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Outage Statistics in a Waveplate Hinge Model of
Polarization-Mode Dispersion

Jinglai Li, Gino Biondini, William L. Kath, and Herwig Kogelnik

Abstract—The properties of the waveplate hinge model of polar-
ization-mode dispersion (PMD) are studied in detail, and its statis-
tics are compared to those of the traditional hinge model based on
the assumption of an isotropic output after each hinge. In partic-
ular, the probability density function of the differential group delay
for each individual frequency band is computed using a combina-
tion of importance sampling and the cross-entropy method. The
outage probability is then obtained combining these results with
the outage map method, allowing the fraction of bands with unac-
ceptable outage probabilities to be quantified by the noncompliant
capacity ratio (NCR). The results show that the traditional hinge
model significantly overestimates the NCR compared to the wave-
plate hinge model.

Index Terms—Cross-entropy (CE) method, hinge model, impor-
tance sampling (IS), noncompliant capacity ratio (NCR), optical
fiber communications, outage probability, polarization-mode dis-
persion (PMD).

I. INTRODUCTION

P OLARIZATION-MODE DISPERSION (PMD) is one
of the obstacles facing the next generation of optical

fiber communication systems [1]. Since the birefringence of
installed optical fiber varies randomly with respect to both time
and wavelength, the effect of PMD on a system is stochastic
in nature. This problem is dealt with by allotting a power
penalty to PMD. The outage probability (i.e., the probability of
the PMD-induced penalty exceeding this allowed value), then
becomes a key measure of the reliability of a system.

PMD is quantified by the PMD vector [2], which is fre-
quency- and distance-dependent. The magnitude of the PMD
vector, called the differential group delay (DGD), is the dif-
ference in group delays between the two principal states of
polarization. It has traditionally been assumed that: 1) each
individual fiber section behaves identically and independently
of one another, so that the probability density function (PDF)
of the total DGD follows a Maxwellian distribution [3], and
that 2) the process is ergodic, in the sense that time averages
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coincide with averages with respect to frequency. Recent
measurements of installed fiber links, however, have reported
non-Maxwellian variations in the temporal statistics of the
DGD of different frequency channels in wavelength-divi-
sion-multiplexed (WDM) systems [4], [5]. This behavior has
been shown to be consistent with the assumption that fiber
links are composed of a concatenation of a small number of
long, stable sections joined by short, unprotected sections, or
“hinges,” which are subject to environmental effects [5]. The
hinges themselves contribute little to the total system DGD,
but their variations are responsible for the temporal dynamics
of PMD within each channel, whereas the longer sections act
as if they are frozen in time. As a result, the statistics of the
polarization-induced transmission outages of these systems
differ from those predicted by traditional models; in particular,
the measurements contradict the traditional assumption that all
channels have identical outage probabilities.

In the “hinge model” of PMD [6]–[9], the DGD of each stable
long section is assumed to follow a Maxwellian distribution as
wavelength varies but is frozen in time. It is also assumed that
the time-dependent hinges act as polarization controllers that
scatter the PMD vector uniformly over the Poincaré sphere. The
system outages under these assumptions have been well studied,
and analytical expressions for the outage probability have been
reported [10], [11]. In the following, we refer to this as the
isotropic hinge model, because of the assumption of uniform
output of the hinges. Recent experimental studies [12] suggest,
however, that this model should be modified to encompass more
realistic hinge behavior. Based on these experiments and on
previous theory [13], we [14] proposed a modified, anisotropic
hinge model, which assumes that the long sections are joined
by “waveplate-type” hinges, which produce a random rotation
about a static axis. We refer to this model as the waveplate hinge
model. The goal of this work is to perform a detailed comparison
between the two models. Our results show that the effects of the
two types of hinges are quite different, and, as a consequence,
the outage statistics predicted by them differ significantly from
one another.

The most demanding part of comparing the two hinge models
is to compute the outage probability associated with any given
wavelength band. Outage probabilities are required to be very
small—typically a minute per year, that is, or less. Because
of this constraint, it is difficult to use standard Monte Carlo
(MC) simulations or laboratory measurements to assess system
outage probabilities, due to the extremely large number of PMD
configurations that must be visited to obtain reliable estimates.
Importance sampling (IS) has been used to address such prob-
lems and allow efficient computation of PMD-induced transmis-
sion penalties [15]–[19]. The idea is to do MC simulations with
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Fig. 1. Schematic representation of the waveplate hinge model: long sections
(characterized by their Müller matrices � and sectional PMD vectors ��� )
joined by waveplate-like hinges (characterized by their Müller matrices � ).
Depending on the system, an additional hinge may be present at the input (before
the first long section).

a biased distribution so that the events of interest occur more
frequently than they would normally, and correct for the bias
using the likelihood ratios. Generally speaking, choosing an ap-
propriate biasing distribution is the most difficult aspect of IS.
In contrast to previously studied models of PMD generation, to
the best of our knowledge it is not possible to identify analyt-
ically an effective biasing distribution for the waveplate hinge
model, since the equations that govern the growth of PMD are
substantially more complicated. Therefore, in this work we em-
ploy the cross-entropy (CE) method, which finds a good biasing
distribution iteratively. We then use the resulting distributions in
importance-sampled MC simulations to compute the statistics
of the PMD-induced outages in the waveplate hinge model.

