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The inverse scattering transform for the focusing nonlinear Schrödinger equation with

non-zero boundary conditions at infinity is presented, including the determination of

the analyticity of the scattering eigenfunctions, the introduction of the appropriate

Riemann surface and uniformization variable, the symmetries, discrete spectrum,

asymptotics, trace formulae and the so-called theta condition, and the formulation

of the inverse problem in terms of a Riemann-Hilbert problem. In addition, the

general behavior of the soliton solutions is discussed, as well as the reductions to

all special cases previously discussed in the literature. C© 2014 AIP Publishing LLC.

[http://dx.doi.org/10.1063/1.4868483]

I. INTRODUCTION

The nonlinear Schrödinger (NLS) equation,

iqt + qxx − 2ν(|q|2 − q2
o )q = 0 (1.1)

(where ν = − 1 and ν = 1 denote the focusing and defocusing cases, respectively), is a universal

model for the evolution of the complex envelope of weakly nonlinear dispersive wave trains (see Ref.

14 for a derivation of the NLS equation from a generic wave equation). As such, it appears in many

different physical contexts, such as deep water waves, optics, acoustics, Bose-Einstein condensation,

etc. The equation has been studied extensively over the last 50 years (e.g., see the monographs in

Refs. 4, 5, 20, 32, and 38 and references therein).

In this work we solve the initial value problem for the focusing NLS equation [namely, (1.1)

with ν = − 1] with the following non-zero boundary conditions (NZBCs) as x → ± ∞:

lim
x→±∞

q(x, t) = q± , (1.2)

with |q±| = qo �= 0. We do so by developing the appropriate inverse scattering transform (IST). The

additional term −2q2
o q in (1.1) can be removed by the simple rescaling q̃(x, t) = e2iq2

o t q(x, t), and

was added so that the boundary conditions (BCs) (1.2) are independent of time.

The IST for the focusing case with zero boundary conditions (ZBCs) was first developed in

Ref. 44, while the IST for the defocusing case with non-zero boundary conditions (NZBC) was first

developed in Ref. 45. Both cases have since been studied extensively. On the other hand, there are

almost no known results on the IST for the focusing case with NZBCs. We believe there are two

main reasons for this: (i) The technical difficulties resulting from the NZBCs; (ii) The presence of

the modulational instability (MI) — known as the Benjamin-Feir instability12, 13 in the context of

water waves. We discuss each of these issues in turn.

With regard to the technical difficulties, we note that, even for the defocusing case, the IST with

NZBCs (which has been well studied) still presents several open questions.15, 19 For the focusing case

with NZBCs, the only study of IST is Ref. 30, which only contains partial results. (In particular, no

proof of analyticity was given, no Riemann surface and uniformization were used, the behavior at the

branch points was not studied, no trace formulae or theta conditions were provided, symmetries were
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not studied in full, the inverse problem was not formulated in terms of a Riemann-Hilbert problem.)

Moreover, and most importantly,30 only considered the case in which limx→ − ∞q(x, t) = limx→∞q(x,

t) — i.e., the case in which the potential exhibits no asymptotic phase difference. Therefore, the

IST in Ref. 30 only applies to a reduction of the full boundary conditions (1.2) considered here.

As a result only purely imaginary discrete eigenvalues are included in the theory of Ref. 30. Partial

results were also recently obtained in Ref. 24 to study the stability of the Peregrine soliton under

perturbations.

With regard to the MI, we refer to the excellent article by Zakharov and Ostrovsky43 for a

historical perspective and an overview of the subject. Within the context of the NLS equation,

the essence of the phenomenon is well-understood: the linearized stability analysis shows that a

uniform background is unstable to long wavelength perturbations. The MI has received renewed

interest in recent years, and has also been suggested as a possible mechanism for the generation of

rogue waves.33 In the framework of the NLS equation with periodic BCs, the underlying mechanism

for the MI is known to be related to the existence of homoclinic solutions.2, 21 The MI is far

from being an obstacle to the development of the IST, however; nor does it diminish the validity

of the IST. In fact, the reverse is true: the IST provides a tool to study the nonlinear stage of

modulational instability. Indeed, in recent studies41, 42 it was conjectured that the nonlinear stage of

the modulational instability is mediated precisely by the soliton solutions. The IST is the perfect

— indeed, the only — vehicle to test this hypothesis. We should also point out that, in the case of

periodic BCs, the inverse problem in the IST is not as well characterized as that on the whole line

case except for the class of finite-genus potentials.11 As a result, the IST for periodic BCs is not an

effective way to study initial-value problems for generic initial conditions except in an indirect way

as a limit of finite-genus initial conditions. Such limitation does not apply to the present theory for the

BCs (1.2).

II. DIRECT SCATTERING

A. Preliminaries: Lax pair, Riemann surface, and uniformization coordinate

Equation (1.1) with ν = − 1 is the compatibility condition of the Lax pair

φx = X φ , φt = T φ , (2.1)

with

X (x, t, z) = ikσ3 + Q , T (x, t, z) = −2ik2σ3 + iσ3(Qx − Q2 − q2
o ) − 2k Q , (2.2a)

σ3 =
(

1 0

0 −1

)

, Q =
(

0 q

−q∗ 0

)

. (2.2b)

It will be convenient to take φ(x, t, k) to be a 2 × 2 matrix throughout. Unlike the usual formulation

of the IST for the defocusing NLS equation with NZBC, we will formulate the IST in a way that

allows one to take the reduction qo → 0 explicitly.

