations:

1

M

M
∑

m=1

IR(y(x
(m)))∇v[ln p(x(m); v)]L(x(m);u,w) = 0 . (20)

In many applications, this equation can be solved analytically. If that is not

possible, one can try to ind a solution numerically.

The CE method enjoys desirable convergence properties. Speciically, for

certain (static) models, under mild regularity conditions the CE method ter-

minates with probability 1 in a inite number of iterations. Moreover, the CE

method provides a consistent and asymptotically normal estimator for the opti-

mal reference parameters (see Homem-de-Mello and Rubinstein, 2002). The CE

method has been successfully applied to the estimation of rare event probabilities

in dynamicmodels, in particular queueingmodels involving both light and heavy

tail input distributions (de Boer et al., 2004; Kroese and Rubinstein, 2004).

Recently, a method that combines IS with the CE method has been developed

and used with success to study a speciic model of birefringence-induced errors

(Marzec et al., 2013; Schuster et al., 2014), and noise-induced perturbations

(Donovan and Kath, 2011) of lightwave communication systems. We refer the

reader to de Boer et al. (2005) and Rubinstein and Kroese (2004) for further

details about the method and its applications.

6 MCMC: REJECTION SAMPLING, THE METROPOLIS
METHOD, AND GIBBS SAMPLING

A related simulation problem is that in which the distribution px(x) of the RVs

X is not easy to sample from. This might happen for various reasons, e.g., a

typical situation is that in which the normalization constant in the distribution

is dificult to compute. Another typical situation is that in which the RVs are

not independent but are related by complicated nonlinear interdependencies,

in which case px(x) is a derived density that may be very hard to compute. In

these situations, a useful approach could be the use of rejection sampling, the

Metropolis–Hastings method (Metropolis et al., 1953), and its variants such as

Gibbs sampling. We next give a brief introduction to these methods, referring

the reader to Fishman (1996) and MacKay (2003) for further details.

We start with the simplest among these methods: rejection sampling. Con-

sider for simplicity a 1D case, namely a single RV X distributed according to

px(x). Suppose that px(x) = p̃x(x)/Z, where p̃x(x) is known but Z is not. The idea

behind rejection sampling is to use a proposal density p∗(x) = p̃∗(x)/Z̃ which

is known (possibly up to the normalization constant Z̃) and from which we can

easily draw samples. Suppose further that we can also ind a constant C such
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that Cp̃∗(x) > p̃x(x) for all x. A single step of the rejection sampling method

proceeds as follows:

(i) Generate a RV, X∗, from the proposal density p̃∗(x).
(ii) Evaluate Cp̃∗(X∗) and generate a uniformly distributed RV u from the

interval [0,Cp̃∗(X∗)].
(iii) Evaluate px(X∗) and accept or reject the sample X∗ by comparing the value

of u with the value of p̃x(X∗). More precisely, if u > p̃x(X∗), then X∗ is

rejected; otherwise, it is accepted, in which case X∗ is added to our set of

samples. (The value of u is discarded no matter what.)

The obvious question is why should this procedure generate samples from

px(x). To answer this, note irst that the pair (X∗, u) identiies a point in the

two-dimensional xy plane. Moreover, (X∗, u) is selected with uniform proba-

bility from the area underneath the curve y = C p̃∗(x). The above algorithm

rejects all points that lie above the curve y = p̃x(x). Thus, points (x, u) that are

accepted are uniformly distributed over the area under y = p̃x(x). This implies

that the probability density of the x-coordinates of points that are accepted must

be proportional to p̃x(x). In turn, this implies that the accepted samples amount

to independent samples drawn from px(x).

Rejection sampling can be generalized to several RVs in a straightforward

way. In many cases, however, it is dificult to produce a proposal density p̃∗(x)
with the desired properties. In some of these cases, the problem can be obviated

by the use of the Metropolis method. The main idea of the Metropolis method

is to create a Markov chain whose transition matrix does not depend on the

normalization term. One needs to make sure that the chain has a stationary

distribution and such stationary distribution is equal to the target distribution.

After a suficient number of iterations, the chain will then converge to the

stationary distribution.

To make these ideas more precise, recall that a (discrete time) Markov chain

is a random process Xt ∈ S (where S denotes sample space) that satisies the

Markov property: P[Xt+1 |Xt, . . . ,X1] = P[Xt+1 |Xt]. That is, the process has
no memory: the future state of the system only depends on its present state, not

on its past. A inite-state Markov chain (namely, one in which the cardinality

of S is inite, |S| < ∞) can be completely speciied by the transition matrix

P = (pi,j) deined by the elements pi,j = P[Xt+1 = j |Xt = i]. For irreducible
chains, the stationary distribution π is the long-term proportion of time that

the chain spends in each state. (Such a distribution can be computed noting

that π = π P.) The Metropolis method makes use of a proposal density

p∗(X;Xt) that depends on the current state Xt. More precisely, a single step

of the Metropolis method proceeds as follows:

(i) Select a candidate move X∗ generated from the current state Xt according

to the proposal density p∗(X∗;Xt).
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(ii) Compute the ratio

r = px(X∗) p∗(X∗;Xt)

px(Xt) p∗(Xt;X∗)
. (21)

(iii) If r ≥ 1, accept the move. Otherwise accept the move with probability r.