The layout of this paper is as follows. Section II describes the
physical model, and Section III discusses outage probabilities
and the noncompliant capacity ratio (NCR) in the waveplate
hinge model. Section IV introduces the CE method and applies
it to reconstructing the DGD distributions. Section V discusses
the results of extensive numerical simulations, and Section VI
provides some additional remarks.

II. WAVEPLATE HINGE MODEL OF PMD

As shown in Fig. 1, the hinge model represents a transmis-
sion link as a finite sequence of fiber sections with fixed proper-
ties, connected by variable “hinges,” each with negligible DGD.
Consider a system with birefringent sections and
hinges, with one hinge between any two sections. At each fre-
quency, the total PMD for a finite number of sections is deter-
mined by the PMD concatenation equations. The PMD vector

after the st section is [2]

(1)

and the total PMD vector is . Here, is the individual
PMD vector of the th section, is the rotation matrix of
the st section and is the rotation matrix of the th
hinge. In particular [2]

(2)

where is the 3 3 identity matrix, , the
superscript denotes matrix transpose, and

For birefringent sections whose frequency dependence is linear,
the rotation axis points in the direction of [2], but this

is not true for more general polarization elements. Each of the
sectional PMD vectors is assumed to be uniformly oriented
on the Poincaré sphere but is frozen in time, at least over the
time scales of interest. In addition, the DGD of
each section is assumed to obey a Maxwellian distribution with
respect to frequency.

The only temporal variation in (1) arises from the hinge rota-
tion matrix . Previous studies of the statistical properties of
the isotropic hinge model have assumed that each hinge acts as
a polarization controller that scatters the previous PMD vector
evenly across the Poincaré sphere. Experimental studies do not
seem to support this assumption of the isotropic hinge model,
however, in that the hinge output appears to be far from uni-
form [12]. In fact, in Appendix I, we show that, even if each
hinge were a rotator whose rotation axis varied uniformly across
the Poincaré sphere and whose rotation angle was uniform, the
output would be far from uniformly distributed. Thus, it appears
difficult to see how a perfectly uniform scatterer could arise
physically.

It is known that any polarization element acts as a waveplate
with a fixed axis and variable rotation for small changes of the
parameters that control its output, such as those induced by tem-
perature [13]. Indeed, the experimental data in [12] seems to be
consistent this prediction. Motivated by these considerations, in
what follows we will assume that each hinge is characterized
by a variable rotation about a fixed rotation axis. The rotation
matrix then takes the same form as , namely,

(3)

We will also assume that the orientation of each hinge axis is
arbitrarily distributed on the Poincaré sphere, that hinge axes
in different wavelengths bands are statistically independent of
one another, and that the rotation angles about each hinge axis
are uniform . By analogy with the behavior of a wave
plate, in [14] we referred to this model as the waveplate hinge
model. Note, however, that, unlike ordinary waveplates, the ro-
tation axes are not confined to the equator of the Poincaré
sphere. Thus, one should think of the hinges as generalized wave
plates.

PMD-induced power penalties depend not only on the total
DGD , but also on the power splitting ratio , a quantity in

defined as the fraction of the pulse energy aligned with
the fast principal state of polarization (SOP), namely [2],

(4)

Here, is the unit-length vector in the direction of the
PMD vector, and is the unit-length Stokes vector identifying
the SOP of the optical signal. The vectors and can be eval-
uated either at the input of the system or at the output. In many
cases, the SOP of the signal launched at the input is fixed, and
we assume that this is the case throughout this paper. Since the
result of (1) gives the PMD vector at the output, however, the
Stokes vector at the output is also needed in order to evaluate
(4). Fortunately, it is easy to show that satisfies its own con-
catenation equation

(5)
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where indicates the SOP of the signal at the input of the th
section.