The asymptotic scattering problem is φx = X± φ, where X± = ikσ 3 + Q± . The eigenvalues

of X± are ±i
√

k2 + q2
o . Since these eigenvalues are doubly branched, we introduce the two-sheeted

Riemann surface defined by

λ2 = k2 + q2
o , (2.3)

so that λ(k) is a single-valued function on this surface. The branch points are the values of k for which
√

q2
o + k2 = 0, i.e., k = ± iqo. (In the defocusing case, λ2 = k2 − q2

o , and the branch points are k =
± qo.) Letting k + iqo = r1 eiθ1 and k − iqo = r2 eiθ2 , one can write λ(k) = √

r1r2 ei�, where � =
(θ1 + θ2)/2 + imπ , and m = 0, 1, respectively, on sheets I and II. We now take − π /2 ≤ θ j < 3π /2

for j = 1, 2. With these conventions, the discontinuity of λ (which defines the location of the branch

cut) occurs on the segment i[ − qo, qo]. The Riemann surface is then obtained by gluing the two

copies of the complex plane along the cut. Along the real k axis we have λ(k) = ± sign(k)
√

q2
o + k2,
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where the plus/minus signs apply, respectively, on sheet I and sheet II of the Riemann surface, and

where the square root sign denotes the principal branch of the real-valued square root function.

It is convenient to define the uniformization variable

z = k + λ (2.4a)

(as in the defocusing case). The inverse transformation is

[−2ex]k = 1
2

(z − q2
o/z) , λ = 1

2
(z + q2

o/z) . (2.4b)

Finally, we let Co be the circle of radius qo in the complex z-plane. With these definitions: the

branch cut on either sheet is mapped onto Co. In particular, z( ± iqo) = ± iqo from either sheet,

z(0±
I ) = ±qo and z(0±

II ) = ∓qo; CI is mapped onto the exterior of Co; CII is mapped onto the interior

of Co; in particular, z(∞I) = ∞ and z(∞II) = 0; the first/second quadrants of CI are mapped

into the first/second quadrants outside Co, respectively; the first/second quadrants of CII are mapped

into the second/first quadrants inside Co, respectively. Note also zIzII = q2
o .

Unlike the defocusing case, Im λ is not sign-definite in the upper-half plane (UHP) and lower-

half plane (LHP). Instead, Im λ ≷ 0, respectively, in D+ and D− , where

D+ = {z ∈ C : (|z|2 − q2
o ) Im z > 0} , D− = {z ∈ C : (|z|2 − q2

o ) Im z < 0} . (2.5)

The two domains are shown in Fig. 1. As we show next, this property determines the analyticity

regions of the Jost eigenfunctions. With some abuse of notation we will rewrite all the k dependence

as dependence on z.

B. Jost solutions and analyticity

On either sheet of the Riemann surface, we can write the asymptotic eigenvector matrix as

Y±(z) = I + iσ3 Q±/(k + λ) = I + (i/z)σ3 Q± , (2.6)

where I denotes the 2 × 2 identity matrix, so that

X±Y± = Y± iλσ3 . (2.7)

FIG. 1. Left: The first sheet of the Riemann surface, showing the branch cut (red) and the region where Im λ > 0 (grey).

Right: The complex z-plane, showing the regions D± where Im λ > 0 (grey) and Im λ < 0 (white), respectively. Also shown

are the orientation of the contours for the Riemann-Hilbert problem and the symmetries of the discrete spectrum of the

scattering problem [namely, the zeros of s2, 2(z) (blue) and those of s1, 1(z) (brown)]. See text for details.
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For reference, note that

det Y± = 2λ/(λ + k) = 1 + q2
o/z2 =: γ (z) , (2.8a)

Y −1
± = (1/γ ) [I − (i/z)σ3 Q±] . (2.8b)

Let us now discuss the time dependence of the eigenfunctions. We expect that, as x → ± ∞,

the time evolution of the solutions of (2.1) will be asymptotic to that of the problem φt = T± φ,

with T± = −2ik2σ3 − iσ3(Q2
± + q2

o ) − 2k Q±. Note that Q2
± = −q2

o , implying T± = − 2k X± .

Therefore, T± and X± share the same eigenvectors. (This is not a coincidence, of course, because

the NLS equation (1.1) is the compatibility condition of the Lax pair (2.1), and the time independence

of the BCs (1.2) is equivalent to the condition [X± , T± ] = 0.) That is,

T±Y± = Y± (−2ikλσ3) . (2.9)

For reference, note that, in terms of the uniformization variable, 2kλ = 1
2
(z2 − q4

o/z2).

As usual, the continuous spectrum 
k consists of all values of k (on either sheet) such that

λ(k) ∈ R, i.e., 
k = R ∪ i[−qo, qo]. The corresponding set in the complex z-plane is 
z = R ∪ Co.

Hereafter we will omit the subscripts on 
, as the intended meaning will be clear from the context.

For all z ∈ 
, we can now define the Jost eigenfunctions φ ± (x, t, z) as the simultaneous solutions

of both parts of the Lax pair such that

φ±(x, t, z) = Y±(z) eiθ(x,t,z)σ3 + o(1) as x → ±∞ , (2.10)

where

θ (x, t, z) = λ(z)(x − 2k(z)t) . (2.11)

We can subtract the asymptotic behavior of the potential and rewrite the first of (2.1) as (φ ± )x =
X± φ ± + �Q± φ ± , where �Q± (x, t) = Q − Q± . As usual, we introduce modified eigenfunctions

by factorizing the asymptotic exponential oscillations:

μ±(x, t, z) = φ±(x, t, z) e−iθ(x,t,z)σ3 , (2.12)

so that limx→ ± ∞μ± (x, t, z) = Y± . The ODEs for μ± can then be formally integrated to obtain

linear integral equations for the modified eigenfunctions:

μ−(x, t, z) = Y− +
x

∫

−∞

Y−eiλ(x−y)σ3 Y −1
− �Q−(y, t)μ−(y, t, z) e−iλ(x−y)σ3 dy , (2.13a)

μ+(x, t, z) = Y+ −
∞

∫

x

Y+eiλ(x−y)σ3 Y −1
+ �Q+(y, t)μ+(y, t, z) e−iλ(x−y)σ3 dy . (2.13b)

Using these integral equations, in Appendix A we show that, under mild integrability conditions

on the potential, the eigenfunctions can be analytically extended in the complex z-plane into the

following regions:

μ+,1, μ−,2 : D+, μ−,1, μ+,2 : D−, (2.14)

where the subscripts 1 and 2 identify matrix columns, i.e., μ± = (μ± ,1, μ± ,2). The analyticity

properties of the columns of φ ± follow trivially from those of μ± . Hereafter, we will consistently

use subscripts ± to denote limiting values as x → ±∞, whereas superscripts ± will denote the

regions D± of analyticity.
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C. Scattering matrix

Abel’s theorem implies that for any solution φ(x, t, z) of (2.1) one has ∂x (det φ) = ∂t (det φ) = 0.