(As in rejection sampling, this can be done by drawing a uniform RV u in

[0, 1] and accepting the move if u < r.)

(iv) If the move is accepted, set Xt+1 = X∗. Otherwise remain in the current

state (i.e., set Xt+1 = Xt).

The approach is similar to rejection sampling, in that a candidate move is gener-

ated and then either accepted or rejected with a given probability. Two important

differences, however, are that: (a) unlike rejection sampling, here the candidate

move depends on the current state and (b) in rejection sampling, rejected points

are discarded and have no inluence on the list of samples collected, whereas in

the Metropolis method a rejection causes the current state to be inserted again

into the list of samples. We also note in passing that the original formulation

of the method was done for the special case in which the proposal density

is symmetric, i.e., p∗(y; x) = p∗(x; y), in which case (21) reduces simply to

r = px(X∗)/px(Xt). The more general version of the method described above

should be more accurately called the Metropolis–Hastings method.

Unlike rejection sampling, the Metropolis method does not automatically

generate samples from px(x). Rather, one can show that, for any positive

proposal density p∗(y, x), the density of Xt tends asymptotically to px(x) in

the limit t → ∞. Nothing can be said in general about the rate of convergence,

however, i.e., about how rapidly the convergence takes place. It is also important

to realize that the samples generated by the Metropolis method are not statisti-

cally independent (which makes it dificult to compute variances). Indeed, the

Metropolis method is our irst example ofMCMC methods, in which a Markov

process is used to generate a sequence of states, each state having a probability

distribution that depends on the previous state. Since successive samples are

dependent, one may need to run the Markov chain for a considerable time in

order to generate samples that are effectively independent. Finally, an important

caveat is that the Metropolis method relies on diffusion to explore state space.

This can be extremely slow and ineficient.

While rejection sampling and the Metropolis method can be used on 1D

problems, Gibbs sampling (also known as the heat bath method or “Glauber

dynamics”) is a method for sampling from distributions in dimensions two or

higher. The main idea of Gibbs sampling is to use conditional distributions.

Consider for simplicity a two-dimensional example, with Xt = (X1,t,X2,t)
T .

Suppose one has a situation where, while it is complicated to sample from

the joint density px(x), it is feasible to draw samples from the two conditional
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distributions px2(x2 | x1) and px1(x1 | x2). A single iteration of theGibbs sampling

method then proceeds as follows:

(i) Given the current stateXt, generate a new value for X1 using the conditional

distribution px1(x1 |X2,t).
(ii) Use the new X1 to generate a new value for X2 using the conditional

distribution px2(x2 |X1) and set Xt+1 = (X1,X2)
T .

One can show that a single iteration of Gibbs sampling can be viewed as a

Metropolis method with target density px(x), and that this particular implemen-

tation has the property that every candidate move is always accepted. Thus, as

long as the joint density px(x) is reasonably nice, the probability distribution of

the samples generated will tend to px(x) as t → ∞.

Since Gibbs sampling is a special case of a Metropolis algorithm, it suffers

from the same problems. Namely, samples are not independent, and generically

speaking state space is explored by a slow RW. On the other hand, Gibbs

sampling does not involve any adjustable parameters, and therefore, it is an

attractive strategy when one wants to quickly test a new model. Also, various

software packages are available that make it easy to set up and simulate a large

class of probabilistic models by Gibbs sampling (Thomas et al., 1992).

7 APPLICATIONS OF VRTs TO ERROR ESTIMATION IN
OPTICAL FIBER COMMUNICATION SYSTEMS

One of the areas in which IS and other VRTs have recently been applied with

considerable success in recent years is the estimation of error probabilities

in optical iber communication systems (Agrawal, 2002; Kaminov and Koch,

1997). As an illustration of the methods discussed in this chapter, we devote this

section to a brief review of the problem and of how the techniques that were

presented in the previous sections were used in this context.

Errors in optical iber communication systems are required to be extremely

rare, e.g., the bit error ratio [that is, the probability of a transmission error] is

required to be 10−12 or smaller after error correction. This stringent requirement

imposes severe constraints on the design of these systems and creates a need for

accurate design tools. On one hand, however, experiments are very expensive

(the cost of setting up a fully equipped lab can exceed millions of dollars),

and optimizing the system’s performance involves selecting precise values for

many independent parameters (such as input powers, pulse format, iber types,

and relative section lengths). Therefore, design engineers are in need of accurate

mathematical and computational modeling. On the other hand, systems are large

and complex, with many physical effects contributing to determine the overall

system performance. Moreover, error probabilities are non-Gaussian due to

nonlinear interactions. Hence, mathematical methods are alone not suficient.

But precisely because errors are required to be so rare, error probabilities cannot

be estimated by standard MC simulations. An approach which has proved to be
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successful in this situation is a hybrid one, in which the analytical knowledge

of the dominant sources of error is used to design appropriate biasing strategies

for IS.

There are two main sources of randomness that contribute to determine the

overall system performance in optical iber transmission systems: iber disorder,

manifesting itself in random birefringence, and ampliied spontaneous emission

noise from the optical ampliiers that are used to compensate for the attenuation

of the signal due to iber loss (Agrawal, 2002; Kaminov and Koch, 1997). We

next briely describe each of these two problems and the techniques that were

brought to bear to study each of them. A further source of variability is the

pseudo-randomness of the data stream, which can result in transmission errors

through system nonlinearity. For brevity, however, we omit any discussion of

this issue, and we refer the reader to Ablowitz et al. (1998), Mecozzi (1998),

Sinkin et al. (2007), and references therein for details.