III. OUTAGES IN THE WAVEPLATE HINGE MODEL

We compute outage probabilities for both the isotropic and
the anisotropic hinge model with the outage map method [20]. In
this method, for each particular frequency band, the first-order
PMD-induced outage probability is taken to be

(6)

where is the joint PDF of the total DGD and the
power splitting ratio , and is the region of the -plane
in which an outage occurs. The regions , which depend on
the outage specifications, transmission format and receiver de-
sign, have been determined from extensive numerical simula-
tions [21]. Here and below, is a multi-component random vari-
able that collects the “frozen” degrees of freedom of the trans-
mission link, i.e., all sectional PMD vectors, the rotation axes
and angles of all sectional Müller matrices, and all the hinge ro-
tation axes.

In previous calculations of the outage probability [11], [20],
the power splitting ratio and the DGD were assumed to
be statistically independent, and was taken to be uniformly
distributed. In such a case, one of the integrals becomes trivial,
and the outage probability is

(7)

where is the width of the outage region at a fixed
value of DGD (i.e., the range of values of for which the
PMD-induced penalty exceeds a prescribed value when the
DGD has the value ). A good approximation for can be
written as [20]

(8)

where , while is the bit interval, and and
where the values of the parameters and were determined
from extensive numerical simulations.

The use of (7) in previous works had been justified by in-
voking the presence of a polarization scatterer with character-
istics similar to those of an isotropic hinge at the input of the
system. The validity of this approximation may be questioned,
however. First of all, some systems may not have a module at the
input that acts as a polarization scatterer. Moreover, any polar-
ization-dependent module at the input is more likely to act like a
waveplate hinge, rather than a scatterer (again, see Appendix I).
In general, then, the probability distribution of cannot be ex-
pected to be uniform, especially for the waveplate hinge model.
We therefore calculate outage probabilities for the waveplate
hinge model using the more correct (6). The joint PDF is evalu-
ated using ISMC methods, as described in Sections IV –VI. For
the isotropic hinge model, the PDF of the DGD is obtained, as
described in [11].

Recall that both isotropic and anisotropic hinge models in-
validate the assumption that all frequency channels have iden-
tical outage probabilities, i.e., in a WDM system described by a

hinge model, each band will have its own value of outage prob-
ability. In other words, becomes itself a random quantity,
dependent on the particular values of the sectional PMD vec-
tors and hinge rotation axes of that wavelength band. (Note that
here, as in [20], different wavelength bands are defined to be suf-
ficiently separated in frequency that their PMD is statistically
uncorrelated. Hence, a wavelength band may contain one ore
more channels depending on the channel separation.) To char-
acterize this effect, an additional measure, termed the NCR, was
introduced in [20]. The NCR is defined as the probability that
a given wavelength band is not compliant with a given outage
specification:

(9)

where the indicator function is 1 if ,
and 0 otherwise, and the expectation value is now taken over all
possible realizations of the sectional PMD vectors, Müller ma-
trices, and hinge rotation axes, each weighted with the appro-
priate distribution. In the traditional model of PMD, all chan-
nels are statistically identical, and therefore, all are either com-
pliant or noncompliant, and the NCR is either 0 or 1. This is not
the case, however, if PMD is described by a hinge model [20].
In Section V, we will show that the NCR of the isotropic hinge
model and that of the waveplate hinge model differ significantly.

IV. IS-CE FOR THE DGD

To efficiently calculate the PDF of the DGD and the corre-
sponding outage probabilities in the waveplate hinge model, we
use a combination of IS and the CE method. General references
on the CE method are [22]–[24], while the use of IS for studying
PMD is described in [15]–[19]. In summary, our method com-
prises a two-step approach: first, one searches for good biasing
distributions by iteratively minimizing their CE distance
from the optimal biasing distribution; then one implements IS
using the distributions obtained. Appendix VI gives a concise in-
troduction to IS and CE, as adapted and tailored for the problem
at hand. Shortly, we discuss the detailed implementation of the
method for the anisotropic hinge model.

Recall that the total DGD depends on the hinge rotation
angles via the matrices . Recall also
that, the hinge rotation angles are the only variables that change
with time over the time scales of interest. One way to implement
IS to compute the PMD-induced outage probability for a given
wavelength band (i.e., for a given set of “frozen” parameters

) is then to bias the set of hinge rotation angles toward the
choice that maximizes the total DGD
[15]. Thus, the problem is to find these biasing angles . Once
these angles are known, one can use some biasing distribution
to generate angles preferentially biased toward them. Here, we
will use

(10a)

with

(10b)
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The value reproduces the unbiased distribution
, whereas values concentrate around .

(Other choices of the biasing distributions are also possible, as
the effectiveness of IS does not seem to be very sensitive to the
particular choice [15].) We refer to as the biasing strength
parameter.