Thus, since for all z ∈ 
 limx→±∞ φ±(x, t, z) e−iθσ3 = Y±, we have

det φ±(x, t, z) = γ (z) x, t ∈ R , z ∈ 
 . (2.15)

Letting 
o = 
\{± iqo} we then have that ∀z ∈ 
o both φ − and φ + are two fundamental matrix

solutions of the scattering problem. Hence

φ+(x, t, z) = φ−(x, t, z) S(z) , x, t ∈ R, z ∈ 
o . (2.16)

(Of course one could equivalently write φ − (x, t, z) = φ + (x, t, z) A(z), which is the traditional way

to introduce the scattering matrix, e.g., see Refs. 5 and 32.) For the individual columns:

φ+,1 = s1,1φ−,1 + s2,1φ−,2 , φ+,2 = s1,2φ−,1 + s2,2φ−,2, (2.17)

where S(z) = (si, j). Moreover, (2.15) also implies det S(z) = 1. The reflection coefficients that will

be needed in the inverse problem are

ρ(z) = s2,1/s1,1 , ρ̃(z) = s1,2/s2,2 , ∀z ∈ 
 . (2.18)

The omission of the time dependence for the scattering matrix in the above equations is not a

coincidence. Indeed, since φ ± are simultaneous solutions of both parts of the Lax pair, the entries

of S(z) are independent of time, as will be the norming constants. Also, using (2.16),

s1,1(z) = Wr(φ+,1, φ−,2)/γ , s1,2(z) = Wr(φ+,2, φ−,2)/γ , (2.19a)

s2,1(z) = Wr(φ−,1, φ+,1)/γ , s2,2(z) = Wr(φ−,1, φ+,2)/γ . (2.19b)

So s1, 1 is analytic in D+ , and s2, 2 is analytic in D− . As usual, however, the off-diagonal scattering

coefficients are nowhere analytic in general. One can also use the integral equations (2.13) to

write an integral representation for the scattering matrix. Such a representation, however, is not as

useful as in the case of ZBCs, since the exponential oscillations of the eigenfunctions cannot be

easily factored out. If desired a different, more useful integral representation can be obtained using

the methods of Ref. 19. Note also that det φ±(x, t, z) = 0 at z = ± iqo. As a result, generically

speaking the scattering coefficients have a pole at the branch points, as in the defocusing case.20

The behavior of the eigenfunctions and scattering matrix at the branch points is discussed in

Appendix B.

D. Symmetries

The symmetries for the IST with NZBCs are complicated by the fact that: (i) while with ZBCs

one only needs to deal with the map k �→ k*, here one must also deal with the sheets of the Riemann

surface. (ii) Unlike the case of ZBCs, after removing the asymptotic oscillations, the Jost solutions

do not tend to the identity matrix.

Recall λII(k) = − λI(k), and consider the following transformations compatible with (2.3): (1)

z �→ z* (UHP/LHP), implying (k, λ) �→ (k*, λ*) (same sheet); (2) z �→ −q2
o/z (outside/inside Co),

implying (k, λ) �→ (k, − λ) (opposite sheets). Both these transformations correspond to symmetries

of the scattering problem. Indeed, in Appendix C we show that

φ±(x, t, z) = −σ∗φ
∗
±(x, t, z∗) σ∗ , z ∈ 
 , (2.20)

where σ ∗ is defined in (C2). For the individual columns, this translates to

φ±,1(x, t, z) = σ∗φ
∗
±,2(x, t, z∗) , φ±,2(x, t, z) = −σ∗φ

∗
±,1(x, t, z∗) . (2.21)

Similarly,

φ±(x, t, z) = (i/z) φ±(x, t,−q2
o/z) σ3 Q± , z ∈ 
 . (2.22)
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For reference, note that

σ3 Q± =
(

0 q±
q∗

± 0

)

, (σ3 Q±)−1 =
(

0 1/q∗
±

1/q± 0

)

=
1

q2
o

σ3 Q± . (2.23)

We then have, for the columns:

φ±,1(x, t, z) = (iq∗
±/z) φ±,2(x, t,−q2

o/z) , φ±,2(x, t, z) = (iq±/z) φ±,1(x, t,−q2
o/z) . (2.24)

Of course one can also combine the results of the first two symmetries to obtain a relation between

eigenfunctions at z and −q2
o/z∗.