7.1 Polarization-Mode Dispersion

Birefringence arises when the speed of propagation of light in amedium depends

on the polarization of the light itself. Although a great deal of effort is devoted

to controlling all aspects of the manufacturing of optical ibers, a certain amount

of iber birefringence is always present. The presence of birefringence has

the effect that an optical pulse will split into two components, propagating

along what are called the fast and slow axes of birefringence. Moreover, the

iber’s birefringence (including its strength and the birefringence axes) varies

with wavelength, temperature, and time. The random, birefringence-induced

perturbations on optical pulses are referred to as polarization-mode dispersion

(PMD) (Kogelnik et al., 2002).

In most installed systems, PMD-induced impairments are completely

determined by the real, three-component irst- and second-order PMD vector,

denoted, respectively, as �τ and �τω = d�τ/dω (where ω is the optical frequency)

(Kogelnik et al., 2002). In turn, the growth of PMDwith distance is governed by

the irst- and second-order PMDconcatenation equations (Gordon andKogelnik,

2000), which describe how the irst- and second-order PMD vectors of adjoined

iber sections combine with each other to produce the overall behavior of the

system. In many cases, after performing an appropriate distance-dependent

rotation of the reference frame can be written in the following simpliied form

(Biondini et al., 2004):

�τ (n+1) = �τ (n) + ��τ (n+1) , �τ (n+1)
ω = �τ (n)

ω + ��τ (n+1) × �τ (n) . (22)

Here �τ (n) and �τ (n)
ω are, respectively, the total irst- and second-order PMD

vectors after the nth iber section, ��τ (n) is the irst-order PMD vector of the

nth iber section, and ��τ (n)
ω is the corresponding second-order PMD vector. The

rescaled PMD vector ��τ (n) of each section can be assumed to be uniformly

distributed on the Poincaré sphere; its magnitude |τn| obeys a Maxwellian
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distribution with respect to wavelength. Also, for linearly birefringent sections,

��τ (n)
ω = 0.

The goal of system designers is to estimate the effects of PMD by perform-

ing numerical simulations, and in particular to quantify PMD-induced error

probabilities. As mentioned before, however, the problem is events in which

PMD takes on much larger than average values (resulting in transmission errors)

are exceedingly rare. Thus, one would like to have a method to produce large

irst- and second-order PMD events more frequently than they would occur in

practice, and weigh them with correct statistics. We next describe how this can

be accomplished using IS. For simplicity, we describe the simplest case in which

all iber sections contribute the same amount of PMD to the total. We emphasize,

however, that several other models of PMD generation have been considered in

the literature, and a variety of IS and other VRTs have been used with success

in all of these cases (Biondini and Kath, 2004, 2005; Biondini et al., 2004; Li

et al., 2008, 2010; Lu and Yevick, 2005; Schuster et al., 2014; Secondini and

Forestieri, 2005; Yevick, 2002).

It was shown in Biondini et al. (2004) that, when |��τ (n)| is independent of
n in (22), the appropriate variables to control in order to monitor the growth

of PMD are the relative orientations of the individual sections, ��τ (n). To apply

IS, one irst needs to ind the deterministic choices of ��τ (n) that maximize the

desired combination of irst- and second-order PMD.We will label these vectors
�b(n). Once these vectors have been found, one can implement IS by biasing the

randomMC samples around them. To follow this idea, it is convenient to express

the vectors �b(n) relative to a orthonormal frame of reference formed by the unit

vectors {û(n)
1 , û

(n)
2 , û

(n)
3 }, where

û
(n)
1 = τ

(n)/|τ (n)| , û
(n)
2 = τ

(n)
ω,⊥/|τ (n)

ω,⊥| , û
(n)
3 = û

(n)
1 × û

(n)
2 . (23)

Here τ
(n)
ω,⊥ is the component of τ

(n)
ω perpendicular to τ

(n). The irst of Eq. (22)

thus describes a simple 3D RW. Thus, if one only wants to maximize the length

of the total irst-order PMD vector τ , the best option is to choose �b(n+1) to be

parallel to �τ (n) (i.e., to align �b(n+1) along û
(n)
1 ). On the other hand, the second

of Eq. (22) couples the growth of second-order PMD to that of irst-order PMD.

Thus, if a nontrivial amount of second-order PMD is desired, one must also take

into account the growth of irst-order PMD.