In previous studies of PMD [15], we were able to identify the
optimal biasing directions analytically, but this does not seem
possible for the waveplate hinge model. As a consequence, here
we find by solving an optimization problem

(11)

To solve (11), we conduct an iterative stochastic optimization,
namely, we progressively narrow the MC samples around the
choice of angles that yield the largest DGD. The algorithm pro-
ceeds as follows:

1) Set , and .
2) Generate samples distributed according

to , with . Let and

(12)

3) If (i.e., if no further increase has been obtained),
or if some other stopping criterion is satisfied (e.g.,

), stop. Otherwise, set , where is the
index such that ; increase to and
reiterate from step 2).

Note that the above search algorithm does not use CE since in
this case one cannot easily solve (27).

In general, one is interested in the most likely configurations
that produce the event of interest. Here, however, the angles are
evenly distributed in , and therefore, every configuration
is equally likely. Hence, we can simply look for the collection
of rotation angles that maximizes the total DGD. Note that the
algorithm assumes that there is only one choice of angles that
produces the largest DGD. This condition is verified in all but
an extremely small fraction of cases.

As usual, to correctly account for the contribution of
each sample when performing ISMC simulations one
needs to use the importance function, or likelihood ratio,

, where as before is the unbi-
ased distribution. In particular, for the biasing distribution [see
(10a) and (10b)], it is

Another result needed in the simulations is the set of values of
the biasing strength parameter that are necessary to obtain
given target values of total DGD. (In general, these values do

Fig. 2. PDF of the total DGD as computed by the IS-CE method and by stan-
dard MC simulations with �� samples. In the IS-CE simulations, 350 000 sam-
ples were used to search for the optimal biasing angles, 250 000 samples to
find the optimal biasing strengths (50 000 samples for each iteration) and an-
other 250 000 samples in the multiple ISMC simulations to reconstruct the PDF
(50 000 samples for each biasing distribution). The corresponding values of �
are [1.00 1.83 2.70 4.12 6.61]. A Maxwellian distribution with the same mean
DGD is also shown for comparison.

not coincide with the used in the stochastic optimization al-
gorithm described above.) To determine these values we use the
CE method. Specifically, we use the distributions [see (10a) and
(10b)] as the family of biasing distributions, and we search for
the value of by following the steps described in Section VI.
Remarkably, in this case, (27) can be solved exactly, as we show
in Appendix II, yielding (13), shown at the bottom of the page,
where in the right-hand side of (13) is the value used to draw
the samples . Note that the computation of the

’s using (13) is affected by random sampling. Moreover, since
each value of is used in the next stage of the iteration, succes-
sive values will be more affected by error. Hence, a sufficiently
large number of samples should be used to ensure the accuracy
of the results.

Summarizing, the specifics of the overall IS-CE algorithm for
computing the PDF of the total DGD are as follows.

1) Find the set of rotation angles that maximizes the total
DGD using the optimization method described above.

2) Choose a quantile parameter and a limiting value
of the PDF of the DGD. (For example, in the simulations
described in Fig. 2 below, and
were used.) Set the iteration counter to 0, let
(i.e., start with an unbiased distribution) and .

3) Generate samples distributed according
to . Compute for and let

be the th sample quantile of the DGD. (That

(13)
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Fig. 3. PDF of the power splitting ratio for the sample transmission link that
results in Fig. 2. The solid line shows the case in which a waveplate hinge is
present at the input, with rotation axis �� � ��������������������	��
 ,
while the dashed line shows the case without a hinge at the input. The input SOP
was �� � ����� �
 .

is, is the value such that a fraction of samples have
DGD greater or equal than .)

4) If or , proceed to step
5). Otherwise, compute from (13), with
for those samples in the th quantile and
otherwise; increase to and reiterate from step 3.

5) Perform a multiple IS simulation [15], [25] with biasing
parameters to obtain the full PDF of the DGD.

To validate the method, we considered as an example a ran-
domly selected wavelength band in a transmission link of ten
sections with mean DGD of 3 ps. The corresponding results are
shown in Figs. 2 and 3. The sample sectional PMD vectors and
rotation axes and angles for each long section are given in Table I
and the sample hinge rotation axes in Table II. Note that these
values were only used to produce Figs. 2 and 3, and not for the
system simulations discussed in Section V. We reconstructed
the PDF of the DGD, , both by using the IS-CE method
and by using a standard MC simulation. (Here and below, the
rotation axis and angle of each frozen section were taken to be
uncorrelated with the sectional PMD vector, to model the case
of long fiber sections.) The results are shown in Fig. 2. As is seen
from the figure, excellent agreement exists between the results
of both simulations. For the same number of samples, however,
use of the IS-CE method results in an efficiency improvement of
several orders of magnitude over standard MC simulations. Note
that the values of the biasing strengths are affected by random
sampling error; a sufficient number of samples must therefore
be used in the CE iteration to ensure the accuracy of the results.