We now use these results to obtain the symmetries of the scattering coefficients. Recalling the

scattering relation (2.16) and using (2.20) we have, for all z ∈ 
,

S∗(z∗) = −σ∗S(z)σ∗ . (2.25)

We therefore have the following relations between the scattering coefficients:

s2,2(z) = s∗
1,1(z∗) , s1,2(z) = −s∗

2,1(z∗) . (2.26)

Similarly, from (2.16) and using (2.22) we have, for all z ∈ 
,

S(−q2
o/z) = σ3 Q− S(z) (σ3 Q+)−1 . (2.27)

Recalling (2.23) we then have, elementwise,

s1,1(z) = (q∗
+/q∗

−) s2,2(−q2
o/z) , s1,2(z) = (q+/q∗

−) s2,1(−q2
o/z) , (2.28)

Finally, combining (2.25) and (2.27) we have

S∗(z∗) = −σ∗(σ3 Q−)−1 S(−q2
o/z) σ3 Q+σ∗ . (2.29)

Elementwise, this is

s∗
1,1(z∗) = (q+/q−) s1,1(−q2

o/z) , s∗
1,2(z∗) = −(q∗

+/q−) s1,2(−q2
o/z) , (2.30a)

s∗
2,1(z∗) = −(q+/q∗

−) s2,1(−q2
o/z) , s∗

2,2(z∗) = (q∗
+/q∗

−) s2,2(−q2
o/z) . (2.30b)

The above symmetries yield immediately the symmetries for the reflection coefficients:

ρ(z) = −ρ̃∗(z∗) = (q−/q∗
−) ρ̃(−q2

o/z) = −(q∗
−/q−) ρ∗(−q2

o/z∗) ∀z ∈ 
 . (2.31)

Note that:

(i) Even though the above symmetries are only valid for z ∈ 
, whenever the individual columns

and scattering coefficients involved are analytic, they can be extended to the appropriate regions

of the z-plane using the Schwartz reflection principle.

(ii) Unlike the case of ZBCs, and unlike the defocusing NLS equation with NZBCs, here even the

symmetries of the non-analytic scattering coefficients involve the map z �→ z*. This is because

here the continuum spectrum is not just a subset of the real z-axis.

(iii) The first involution, z �→ z*, is the same as for ZBCs. The second one, z �→ −q2
o/z, simply

expresses the switch from one sheet to the other. Since this transformation does not affect k,

if f(k) is any single-valued function of k, one has fI(k) = fII(k). That is, f, when expressed as

a function of z, satisfies the symmetry f (z) = f (−q2
o/z). That is because f depends not on z

directly, but only through the combination k = (z − q2
o/z)/2. More generally, (2.22) and (2.28)

relate the values of the Jost eigenfunctions and scattering coefficients on opposite sheets of the

Riemann surface.
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E. Discrete spectrum and residue conditions

As usual, the discrete spectrum of the scattering problem is the set of all values z ∈ C \ 
 such

that eigenfunctions exist in L2(R). We next show that these values are the zeros of s1, 1(z) in D+

and those of s2, 2(z) in D− . Note that, unlike what happens with the defocusing NLS equation, one

cannot exclude the possible presence of zeros along 
, which in the case of ZBCs give rise to the

so-called real spectral singularities.46 For now we restrict our consideration to potentials without

spectral singularities. In Sec. IV, however, we will consider the limit of a soliton solution as the

discrete eigenvalue tends to 
, and we show that such limit is well defined and it gives rise to

non-trivial solutions.

For all z ∈ D+ , φ + ,1(x, t, z) → 0 as x → ∞, and φ − ,2(x, t, z) → 0 as x → − ∞. Recalling

the first of (2.19a), if s1,1(z) = 0 at z = zn the eigenfunctions φ + ,1 and φ − ,2 at z = zn must be

proportional:

φ+,1(x, t, zn) = bn φ−,2(x, t, zn) (2.32)

with bn �= 0 independent of x, t, and z. We therefore obtain an eigenfunction that is bounded ∀x ∈ R.

Suppose that s1,1(z) has a finite number N of simple zeros z1, . . . , zN in D+ ∩ {z ∈ C : Im z > 0}.
That is, let s1, 1(zn) = 0 and s ′

1,1(zn) �= 0, with |zn| > qo and Im zn > 0 for n = 1, . . . , N, and where

the prime denotes differentiation with respect to z. Owing to the symmetries (2.26) and (2.28) we

have that

s1,1(zn) = 0 ⇔ s2,2(z∗
n) = 0 ⇔ s2,2(−q2

o/zn) = 0 ⇔ s1,1(−q2
o/z∗

n) = 0. (2.33)

For each n = 1, . . . , N we therefore have a quartet of discrete eigenvalues. That is, the discrete

spectrum is the set

Z = {zn, z∗
n,−q2

o/zn,−q2
o/z∗

n}
N
n=1 . (2.34)

This is similar to what happens for the vector defocusing NLS equation with NZBCs.35 (Instead,

in the focusing case with ZBCs and in the defocusing case with NZBCs one has symmetric pairs,

respectively, in the k plane and in the z plane.)

Next we derive the residue conditions that will be needed for the inverse problem. We can write

(2.32) equivalently as μ+,1(x, t, zn) = bne−2iθ(zn )μ−,2(x, t, zn) . Thus,

Resz=zn

[

μ+,1(x, t, z)/s1,1(z)
]

= Cn e−2iθ(zn )μ−,2(x, t, zn) , (2.35)

where Cn = bn/s ′
1,1(zn). Similarly, from the second of (2.19a), if s2,2(z∗

n) = 0 we obtain

φ+,2(x, t, z∗
n) = b̃n φ−,1(x, t, z∗

n) . (2.36)

Equivalently, μ+,2(x, t, z∗
n) = b̃ne2iθ(z∗

n )μ−,1(x, t, z∗
n), and as a result

Resz=z∗
n

[

μ+,2(x, t, z)/s2,2(z)
]

= C̃n e2iθ(z∗
n )μ−,1(x, t, z∗

n) , (2.37)

where C̃n = c̃n/s ′
2,2(z∗

n).