When the number of sections is not too small (i.e., larger than 4 or 5), it was

found convenient to employ a continuum approximation to ind the deterministic

biasing directions. Speciically, let lim�z→0 ��τn+1/�z = �b(z). The magnitude

of �b(z) describes the rate at which PMD is added by the birefringent sections. In

this limit, one obtains

d�τ
dz

= �b , d�τω

dz
= �b× �τ , (24)

where z is the longitudinal direction along the iber. Or, in the frame of reference

{û1, û2, û3} deined as above,
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dτ

dz
= b1 ,

dτω,‖
dz

= b2
τω,⊥
τ

,
dτω,⊥
dz

= b3τ − b2
τω,‖
τ

, (25)

where (b1, b2, b3) are now the components of �b with respect to {û1, û2, û3}. The
goal is now to ind the function �b(z) that maximizes second-order PMD or a

linear combination of irst- and second-order PMD. Fortunately, Eqs. (25) can

be solved exactly for any �b(z):

τ(z) =
∫ z

0

b1(ζ ) dζ , τω,‖(z) =
∫ z

0

b3(ζ )τ (ζ ) sin[β(z, ζ )] dζ ,

τω,⊥(z) =
∫ z

0

b3(ζ )τ (ζ ) cos[β(z, ζ )] dζ , (26a)

β(z, ζ ) =
∫ z

ζ

b2(ξ)

τ (ξ)
dξ . (26b)

The choice of �b(z) that maximizes the magnitude of second-order PMD (or any

combination of irst- and second-order PMD) can now be found using calculus

of variations. (Detailed calculations can be found in Biondini et al., 2004.)

The result is that the maximum growth of second-order PMD is obtained for

“in-plane” contributions, namely, (b1, b2, b3) = b (cosα(z), 0, sinα(z)) where

the α(z) gradually interpolates between an initial value of 0 (producing pure

irst-order PMD at irst) and a inal value of π/2 (producing pure second-order

PMD at the end). In particular, in the case of equal-length sections (namely,

for |�b(z)| = b), the angle α(z) has a linearly varying proile: that is, α(z) =
αmax z/zmax, with αmax = π/2. (The case of nonequal-length sections can be

easily obtained from this one by rescaling the independent variable z; see

Biondini et al., 2004 for details.) Performing IS-MC simulations with multiple

biasing strengths, this biasing choice generates region 3 in Fig. 7.

In many practical situations, however, a more complete coverage of the

|�τ ||�τω| plane is needed. In this case, intermediate biasing choices must also be

used in addition to pure irst- and second-order biasing. Such choices can be

obtained by using calculus of variations to maximize a linear combination of |�τ |
and |�τω|, as obtained from Eqs. (26a). The resulting form of �b(z) is the same

as above, except that the value of the inal angle αmax now varies between 0

and π , the particular value depending upon the speciic linear combination of

irst- and second-order PMD being maximized. A selection of angles, together

with the resulting regions in the |�τ ||�τω| plane, is shown in Fig. 7. (Region 1 is

the result in the case of biasing for pure irst-order PMD.) The advantage of

using multiple biasing—as opposed to just pure irst- or second-order biasing

or no biasing at all—is evident. Each value of αmax generates samples lying

in a region that emanates in a roughly radial fashion from the location where

the joint pdf is maximum. Together, a set of angles αmax can be used to cover

the entire |�τ ||τω| plane. Indeed, Fig. 8 shows the joint pdf of the magnitude

of irst- and second-order PMD (which is a two-dimensional reduction of the
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FIGURE 7 The regions of the |τ ||τω| plane targeted by the various biasing methods. Region 1

corresponds to pure irst-order biasing (αmax = 0), region 2 to pure second-order biasing (αmax =
π/2), and regions 3, 4, and 5 to αmax = π/4, 3π/4, and π , respectively. The dashed line shows the

much smaller region obtained with unbiased samples. Fifty birefringent sections with 0.5 ps DGD

each were used. Source: From Biondini et al. (2004).
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FIGURE 8 Contour plots of the joint pdf of irst- and second-order PMD for a concatenation of 50

birefringent sections with 0.5 ps DGD each, as reconstructed from IS-MC simulations. The contours

are at 10−n with n = 1.5, 1.75, 2, 2.25, 3, 4, 5, 6, 8, 10, 15, 20, 25, and 30. A total of 106 Monte-Carlo

samples were used. Source: From Biondini et al. (2004).
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full 3D joint pdf of irst- and second-order PMD; Foschini and Poole, 1991)

for a system of 50 polarization scramblers, as calculated with the multiple

biasing technique described above. In a similar fashion, one can use the same

biasing strategies in numerical simulations of pulse transmissions to quantify

PMD-induced transmission errors.

7.2 Noise-Induced Perturbations

Together with the invention of the laser in 1960, the birth of optical iber

transmission systems was made possible by the development of low-loss optical

ibers, with typical loss coeficients of 0.2 dB/km. Nonetheless, for long-distance

communication systems, which span thousands of kilometers, iber loss remains

a serious obstacle, which is compensated by inserting optical iber ampliiers

at various points along the transmission line. Modern optical ampliiers allow

the signal to be boosted in the optical domain, avoiding the need for electronic

conversion. The downside of this process, however, is the introduction of

spontaneous emission photons, which get combined to the signal in the form of

additive white Gaussian noise. In addition, since the iber is weakly nonlinear,

the noise interacts with the signal to generate random pulse luctuations. While

these perturbations are not too large on average, they are one of the main sources

of errors.