As explained in Section III, in the waveplate hinge model
the DGD does not completely determine the outage probability,
as the power splitting ratio cannot be taken to be uniformly
distributed in the waveplate hinge model. To illustrate this, we
also reconstructed the distributions of for the transmission
link in Fig. 2. The resulting distributions are shown in Fig. 3:
one is for a system with a waveplate hinge at the input, and
the other for a system with no hinge at the input. In neither
case is the distribution uniform, however. As a consequence,
one must use (6) rather than (7) to compute . Fortunately,

the IS-CE algorithm above can be applied equally well to (6),
as we describe below.

A possible variant is to use a different biasing strength pa-
rameter for each hinge angle. This may in principle result in a
more efficient method for some specific configurations. To im-
plement this variant, one would take the parameter vector to be

and then use CE to find
the optimal values of the angles and biasing strengths simul-
taneously. Unfortunately, doing so results in a system of non-
linear equations that is difficult to solve. Moreover, the use of
this strategy did not noticeably improve the efficiency of the cal-
culations of the NCR in the tests we performed.

V. SYSTEM SIMULATIONS AND DISCUSSION

We now apply the methods described above to numerical
simulations aimed at computing outage probabilities and NCR
for the waveplate hinge model, and we compare these to the
corresponding results for the isotropic hinge model. We sim-
ulate a system with a transmission rate of 40 Gb/s and an al-
located power margin of 1 dB. We use the outage map given
in Fig. 2(a) of [21] for a nonreturn-zero (NRZ) format with a
10%–90% rise time of , and a target bit-error-ratio (BER)
of . For the isotropic hinge model, these specifications re-
sult in and ps in (8).
For the waveplate hinge model, we employ ISMC simulations
to evaluate (6) using the algorithm given in Section IV, the only
difference being in step 5), where one computes a multiply im-
portance-sampled estimator for the outage probability as

(14)

Here, is the th sample obtained from the th biasing
distribution, and are the corresponding DGD and
splitting ratio, the are the IS weights [15], [25], and the in-
dicator function is 1, if lies in the outage region
[21], and it is 0, otherwise. In practice, was taken to
be 1 if and 0, otherwise, where was a polyno-
mial fit to the boundary of the outage region in Fig. 2(a) of [21]:

.
As an alternative to using (14), the methods of Section IV

could be used to compute the joint PDF of and . Doing so
would clearly be more computationally laborious, but would
allow one to rescale the joint PDF to different values of mean
DGD, in a similar way as described in [11]. Since here we com-
pute NCR values for only a few mean DGDs, however, it was
not advantageous for us to use this approach.

Since each frequency band has its own statistically indepen-
dent set of “frozen” parameters (sectional PMD vectors, rotation
matrices for the long sections, and rotation axes for the hinges),
frequency averages are by definition ensemble averages. For
both the isotropic and the anisotropic models, the NCR is then
estimated via MC simulations of (9) as

(15)
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TABLE I
SECTIONAL PMD VECTORS AND MÜLLER MATRIX PARAMETERS FOR FIGS. 2 AND 3

TABLE II
HINGE ROTATION AXES FOR FIGS. 2 AND 3

where is the number of sample frequency bands and is the
th MC sample and for the anisotropic model is estimated

using (14). With regard to the ergodic property and the relation
between time averages and frequency averages, we should re-
mark that nothing here deviates from the usual assumptions in
the hinge model, and therefore the same arguments apply re-
garding the temporal scales that limit the applicability of the
model (e.g., see [1] and [11]).

Fig. 4 compares the value of the NCR predicted by the
isotropic hinge model (dotted-dashed lines) with that predicted
by the waveplate hinge model (solid lines), for links composed
of six sections with a mean DGD 2.5 ps, and for links of ten
sections with mean DGD 3 ps, respectively. In both cases,

sample bands were used in the calculation of
the NCR, with MC samples for each iteration
step and for each biasing distribution, and with
and . Note how the NCR for the waveplate
hinge model is almost always significantly smaller than the
NCR for the isotropic hinge model. Note also that assuming
that the power splitting ratio is uniformly distributed yields
incorrect results (dashed lines), at least for the numbers of
sections considered. For comparison purposes, we also show
(dotted lines) the upper bound that was used in [14], obtained
by letting for all . Here and in all numerical
simulations, the input SOP was taken to be .
Since the distributions of sectional PMD vectors and hinge axes
are uniform over the Poincaré sphere, however, the choice of
input SOP has no effect on the NCR.