The above norming constants are related by the symmetries. Using (2.21) in (2.32) and

comparing with (2.36) one easily obtains b̃n = −b∗
n . It is also easy to see that (2.26) implies

s ′
1,1(zn) = (s ′

2,2(z∗
n))∗. Hence we have

C̃n = −C∗
n . (2.38)

Finally, we need to discuss the remaining two points of the eigenvalue quartet. Using (2.24) in

(2.32) and (2.36) we have the relations

φ+,2(x, t,−q2
o/zn) = (q−/q∗

+) bn φ−,1(x, t,−q2
o/zn) ,

φ+,1(x, t,−q2
o/z∗

n) = (q∗
−/q+) b̃n φ−,2(x, t,−q2

o/z∗
n). (2.39)
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Moreover, differentiating (2.28), using (2.26), and evaluating at z = zn or z = z∗
n , we have

s ′
1,1(−q2

o/z∗
n) = (z∗

n/qo)2(q−/q+) (s ′
1,1(zn))∗ , s ′

2,2(−q2
o/zn) = (zn/qo)2(q−/q+)∗ (s ′

2,2(z∗
n))∗ .

Combining these relations, we then have

Resz=−q2
o /z∗

n

[

μ+,1(x, t, z)/s1,1(z)
]

= CN+n e−2iθ(−q2
o /z∗

n )μ−,2(x, t,−q2
o/z∗

n) , (2.40a)

Resz=−q2
o /zn

[

μ+,2(x, t, z)/s2,2(z)
]

= C̃N+n e2iθ(−q2
o /zn )μ−,1(x, t,−q2

o/zn) , (2.40b)

where for brevity we defined

CN+n = (qo/z∗
n)2(q∗

−/q−) C̃n , C̃N+n = (qo/zn)2(q−/q∗
−) Cn . (2.41)

Note that C̃N+n = −C∗
N+n , consistently with (2.38).

F. Asymptotics as z → ∞ and z → 0

As usual, the asymptotic properties of the eigenfunctions and the scattering matrix are needed to

properly define the inverse problem. Moreover, the next-to-leading-order behavior of the eigenfunc-

tions will allow us to reconstruct the potential from the solution of the Riemann-Hilbert problem.

Again, the asymptotics with NZBCs is more complicated than with ZBCs, but the calculations

are streamlined in the uniformization variable. Note that the limit k → ∞ corresponds to z → ∞ in

CI and to z → 0 in CII, and we will need both limits. Consider the following formal expansion:

μ−(x, t, z) =
∞

∑

n=0

μ(n)(x, t, z) , (2.42a)

[−1ex] with μ(0)(x, t, z) = Y− , (2.42b)

μ(n+1)(x, t, z) =
x

∫

−∞

Y−eiλ(z)(x−y)σ3
(

Y −1
− �Q−(y, t)μ(n)(y, t, z)

)

e−iλ(z)(x−y)σ3 dy . (2.42c)

Let Ad and Ao denote, respectively, the diagonal and off-diagonal parts of a matrix A. Equation (2.42)

provides an asymptotic expansion for the columns of μ−(x, t, z) as z → ∞ in the appropriate region

of the z-plane. More precisely, in Appendix D we show that, as long as the potential is smooth (i.e.,

it admits a continuous derivative),

μ
(2m)
d = O(1/zm), μ(2m)

o = O(1/zm+1), μ
(2m+1)
d = O(1/zm+1), μ(2m+1)

o = O(1/zm+1)

(2.43)

for all m ∈ N. Explicitly, the above expressions hold with Im z � 0 for the first column and Im z � 0

for the second column. Similar results hold for μ+ (x, t, z), and are proved in the same way.

Next we consider the asymptotics as z → 0. In Appendix D we show that the same formal

expansion (2.42) also provides an asymptotic expansion for the columns of μ− (x, t, z) as z → 0 in

the appropriate region of the z-plane, with

μ(2m)
o = O(zm−1), μ

(2m)
d = O(zm), μ(2m+1)

o = O(zm), μ
(2m+1)
d = O(zm), (2.44)

for all m ∈ N. Next, by computing explicitly the first five terms in (2.42) we have that, as z → ∞,

μ−(x, t, z) = I + (i/z)σ3 Q(x, t)

+ (i/z)

x
∫

−∞

(

[σ3 Q−,�Q−(y, t)] + �Q−(y, t)σ3�Q−(y, t)
)

dy + O(1/z2) . (2.45)

Equation (2.45) will allow us to reconstruct the scattering potential Q(x, t) from the solution of the

inverse problem.
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Finally, inserting the above asymptotic expansions for the Jost eigenfunctions into the Wronskian

representations (2.19a) one shows that, as z → ∞ in the appropriate regions of the complex z-plane,

S(z) = I + O(1/z) . (2.46)

Explicitly, the above estimate holds with Im z � 0 and Im z � 0 for s1,1 and s2,2, respectively, and

with Im z = 0 for s1,2 and s2,1. Similarly, one shows that, as z → 0,

S(z) = diag(q−/q+, q+/q−) + O(z) , (2.47)

again in the appropriate regions of the z-plane.

III. INVERSE PROBLEM

A. Riemann-Hilbert problem

As usual, the formulation of the inverse problem begins from (2.16), which we now regard as a

relation between eigenfunctions analytic in D+ and those analytic in D− . Thus, we introduce the

sectionally meromorphic matrices

M+(x, t, z) = (μ+,1/s1,1, μ−,2) , M−(x, t, z) = (μ−,1, μ+,2/s2,2) . (3.1)

(Recall that subscripts ± indicate normalization as x → ±∞, while superscripts ± distinguish

between analyticity in D+ and D− , respectively.) From (2.17) we then obtain the jump condition

M−(x, t, z) = M+(x, t, z) (I − G(x, t, z)) , z ∈ 
 , (3.2)

where the jump matrix is

G(x, t, z) =
(

0 −e2iθ(x,t,z)ρ̃(z)

e−2iθ(x,t,z)ρ(z) ρ(z)ρ̃(z)

)

. (3.3)

Equations (3.1)–(3.3) define a matrix, multiplicative, homogeneous Riemann-Hilbert problem

(RHP). [Of course one can equivalently write the RHP as M+(x, t, z) = M−(x, t, z)(I − G̃(x, t, z)).]