The propagation of optical pulses in ibers is governed by a perturbed non-

linear Schrödinger (NLS) equation with varying coeficients (Agrawal, 2007):

i
∂q

∂z
+ 1

2
d(z)

∂2q

∂t2
+ g(z)|q|2q = iS(t, z) . (27)

Here z is the dimensionless propagation distance, t is the dimensionless retarded

time, q(t, z) is the dimensionless slowly varying electric ield envelope (rescaled

to account for loss and ampliication in communication systems), d(z) is the

local value of the dispersion coeficient, and g(z) describes the periodic power

variations, which are due to loss and ampliication. The source term S(t, z)

can represent various kinds of perturbations. Here, we focus on the physically

interesting case of spontaneous emission noise originating from the optical

ampliiers. That is, we consider

S(t, z) =
Na
∑

n=1

vn(t)δ(z− nza),

where Na is the number of ampliiers, za is the dispersion map period, δ(z) is the

Dirac delta distribution, and νn(t) is white Gaussian noise, satisfying E[vn(t)] =
0 and E[vn(t)v∗

n′(t
′)] = σ 2δ(t − t′)δnn′ . In other words, at each ampliier, z =

nza, Eq. (27) is replaced by the jump condition q(t, nz+a ) = q(t, nz−a ) + σvn(t).

We note in passing that the numerical simulation of (27) involves a very large

(several tens of thousands in practical situations) number of RVs comprised by
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the real and imaginary parts of S(z, t) at each of the collocation points in time

for each ampliier over the whole transmission line.

In the simplest case of constant dispersion and no gain/loss power variations,

without loss of generality one can take d(z) = g(z) = 1. In this case, when

S(z, t) = 0, Eq. (27) is a completely integrable model that admits an ininite

number of exact solutions describing elastic interactions among N particle-like

objects called solitons (Ablowitz and Segur, 1981; Zabusky and Kruskal, 1965).

The simplest case is that of a 1-soliton solution, which is simply the traveling

wave solution

q(t, z) = A sech[A(t − T)] eiθ(t,z) , (28)

where θ(t, z) = V(t − T) + � and with T(z) = Vz+ to and �(z) = 1
2
(A2 +

V2)z+ φo. Note that the 1-soliton solution (28) contains four constant param-

eters: the amplitude A (which is also its inverse width), the frequency V

(which is also the group velocity offset), a temporal offset to, and a phase

offset φo.

The case when d(z) and g(z) are not constant but periodic describes a

periodic concatenation of ibers with different dispersion properties and is

referred to as dispersion management (DM) in the literature. Equation (28)

is replaced by a more complicated pulse shape, and the resulting pulses are

called dispersion-managed solitons (DMS). Nonetheless, the invariances of the

equation imply that DMS still contain the same four pulse parameters. In this

case, one can use suitable perturbation methods to derive an equation, called

dispersion-managed nonlinear Schrödinger (DMNLS) equation which captures

all the essential features of the dynamics as well as the DMS pulse shape

(Ablowitz and Biondini, 1998; Spiller and Biondini, 2010).

When noise is present [i.e., S(t, z) 
= 0], the nonlinear term in Eq. (27) causes

part of the noise to couple to the soliton and induce random deviations of the

soliton parameters. One can use perturbation theory on either the NLS or the

DMNLS equation to capture the effects of noise on the soliton parameters,

obtaining (Li et al., 2007)

dA

dz
= SA(z) ,

dV

dz
= SV(z) ,

dT

dz
= V + ST(z) ,

d�

dz
= 1

2
(A2 + V2) + V ST(z) + S�(z) , (29a)

where the source terms,

Sj(z) = 〈eiθ ȳj, S〉
/

〈ȳj, yj〉 , j = A,V ,T ,�, (29b)

which are deined in terms of the inner product 〈f , g〉 = Re
∫

f ∗(t)g(t) dt, are
the projection of the noise along the neutral modes yj of the linearized NLS

operator around the soliton solution. Each neutral mode is associated with one

of the invariances of the NLS equation as well as with ininitesimal changes in
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one of the soliton parameters. Note that since the linearized NLS operator is not

self-adjoint, themodes are not mutually orthogonal, and therefore, the projection

must be done using the corresponding adjoint modes ȳj. On the other hand, the

neutral modes and their adjoints form a biorthogonal basis for the null space

of the linearized NLS operator: 〈ȳj, yk〉 = 〈ȳj, yj〉 δjk, where δjk is the Kronecker

delta.

Equations (29a) are a system of nonlinear stochastic differential equations,

which cannot be solved in closed form. (The nonlinearity arises not only from the

explicit appearance of A and V in the equations but also, and in a more essential

way, on the fact that the source terms depend on the soliton amplitude A.) Useful

information can still be extracted from them, however. For the present discus-

sion, it is convenient to employ a continuum approximation of the noise. That

is, we consider S(t, z) to be a Gaussian white noise process with zero mean and

autocorrelation function E[S(t, z)S∗(τ , ζ )] = σ 2 δ(t − τ)δ(z− ζ ). As a result,

the source terms in Eqs. (29a) become independent white noise processes, with

autocorrelation function

E[Sj(z)S∗
k (ζ )] = σ 2

j δjkδ(z− ζ ) , (30)

where the source term variances are

σ 2
j = var[Sj(z)] = E

[

〈eiθ ȳj, S〉2
/

〈ȳj, yj〉2
]

= σ 2‖y
j
‖2

/

〈ȳj, yj〉2 . (31)