Fig. 5 shows the value of the NCR obtained when a waveplate
hinge is added before the input of the line. Comparison of Figs. 4
and 5 seems to indicate that the results are not very sensitive to
the presence of this element. We also note that the NCR values
for the isotropic and anisotropic hinge model often cross each
other in the bottom left part of Figs. 4 and 5. These portions of
the curves are not very interesting, however, because they have
such large values of as to be impractical. (For example,

Fig. 4. NCR as a function of ��� �� �, for fiber links of six sections with
mean DGD of 2.5 ps and for those of ten sections with mean DGD of 3 ps,
respectively. The solid lines are the NCR of the waveplate hinge model, with
� computed by using (6), the dashed lines are the approximation assuming
� is uniformly distributed, and the dotted lines are the upper boundary [14]. The
dotted-dashed lines are the NCR in the isotropic hinge model.

means that noncompliant bands suffer outages for
more than a month per year.) Moreover, by definition a small
NCR means that only a small fraction of wavelength bands is
noncompliant. Therefore, estimating very small values of NCR
incurs its own kind of rare event simulation problem.

To learn more about the difference between the outage statis-
tics predicted by the isotropic and the waveplate hinge models,
we also look at the ensemble average of the PDF of the DGD,

, which is the DGD distribution aver-
aged over all frequency bands. As usual, we estimate this quan-
tity using the sample mean:

(16)

where is the number of frequency bands, and for each band
is computed using the methods described in
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Fig. 5. Same as Fig. 4, except for the additional presence of a waveplate
“hinge” at the system input.

Fig. 6. (Inset) Ensemble average of the PDF of the DGD in the isotropic model
(squares) and in the waveplate model (circles), as well as the Maxwellian dis-
tribution (solid line). (Main plot) Histogram showing the distribution of the KL
distance between the Maxwellian PDF and the PDF of the DGD in both hinge
models.

Section IV. The simulation results (see the inset of Fig. 6)
show that the predicted by both the isotropic and the
anisotropic hinge models agree very well with a Maxwellian
distribution having the same mean. This result, which could
have been expected, might appear at first to be at variance with
the result that the NCR for the anisotropic hinge model is so
much smaller than that of the isotropic hinge model.

To reconcile these two results one must look at the deviations
from the ensemble average. Recall that a measure of how close
two distributions are to one another is given by the Kullback--
Leibler (KL) distance. We therefore compared the KL distance
from the Maxwellian distribution to the DGD distributions asso-
ciated with each hinge model. [Specifically, we compute (23),
where and are, respectively, the PDF of the DGD and the
Maxwellian distribution.] The histogram of the resulting KL
distances is shown in in Fig. 6. It is immediately seen that there
is more variability associated with the DGD distributions for the
waveplate hinge model than for the isotropic hinge model, i.e., at
any given frequency band, the PDF of the DGD for the isotropic
hinge model is expected to be closer to the Maxwellian distribu-
tion than the corresponding PDF for the waveplate hinge model.

Fig. 7. PDF tails of the DGD for seven randomly selected frequency bands of
the waveplate (dashed) and isotropic (solid) hinge models. The vertical line indi-
cates the cutoff value � � ���� ps, below which no signal launch polarization
can produce penalties exceeding 1 dB. Also shown (solid line with asterisks) is
the average Maxwellian tail.

As a further example, Fig. 7 shows the tails of the DGD distri-
bution for seven randomly selected bands for both the isotropic
and anisotropic model.

To understand how the difference in the PDFs affects the
NCR, note that, for a given outage specification , if the
outage probability associated with the average PDF is
not compliant, then a larger fraction of DGD distributions gen-
erated by the waveplate hinge model is likely to remain com-
pliant than those generated by the isotropic hinge model, thus
resulting in a smaller value of NCR. This is consistent with the
NCR curves in Fig. 4: the waveplate hinge model produces a
smaller NCR at the outage probabilities of practical interest.
Conversely, when the outage probability associated with
complies with , the family of distributions with larger en-
semble variance then has more members noncompliant with it,
and, therefore, results a larger NCR. This situation, however,
only happens at very large values of , and correspondingly
small values of NCR (not distinghisable in Figs. 4 and 5).

Another way to interpret this result is to observe that the more
randomization is present, the closer the DGD distribution can be
expected to be to Maxwellian. A comparison of different types
of hinges, or rotators (see Appendix I) shows that waveplate
hinges are far from random. Surprisingly, however, even a ro-
tation about a random axis through a random angle does not
produce an output distribution that is uniform on the Poincaré
sphere. This shows that a perfect scatterer, which is the type of
hinge assumed for the isotropic hinge model, is a highly ideal-
ized object.