As usual, to complete the formulation of the RHP one needs a normalization condition, which in

this case is the asymptotic behavior of M± as z → ∞. Recalling the asymptotic behavior of the Jost

eigenfunctions and scattering coefficients, it is easy to check that

M± = I + O(1/z) , z → ∞ . (3.4)

On the other hand,

M± = (i/z)σ3 Q− + O(1) , z → 0 . (3.5)

Thus, as with the defocusing NLS equation with NZBCs,35 in addition to the behavior at z = ∞ and

the poles from the discrete spectrum one also needs to subtract the pole at z = 0 in order to obtain a

regular RHP.

To solve the RHP, one needs to regularize it by subtracting out the asymptotic behavior and

the pole contributions. Recall that discrete eigenvalues come in symmetric quartets [cf. (2.33)]. It is

then convenient to define ζ n = zn and ζn+N = −q2
o/z∗

n for n = 1, . . . , N and rewrite (3.2) as

M− − I − (i/z)σ3 Q− −
2N
∑

n=1

Resζ ∗
n

M−

z − ζ ∗
n

−
2N
∑

n=1

Resζn
M+

z − ζn

= M+ − I − (i/z)σ3 Q− −
2N
∑

n=1

Resζn
M+

z − ζn

−
2N
∑

n=1

Resζ ∗
n

M−

z − ζ ∗
n

− M+G , (3.6)

The left-hand side (LHS) of (3.6) is now analytic in D− and is O(1/z) as z → ∞ there, while the sum

of the first four terms of the right-hand side (RHS) is analytic in D+ and is O(1/z) as z → ∞
there. Finally, the asymptotic behavior of the off-diagonal scattering coefficients implies that
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G(x, t, z) is O(1/z) as z → ± ∞ and O(z) as z → 0 along the real axis. We then introduce the

Cauchy projectors P± over 
:

P±[ f ](z) =
1

2π i

∫




f (ζ )

ζ − (z ± i0)
dζ ,

where
∫



denotes the integral along the oriented contour shown in Fig. 1, and the notation z ± i0

indicates that when z ∈ 
, the limit is taken from the left/right of it. Now recall Plemelj’s formulae:

if f± are analytic in D± and are O(1/z) as z → ∞, one has P± f± = ± f± and P+ f− = P− f+ =
0. Applying P+ and P− to (3.6) we then have

M(x, t, z) = I + (i/z)σ3 Q− +
2N
∑

n=1

Resζn
M+

z − ζn

+
2N
∑

n=1

Resζ ∗
n

M−

z − ζ ∗
n

+
1

2π i

∫




M+(x, t, ζ )

ζ − z
G(x, t, ζ ) dζ , z ∈ C \ 
 . (3.7)

As usual, the expressions for M+ and M− are formally identical, except for the fact that the integral

appearing in the right-hand side is a P+ and a P− projector, respectively.

B. Residue conditions and reconstruction formula

To close the system we need to obtain an expression for the residues appearing in (3.7). The

residue relations (2.35) and (2.40) imply that only the first column of M+ has a pole at z = zn and

z = −q2
o/z∗

n , and its residue is proportional to the second column of M+ at that point. Explicitly,

Resζn
M+ =

(

Cn e−2iθ(x,t,ζn )μ−,2(x, t, ζn) , 0
)

, n = 1, . . . , 2N , (3.8a)

Resζ ∗
n

M− =
(

0 , C̃n e2iθ(x,t,ζ ∗
n )μ−,1(x, t, ζ ∗

n )
)

, n = 1, . . . , 2N . (3.8b)

We can therefore evaluate the second column of (3.7) at z = zn and at z = −q2
o/z∗

n , obtaining

μ−,2(x, t, ζn)=
(

−iq−/ζn

1

)

+
2N
∑

k=1

C̃k e2iθ(x,t,ζ ∗
k )

ζn − ζ ∗
k

μ−,1(x, t, ζ ∗
k ) +

1

2π i

∫




M+(x, t, ζ )

ζ − ζn

G(x, t, ζ ) dζ ,

(3.9a)

for n = 1, . . . , 2N. Similarly, we can evaluate the first column of (3.7) at z = z∗
n and at z = −q2

o/zn ,

obtaining

μ−,1(x, t, ζ ∗
n )=

(

1

iq∗
−/ζ ∗

n

)

+
2N
∑

j=1

C j e−2iθ(x,t,ζ j )

ζ ∗
n − ζ j

μ−,2(x, t, ζ j )+
1

2π i

∫




M+(x, t, ζ )

ζ − ζ ∗
n

G(x, t, ζ ) dζ ,

(3.9b)

again for n = 1, . . . , 2N. Finally, evaluating M+ (x, t, z) via (3.7) (thus with a P+ projector) for

z ∈ 
 we obtain, together with Eqs. (3.9a) and (3.9b), a closed linear system of algebraic-integral

equations for the solution of the RHP. We expect that solvability conditions for the RHP can be

established using techniques similar to Ref. 9.

The last remaining task is to reconstruct the potential from the solution of the RHP. From (3.7),

one obtains the asymptotic behavior of M± (x, t, z) as z → ∞ as

M(x, t, z) = I +
1

z

{

iσ3 Q− +
2N
∑

n=1

(

Resζn
M+ + Resζ ∗

n
M−)

−
1

2π i

∫




M+(x, t, ζ ) G(x, t, ζ ) dζ

}

+ O(1/z2) , (3.10)
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where the residues are given by (3.8). Taking M = M+ and comparing the 1,2 element of (3.10) of

this expression with (2.45) we then obtain the reconstruction formula for the potential:

q(x, t) = q− + i

2N
∑

n=1

C̃n e2iθ(x,t,ζ ∗
n ) μ−,1,1(x, t, ζ ∗

n ) +
1

2π

∫




(M+G)1,2(x, t, ζ ) dζ . (3.11)

Recall that the time dependence of the solution is automatically taken into account by the fact that

the Jost eigenfunctions are simultaneous solutions of both parts of the Lax pair.