In the limit of moderate amplitude deviations, one can approximate Eqs. (29a)

by considering the variances of the source terms to be constant. The resulting

equations can then be integrated exactly, to obtain

A(z) = Ao +WA(z) , V(z) = Vo +WV(z) ,

T(z) = To +
∫ z

0

V(ζ )dζ +WT(z) , (32a)

where for brevity we omitted the expression for �(z), and where

Wj(z) =
∫ z

0

Sj(ζ ) dζ , j = A,V ,T ,�, (32b)

is aWiener process with zero mean and autocorrelation function E[Wj(z)Wk(ζ )]
= σ 2

j δjkmin(z, ζ ). The mean values of the soliton parameters at the output z = L

are then

E[A(L)] = Ao , E[V(L)] = Vo , E[T(L)] = To + VoL,

E[�(L)] = 1

2
(A2o + V2

o )L+ 1

4
(σ 2
A + σ 2

V)L2 . (33)

Tedious but straightforward stochastic calculus (Papoulis, 1991) also yields the

variances of the noise-perturbed output soliton parameters (Spiller and Biondini,

2010):
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var[A(L)] = σ 2
AL , var[V(L)] = σ 2

VL ,

var[T(L)] = σ 2
TL+ 1

3
σ 2
VL

3 , (34)

where the expression for var[�(L)]was again omitted for brevity. (Note how the

mean phase is directly affected by the noise, unlike the other soliton parameters.)

The cubic dependence of timing and phase jitter on distance (which arise, respec-

tively, as a result of the coupling between carrier frequency and group velocity

and as a result of the Kerr effect and Galilean invariance) are well-known in

the optics literature and are referred to as Gordon–Haus jitter (Gordon and

Haus, 1986) and Gordon–Mollenauer jitter (Gordon and Mollenauer, 1990),

respectively.

The above mean variances agree very well with direct numerical simulations

of the full NLS equation perturbed by noise. However, their knowledge is

not suficient to accurately estimate noise-induced transmission penalties, for

several reasons. First of all, the variances are only correct for small deviations

of the pulse amplitude, whereas we are interested in quantifying the probability

of large deviations. Second, even though the noise is Gaussian-distributed, the

noise-induced changes of the soliton parameters are not necessarily Gaussian.

In particular, the variance of each amplitude shift depends on the previous value

of the amplitude, which causes the distribution of A to deviate signiicantly from

Gaussian. A Gaussian approximation will therefore only be valid in the limit of

small amplitude shifts, and even then only in the core region of the pdf and not

in the tails. Finally, even if the noise-induced changes of the soliton parameters

were approximately Gaussian-distributed, calculating the probability densities

in the tails from the (analytically or numerically obtained) variances would

require an exponential extrapolation, and any errors or uncertainties would be

magniied correspondingly.

Nonetheless, the information obtained from the above perturbation theory

is the key to devise a successful IS for the problem, as we show next. In our

case, to successfully apply IS one must ind the most likely noise realizations

that lead to a desired change of the soliton parameters at the output. As

demonstrated in Moore et al. (2003) and Li et al. (2007), one can approach

this problem by decomposing it into two logically distinct steps: (i) inding the

most likely noise realizations that produce a given parameter change at each

ampliier and (ii) inding the most likely way in which individual parameter

changes at each ampliier combine to produce a total change at the output.

This two-step approach is justiied by the fact that the noise at different

ampliiers is statically independent. We next briely describe each of these two

steps.

(i) Biasing at a single ampliier. Consider a generic perturbation to the solution

at the nth ampliier, bn(t). Recall from Eqs. (29) that the noise-induced change to

a soliton parameter Q (with Q = A,V ,T ,�) is found by taking the projection of

the perturbation onto the adjoint mode of the linear DMNLS operator associated



An Introduction to Rare Event Simulation and Importance Sampling Chapter | 2 61

with Q. That is, if q(t, nz+a ) = q(t, nz−a ) + bn(t), the change to parameter Q due

to the perturbation bn(t) is given by

�Qn = Re

∫

ȳ∗Qbn(t)dt
/

∫

|ȳQ|2dt . (35a)

The problem of inding the optimal biasing at each ampliier is to ind the

most likely noise realization subject to the constraint of achieving, on average,

a desired parameter change at that ampliier. In other words: given a speciic

parameter change �Qn at the nth ampliier (with Q = A,V ,T ,�), what is the

form of bn(t) that is most likely to produce this prescribed change? For white

Gaussian noise, maximizing its probability amounts to minimizing the negative

of the log-likelihood, i.e., the negative of the argument of the exponential in the

noise pdf. That is, we need to minimize the L2 norm of the noise,

‖bn(t)‖2 =
∫

|bn(t)|2dt , (35b)

subject to achieving the desired parameter change �Qn given by Eq. (35a).

One can formulate this as a variational problem, whose solution yields the

deterministic biasing direction (Moore et al., 2008)

bn(t) = �Qn
(

Re

∫

ȳ∗QyQdt
/

∫

|ȳQ|2dt
)

ȳQ . (36)

(ii) Biasing across all ampliiers. Next we address the question of how one

should distribute the bias for the soliton parameters among all ampliiers in order

to achieve a speciied parameter change at the output. In other words: what is the

most likely set of individual parameter changes {�An,�Vn,�Tn,��n}n=1,...,Na

that realizes a given value of �Qtarget (with Q equal to either A, V , T , or �,

as before) at the output? For simplicity, we limit our discussion to amplitude

deviations, even though the same approach can be used to study variations of all

four soliton parameters (Spiller and Biondini, 2010).