VI. CONCLUSION

We have studied the outage statistics of the waveplate hinge
model in detail, and reported on an IS implementation that uses
the CE method to determine the biasing strategy. This method
allows one to compute the outage probability without assuming
a uniform distribution of the power splitting ratio. Furthermore,
we have demonstrated that the outage statistics in the waveplate
hinge model differ significantly from those in the isotropic hinge
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Fig. 8. Distribution of the output SOP (solid curves) from a generalized
waveplate, for three different hinge axes. As expected, in each case, the
output SOP is uniformly distributed on a circle. The solid arrow shows the
input SOP �� � ��� �� �� , and the dashed arrows show the three rotation
axes: �� � ��������� ��	
����
�
� � �� � �����
������������� , and
�� � ����������
������� .

model and, in particular, have shown that the waveplate hinge
model predicts a smaller NCR when the specified outage prob-
ability is in typical ranges of interest.

To obtain these results we developed and implemented a
hybrid variance reduction technique (VRT) that combines IS
with CE. We should note that other VRTs have also recently
been applied to simulate rare PMD events, such as the multi-
canonical MC (MMC) method [26], [27] and the Markov chain
MC (MCMC) method [28]. The implementation of these other
methods may be somewhat simpler. Nevertheless, the use of IS
has has certain advantages. For instance, when a pure IS can be
implemented, it usually needs much less tailoring than iterative
methods, and it is usually more computationally efficient [18],
[27]. Moreover, IS lends itself naturally to the computation of
standard deviations for its estimators [15], which is usually a
more difficult task with MMC or MCMC [27].

While the waveplate hinge model was formulated in an at-
tempt to more properly model the behavior of PMD for installed
fiber links, it is of course possible that such links are not exactly
described by either the isotropic or waveplate hinge model. The
results we have presented here, however, indicate that the sta-
tistics of PMD-induced outages strongly depend on the specific
details by which PMD is physically generated in the system, and
that as a result, the issue of determining the correct model with
which to describe PMD in actual installed systems deserves fur-
ther study. We hope that additional experimental data will be-
come available in the near future to allow the development of a
more refined hinge model that can produce accurate predictions
of the outage probabilities of installed systems.

Fig. 9. Distribution of the output polarization states for a random rotator. The
input vector is the same as in for Fig. 8.

APPENDIX A
OUTPUT DISTRIBUTION OF RANDOMLY ROTATED VECTORS

Here, we compare the behavior of different models of polar-
ization “hinges.” Specifically, we consider the following three
models.

1) A generalized waveplate rotator that rotates the input
vector about a fixed axis through a random angle. This is
the physical model of hinges considered in this work.

2) A purely random rotator that rotates the input vector about
a random axis through a random angle, with the axis uni-
formly distributed on the sphere and the angle uniform in

.
3) A perfect rotator that distributes the output vector uni-

formly on the Poincaré sphere.
We reconstruct the distributions of the output polarization

states on the Poincaré sphere using MC simulation for each type
of hinge, with a fixed input state . A million sam-
ples were used in each simulation.

As is expected, the waveplate hinge (case 1) uniformly dis-
tributes the output vectors on a circle of the Poincaré sphere (see
Fig. 8). It might be surprising, however, that, even if the rotation
axis and angle are randomized (case 2), the output vectors are
heavily concentrated around the direction of the input vector,
and are hence far from being uniformly distributed. This phe-
nomenon, illustrated in Fig. 9, can be understood by realizing
that the rotated output will coincide with the input for any ori-
entation of the rotation axis when the rotation angle is 0 or ,
whereas an output in the opposite direction can only be realized
when the rotation axis is orthogonal to the input and the rotation
angle is exactly .

In fact, it can be shown that, to produce a uniform output
distribution (case 3), in addition to uniformly randomizing the
rotation axis on the Poincaré sphere, one must draw the ro-
tation angle for each sample according to the nonuniform
distribution [29]

(17)
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where . These results provide additional evidence that
isotropic output is difficult to achieve in practice, and that, con-
sequently, the isotropic assumption appears to be unrealistic.

APPENDIX B
IMPORTANCE SAMPLING AND CROSS-ENTROPY

Suppose is a -dimensional random variable with PDF
, and we are interested in the probability that a mea-

surable function of , say , falls in some region . In our
case, collects the hinge rotation angles, and is the DGD
at the output. The quantity can be expressed as

(18)

where is the volume element in and
is the indicator function, defined as for ,

and otherwise. One can estimate this probability
using a standard MC estimator as

(19)

where is the total number of samples and
are independent identically distributed (i.i.d.) samples drawn ac-
cording to the distribution . It is easy to see that .
If , however, the estimate becomes impractical due to the
large number of samples needed. IS can often be used to resolve
this problem [15]. IS works by rewriting (19) as