C. Trace formulae and “theta” condition

Recall that s1,1 and s2,2 are analytic in D+ and in D− , respectively. Also recall that the discrete

spectrum is composed of quartets: zn, z∗
n,−q2

o/zn,−q2
o/z∗

n ∀n = 1, . . . , N. Then the functions

β+(z) = s1,1(z)

N
∏

n=1

(z − z∗
n)(z + q2

o/zn)

(z − zn)(z + q2
o/z∗

n)
, β−(z) = s2,2(z)

N
∏

n=1

(z − zn)(z + q2
o/z∗

n)

(z − z∗
n)(z + q2

o/zn)
,

are analytic in D± like s1,1(z) and s2,2(z), respectively. But, unlike s1,1(z) and s2,2(z), they have no

zeros. Moreover, β ± (z) → 1 as z → ∞ in the appropriate domains. Finally, for all z ∈ 
 we have

β + (z)β − (z) = s1,1(z)s2, 2(z), and the relation det S(z) = 1 yields 1/[s1,1(z)s2,2(z)] = 1 − ρ(z)ρ̃(z) =
1 + ρ(z)ρ∗(z∗), implying

β+(z)β−(z) = 1/(1 + ρ(z)ρ∗(z∗)) , z ∈ 
 . (3.12)

(Note that, since 
 is not just the real z-axis, the above expression does not reduce to 1 + |ρ(z)|2,

unlike the defocusing case and the focusing case with ZBCs.) Equation (3.12) amounts to a jump

condition for a scalar, multiplicative, homogeneous RHP. Taking logarithms and applying the Cauchy

projectors (as in Sec. III A) we have

log β±(z) = ∓
1

2π i

∫




log[1 + ρ(ζ )ρ∗(ζ ∗)]

ζ − z
dζ , z ∈ D± .

Substituting β + (z) for s1,1(z), we then obtain the so-called “trace” formula

s1,1(z) = exp

[

−
1

2π i

∫




log[1 + ρ(ζ )ρ∗(ζ ∗)]

ζ − z
dζ

] N
∏

n=1

(z − zn)(z + q2
o/z∗

n)

(z − z∗
n)(z + q2

o/zn)
, z ∈ D+ , (3.13)

which expresses the analytic scattering coefficient in terms of the discrete eigenvalues and the

reflection coefficient. A similar formula is obtained for s2,2(z). In the special case of reflectionless

solutions, s1,2(z) = s2,1(z) ≡ 0 ∀z ∈ 
, and the integral in (3.13) is identically zero.

Taking the limit z → 0 of (3.13) from the LHP and recalling (2.47) we also obtain the so-called

“theta” condition,

arg(q−/q+) = 4

N
∑

n=1

arg zn +
1

2π i

∫




log[1 + ρ(ζ )ρ∗(ζ ∗)]

ζ
dζ , (3.14)

which relates the phase difference between the asymptotic values of the potential to the discrete

spectrum and reflection coefficient. Note that

∞
∫

qo

log[1 + |ρ(ζ )|2] dζ/ζ = −
0

∫

−qo

log[1 + |ρ(ζ )|2] dζ/ζ ,

because |ρ(ζ )| = |ρ(−q2
o/ζ )| thanks to the symmetry (2.31). A similar relation holds between the

integral from − ∞ to − qo and that from 0 to qo. Finally,
∫

C+
o

log[1 + ρ(ζ )ρ∗(ζ ∗)] dζ/ζ = −
∫

C−
o

log[1 + ρ(ζ )ρ∗(ζ ∗)] dζ/ζ ,
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where C±
0 denote, respectively, the upper-half and lower-half semicircles of radius qo. Due to the

orientation of 
, however, these individual contributions do not cancel each other out, but rather

add together (cf. Fig. 1), implying that the reflection coefficient could in principle contribute to the

asymptotic phase difference, similarly to the defocusing case.15

D. Reflectionless potentials

We now look at potentials q(x, t) for which the reflection coefficient ρ(z) vanishes identically.

As usual, in this case there is no jump from M+ to M− across the continuous spectrum, and the

inverse problem therefore reduces to an algebraic system, whose solution yields the soliton solutions

of the integrable nonlinear equation.

Recall ζN+ j = −q2
o/z j and CN+ j = −(qo/z∗

j )
2(q∗

−/q−) C∗
j for all j = 1, . . . , N, and that θ (x,

t, z∗) = θ∗(x, t, z). Recall also C̃ j = −C∗
j for all j = 1, . . . , 2N. It is convenient to introduce the

quantities

c j (x, t, z) =
C j

z − ζ j

e−2iθ(x,t,ζ j ), j = 1, . . . , 2N . (3.15)

Note from (3.11) that only the first component of the eigenfunction is needed in the reconstruction

formula. The algebraic system obtained from the inverse problem is then expressed as

μ−,1,2(ζ j ) = −iq−/ζ j −
2N
∑

k=1

c∗
k (ζ ∗

j ) μ−,1,1(ζ ∗
k ) , j = 1, . . . , 2N , (3.16a)

μ−,1,1(ζ ∗
n ) = 1 +

2N
∑

j=1

c j (ζ
∗
n ) μ−,1,2(ζ j ) , n = 1, . . . , 2N , (3.16b)

where for brevity we omitted the x and t dependence. Substituting (3.16a) into (3.16b) yields

μ−,1,1(x, t, ζ ∗
n ) = 1 − iq−

2N
∑

j=1

c j (ζ
∗
n )/ζ j −

2N
∑

j=1

2N
∑

k=1

c j (ζ
∗
n )c∗

k (ζ ∗
j ) μ−,1,1(x, t, ζ ∗

k ) , n = 1, . . . , 2N .