We begin by examining the amplitude evolution from one ampliier to the

next, namely

An+1 = An + �An+1 . (37)

Recall that the most likely noise realization that achieves a given amplitude

change at a single ampliier is given by (36), with Q = A in this case. Also

recall that the norms and inner products of the linear modes depend on the

soliton amplitude and therefore also indirectly on distance. It should be clear

that maximizing the probability of obtaining a given amplitude at the output is

equivalent to minimizing the sum of the L2 norm of the biasing functions bn(t)

over all ampliiers. That is, we need to minimize the sum

Na
∑

n=1

‖bn‖2 =
Na
∑

n=1

|�An|2/σ 2
A , (38a)
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subject to the constraint

Na
∑

n=1

�An = Atarget − Ao , (38b)

where σ 2
A is given by Eq. (31). To solve this problem, we consider a continuum

approximation. That is, we replace Eq. (37) by the irst of Eqs. (29a), with

S(t, z) = b(t, z) and b(t, z) given by the continuum analogue of Eq. (36) with

Q = A, that is: b(t, z) = (〈yA, ȳA〉/‖ȳA‖2) ȳA(t) Ȧ. We then seek a function A(z)

that minimizes the continuum limit of Eq. (38a). That is, we seek to minimize

the integral from z = 0 to z = L of the L2 norm of b(t, z), namely, the functional

J[A] =
∫ L

0

Ȧ2/σ 2
A dz , (39)

subject to the ixed boundary conditions A(0) = Ao and A(L) = Atarget [which

are the continuum limit of (38b)]. Hereafter, the dot denotes total differentiation

with respect to z, and L is the total transmission distance as before. After

some straightforward algebra, the Euler–Lagrange equation associated with the

functional J[A] in (39) can be written as

2Ä
1

σ 2
A

+ Ȧ2
∂

∂A

(

1

σ 2
A

)

= 0 ,

which is readily integrated to give

Ȧ = c σA , (40)

where c is an integration constant which determines the total amount of biasing

being applied and thereby the value of the amplitude at the output. One can

now integrate Eq. (40) to ind the optimal path A(z) that realizes a desired

amplitude change at the output. Once this path has been obtained, one can then

calculate �An, which was the only unknown in the optimal biasing directions

bn in Eq. (36).

Equation (40) can be solved exactly in the case of constant d(z) and g(z)

(that is, for the classical NLS equation). In this case, Eq. (40) reduces to

Ȧ = c
√
A, which is trivially integrated to Anls(z) =

[(√

Atarget −
√
Ao

)

z/L+√
Ao

]2
. When d(z) or g(z) are not constant, the functional dependence of σA on

A is not known explicitly, and therefore, it is not possible to integrate Eq. (40)

analytically. Numerical expressions are available for the norms and inner prod-

ucts, however, so one can proceed by numerically integrating Ȧ, obtaining an

expression for z = z(A), and then inverting this expression to ind the optimal

biasing paths. As an example, Fig. 9 shows the results of numerical simulations

in which the MC samples were biased along the optimal paths (shown by the

thick curves) that produce three given amplitude changes (also indicated in the

igure), demonstrating how the random trajectories are indeed closely clustered

around these paths. Figure 10 shows the pdf of the output energy as reconstructed
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FIGURE 9 Samples from IS-MC simulations of the DMNLS equation. Here, the pulse energy

(normalized to input energy) is plotted as a function of time (i.e., distance in physical units). The

arrows represent the different targeted output energies: a larger than normal output energy (blue (dark

gray in the print version)), a smaller than normal output energy (red (light gray in the print version)),

and unbiased energy (black). Also plotted are deterministic paths (thick, smooth curves, with color

corresponding to the target) predicted by our perturbation theory. These are the preferential paths

around which we attempt to sample by biasing the noise with the adjoint linear modes. For each of

three different targeted output energies, a few dozen IS-MC samples are also shown (also colored

correspondingly), demonstrating that the actual trajectories indeed follow the predictions of the

theory. Source: From Li et al. (2007).

from IS-MC simulations of the DMNLS equation using multiple IS and the

biasing techniques described above. For comparison purposes, the results of

unbiasedMC simulation of the original NLS equation (27) with DM and a much

larger number of MC samples are also shown, as well as a Gaussian it to those

results, demonstrating that pdf deviates signiicantly from a Gaussian, and at the

same time that IS-MC simulation is an effective to quantify the probability of

rare events in the system.

Similar techniques have been recently applied to quantify the effect of

noise-induced perturbations in a variety of other system conigurations, e.g., see

Donovan and Kath, 2011; Li and Kath, 2015; Li et al., 2007; Moore et al., 2003,

2005, 2008; Spiller and Biondini, 2009, 2010; and references therein.

8 LARGE DEVIATIONS THEORY, ASYMPTOTIC EFFICIENCY,
AND FINAL REMARKS

A key concept in assessing the effectiveness of a given biasing strategy and/or

when using IS to reconstruct a sequence of quantities with decreasing probability

(as in the case of the pdf in the example in Section 4.3) is that of asymptotic
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FIGURE 10 pdf of normalized output energy of a dispersion-managed soliton affected by ampliier

noise. The solid (cyan (light gray in the print version)) curve shows results from IS-MC simulations

of the DMNLS equation with 42,000 samples. The (red (dark gray in the print version)) dots are

the results from standard MC simulations of the NLS equation with DM with 1,000,000 samples.