(20)

where is the biasing distribution, is
the importance function, or likelihood ratio, and denotes
expectation values with respect to . One can then estimate

by

(21)

where samples are drawn according to .
The main issue with IS, of course, is to design a good biasing

strategy. To do so, one must find a biasing distribution that
causes samples to fall in the region of interest more frequently
than would happen normally. An analytical formula for a good
biasing distribution for the anisotropic hinge model has not been
found. It is well known that an optimal biasing distribution exists
in principle

(22)

This choice is not practical, however, as it requires knowledge
of the sought-after probability . One can, however, find a good

biasing distribution by requiring it be “close” to the optimal bi-
asing distribution, in terms of some measure of distance. An es-
pecially convenient way to do so is to minimize the KL distance
[30], which for two functions and is defined as

(23)

which is also known as the cross-entropy between two proba-
bility distributions. (The KL distance is not a true metric; for ex-
ample, it is not symmetric.) Here, we take and

. Since the first integral on the right-hand side of
(23) is fixed, minimizing the cross-entropy between and

is equivalent to maximizing . In
turn, recalling (22), this problem is equivalent to maximizing

.
Suppose that, as is the case in practice, the potential biasing

distributions for are selected from a parameterized family
, where is a vector of parameters and is the

corresponding parameter space, and let the unbiased distribu-
tion be denoted by . In this case, one must look
for the member of this family that is closest to the optimal distri-
bution. Based on the above discussion, one must then maximize
the integral

(24)

This is usually done numerically. Because the optimal biasing
distribution is typically far from the unbiased distribution, how-
ever, the member of the family that is closest to optimal is also
likely to be far from . Thus, determining the best choice for

also becomes a rare event simulation. The problem, of course,
is that the region of interest is generally far from the region
in sample space where the unbiased distribution is large.

The solution to this problem is to avoid attempting to jump
to the region directly, but rather to use a sequence of inter-
mediate regions that reach the desired region in a series of
steps. Let be the integral in (24) with replaced by .
Starting with a biasing parameter (i.e., with the unbi-
ased distribution), one uses MC sampling to minimize the CE
distance between the parametrized distribution and the optimal
distribution that reaches . This step, which is done by finding
the maximum of over this first set of samples, will give
a biasing parameter . One then uses this value to define a
biasing distribution, and performs an MC simulation with this
distribution to minimize the CE distance between the parame-
trized distribution and the optimal distribution that reaches .
Of course, since a biasing distribution is being used, each step of
the procedure is an ISMC simulation of a stochastic optimiza-
tion program, i.e., at step , one must compute

(25)
where

(26)
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and where are i.i.d. samples generated according
to . The optimal biasing distribution then can be adap-
tively determined by performing the following steps [22].

1) Set and the initial parameter .
2) Generate MC samples according to .
3) Solve (25) to find .
4) If the iteration has converged (see [22] and below), stop;

otherwise, increase to and reiterate from step 2).
Once the iteration has converged, one can then perform ISMC
simulations using the biasing distribution .

The regions above are defined implicitly in terms of de-
creasing levels of probability. A practical alternative is to de-
fine the regions in terms of sample quantiles of some quan-
tity of interest [22]. For example, if the goal is to pro-
duce large values of DGD, at each iteration, we can define the
region as those parts of sample space that produce the largest
fraction, e.g., 1%, of all of the randomly generated DGD sam-
ples. In this way, the iteration systematically moves to larger
and larger values of DGD. The iteration is then considered to
have converged when the sample quantiles cross some prede-
fined threshold, or when the probability associated with that
DGD value is sufficiently small.

One can think of CE as an adaptive IS method [31], [32] in
which the KL distance is the measure used to do the optimiza-
tion. A major issue associated with the algorithm is of course
how to accomplish step 3). Solving (25) can be complicated
in general. It may therefore seem that one has simply traded
the original problem for an equally difficult one. If the func-
tion is convex and differentiable, however, the solutions
of (25) can be obtained by solving a system of equations [22]

(27)

which, in many important applications, can be solved analyti-
cally. In other words, a key advantage of the CE method is that,
for a wide class of distributions, the set of parameters that mini-
mizes the KL distance can be found straightforwardly—i.e., the
parameter update can be done explicitly. As we show in next
section, this is indeed the case when applying this method to
calculate the PDF of the DGD. Therefore, in our case, the use
of CE does result in a significant step forward toward the solu-
tion of the problem.

APPENDIX C
CROSS-ENTROPY MAXIMIZATION STEP FOR THE DGD

Here, we outline the solution of the optimization problem (27)
for the waveplate hinge model, which determines the optimal
value of the biasing strength in order to obtain a desired value
of total DGD.

When (10a) and (10b) are substituted into (27), one obtains

(28)

where as before, is the likelihood ratio, and is the
actual value of used to draw the samples. Simple manipulation
of (28) yields

(29)

which can be solved immediately for , yielding (13).
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