The (black) dashed curve is a Gaussian it to that simulation. Note how unbiased MC simulations

of the NLS equation with DM deviate from Gaussian, but agree well with IS-MC simulations of the

DMNLS equation as far as down in probability as the unbiased simulations can reach. Source: From

Li et al. (2007).

eficiency (Glynn and Whitt, 1992; Sadowsky and Bucklew, 1990). The precise

deinition of asymptotic eficiency is formulated in the framework of large

deviations theory (Bucklew, 1990; Dembo and Zeitouni, 1983). Here we will

limit ourselves to giving an informal discussion of both of these topics.

Often, for simplicity, the choice of biasing distributions is restricted to a

speciic family of distributions, usually dependent on one or more parameters,

e.g., in a speciic situation these could be the mean translation parameters. Now

consider a set of probabilities Pn dependent on a parameter n, e.g., Pn could be

deined as the probability that the RV y(X) takes values that are larger than n

times its mean: Pn = P[y(X) > nμ], with μ = E[y(X)]. As another example,

let Yn = (X1 + · · · + Xn)/n be the mean of n i.i.d. RVs X1, . . . ,Xn. One could

ask what is the probability that Yn deviates more than ǫ from its mean, i.e.,

Pn = P[|Yn − μ| > ǫ], where now μ = E[X]. Furthermore, suppose that the

probabilities Pn tend to zero as n → ∞, as is indeed the case in the two

examples given. Large deviations theory is concerned with the rate at which

these probabilities tend to zero. In this sense, it can be thought of as an extension

of the law of large numbers.

It is often the case in practical situations that the probabilities Pn decay

exponentially as n increases. Loosely speaking, when this happens we say that

the sequence {Pn}n∈N satisies a large deviations principle. More explicitly, in
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the above example we say that Pn satisies a large deviations principle with rate

function I(ǫ) if

lim
n→∞

1

n
logPn = −I(ǫ) .

More precise and comprehensive deinitions can be given, which allow one

to include a larger class of processes, for some of which the simple require-

ment above is not satisied. A large body of work has been accumulated on

large deviations theory. Two famous results, namely Cramér’s theorem and the

Gärtner–Ellis theorem, identify some properties of rate functions. In particular,

for the sum of RVs considered above, one can show that the rate function is

I(ǫ) = sup
s∈R

[sǫ − log(M(s))] ,

where M(s) = E[exp(sX)] is the moment-generating function. For further

details, we refer the reader to Bucklew (1990) and Dembo and Zeitouni (1983).

Now let us return to the problem of rare event simulation. It should be

clear that the computational cost required for an accurate estimation of Pn
with standard MC methods will obviously grow with n. Next, consider a

sequence of biasing distributions p∗n(x). Roughly speaking, the sequence is

said to be asymptotically eficient if the computational burden grows less than

exponentially fast.

The concept of asymptotic eficiency has important practical consequences.

If a family of biasing distributions is asymptotically eficient, the increase in

computational eficiency will be larger and larger the further we reach into

smaller probabilities. The best-case scenario is that in which the computational

cost to reach probability levels of 10−n is independent of n. In that case, the

increase in computational eficiency can be arbitrarily large in principle, and in

practice is just dictated by how far down in probability we need to reach. We

refer the reader to Bucklew (2004) for a discussion of precise conditions that

guarantee that a sequence of simulation distributions is asymptotically eficient.

As a inal remark, we should comment on the relation between large devi-

ations theory and the study of random dynamical systems. In many cases, one

can think of the input RVs as perturbations affecting the behavior of a dynamical

system. For example, in the case of optical iber communication systems, three

kinds of randomness are present: (i) the iber’s random birefringence, which

depends on distance, time, and wavelength; (ii) the optical ampliiers’ quantum

noise, which is added to the signal and propagates nonlinearly through the

iber; and (iii) the pseudo-random sequence of information bits. The problem

of studying small random perturbations of dynamical systems was irst posed

in Pontryagin et al. (1933) and has received considerable attention in recent

years. In many cases, the most likely coniguration of RVs for which the system

reaches a given output state can be thought of as a speciic path in sample

space. In turn, this path can be uniquely identiied as the minimizer of the

Wentzell–Freidlin action functional (Freidlin and Wentzell, 1984). IS can then
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be thought of simply as a numerical (MC) technique to perform an integration

in sample space around this “optimal” path. (Note the similarity between this

point of view and the path integral formulation of quantum mechanics, e.g., see

Weinberg, 1995.) The best-case scenario is of course that in which this optimal

path can be identiied analytically (e.g., as in Biondini et al., 2004; Moore et al.,

2008). In other situations, however, one may be able to solve the minimization

problem numerically (as in Spiller and Biondini, 2010). Finally, if this is also not

practical, one can avoid theWentzell–Freidlin formulation altogether and search

for it adaptively using the cross-entropy method (as in Donovan and Kath, 2011;

Marzec et al., 2013; Schuster et al., 2014).
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