(3.17)

We now write this system in matrix form. Introducing X = (X1, . . . , X2N )t and B = (B1, . . . , B2N )t ,

where

Xn = μ−,1,1(x, t, ζn) , Bn = 1 − iq−
∑2N

j=1
c j (ζ

∗
n )/ζ j , n = 1, . . . , 2N ,

and defining the 2N × 2N matrix A = (An, k), where

An,k =
2N
∑

j=1

c j (ζ
∗
n )c∗

k (ζ ‘∗j ) , n, k = 1, . . . , 2N ,

the system (3.17) becomes simply M X = B, where M = I + A = (M1, . . . , M2N ). The solution of

the system is simply Xn = det Mext
n / det M for n = 1, . . . , 2N, where

Mext
n = (M1, . . . , Mn−1, B, Mn+1, . . . , M2N ) .

Finally, upon substituting X1, . . . , X2N into the reconstruction formula, the resulting expression for

the potential can be written compactly as

q(x, t) = q− − i
det Maug

det M
, (3.18)

where the augmented (2N + 1) × (2N + 1) matrix Maug is given by

Maug =
(

0 Y
t

B M

)

, Y = (Y1, . . . , Y2N )t ,
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and Yn = C̃n e2iθ(x,t,ζ ∗
n ) for n = 1, . . . , 2N. Note that, even though the discrete eigenvalues appear

in quartets in the NZBC case as opposed to pairs in the ZBC case, the number of unknowns in the

inverse problem is still the same as that of the ZBC case. This is because the symmetry (2.24) implies

φ−,1(ζ ∗
N+ j ) = i(ζ j/q−) φ−,2(ζ j ) , φ−,2(ζN+ j ) = i(ζ j/q−)∗ φ−,1(ζ ∗

j ) ,

for all j = 1, . . . , N. Therefore, one can equivalently write the linear algebraic system (3.16) in terms

of just 2N unknowns, as in the case of ZBCs.

IV. SOLITON SOLUTIONS

The focusing NLS equation with NZBC possesses a rich family of soliton solutions8, 29, 30, 34, 40

(some of which have been re-discovered several times10, 31, 41, 42). It should be noted that some of

these solutions have recently been observed experimentally.26 It should also be noted that, in light

of the relationship between these soliton solutions, the MI and rogue waves, it is likely that these

soliton solutions are relevant to rogue waves6 in water waves7 as well as optics.39

A. Stationary solitons

The simplest non-trivial solutions are of course the one-soliton solutions: N = 1. Recall that the

NLS equation possesses a scaling symmetry. That is, if q(x, t) is a solution, so is aq(ax, a2t), for any

a ∈ R. Therefore, without loss of generality we can set qo = 1 in what follows.

We first discuss the case of a purely imaginary eigenvalue. Let z1 = iZ, with Z > 1, and C1 =
eξ+iϕ , with ξ, ϕ ∈ R. The theta condition (3.14) implies that the corresponding asymptotic phase

difference is 2π , that is, no phase difference in this case. From the general N-solution formula (3.18)

we then have in this case

q(x, t) =
cosh χ + 1

2
c+(1 + c2

−/c2
+) sin s − ic− cos s

cosh χ + A sin s
, (4.1)

with

χ (x, t) = c−x + c0 + ξ , s(x, t) = c+c−t + ϕ , (4.2)

and where

c± = Z ± 1/Z , c0 = arc tanh
c2
+ − 4Z2c2

−

c2
+ + 4Z2c2

−
, A = 2/c+ < 1 . (4.3)

This solution was first found by Kuznetsov in 1977 using direct methods,29 and was rediscovered by

Ma in 197930 as well as others later on. An example of this solution is shown in Fig. 2 (left). Note

that this solution is homoclinic in x and periodic in t, which is the opposite situation compared to

the solutions of the focusing NLS equation with periodic BCs.

It is easy to see that, for any fixed value of t, the maximum of the solution occurs at χ = 0, i.e.,

at xmax = − c0/c− . Moreover, simple calculus shows that the maximum and the minimum values

of the modulus of |q(x, t)| at ξ = 0 occur for tmax = − π /(2c+ c−) and tmin = π /2(c+ c−), and that

these maximum and minimum values of |q(x, t)| are, respectively, c+ ± 1 = Z + 1/Z ± 1. The

whole solution is also periodic in t with a period of 2π /c+ c− = 2π /(Z2 − 1/Z2).

The width of the solution can be quantified by noting that at t = tmax, there are always two

cavitation point, i.e., values x = ± x0 such that q( ± xo, tmax) = 0. These values are easily found to

be ± x(ξ o) with ξo = arc cosh((Z2 + 1/Z2)/(Z + 1/Z )).

Performing a translation of coordinates so that the origin of the soliton is located at the origin

and taking the limit Z → 1 one obtains Peregrine’s rational solution of focusing NLS:34

q(x, t) =
4x2 − 16i t + 16t2 − 3

4x2 + 16t2 + 1
. (4.4)

Such a solution is shown in Fig. 2 (right). Note that this solution corresponds to a zero of s1, 1(z)

at z = iqo, i.e., along the continuous spectrum. As a result, it does not give rise to a bound state
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FIG. 2. Left: A one-soliton solution of the focusing NLS equation with NZBC at infinity, obtained with and qo = 1 and z1

= 2i, yielding no asymptotic phase difference. Right: The Peregrine soliton, obtained by taking the limit z1 → i. Here and in

all subsequent three-dimensional plots, the horizontal axes are x and t and the vertical axis is |q(x, t)|.

(i.e., the corresponding eigenfunctions do not decay as x → ± ∞). Conversely, restoring the

background amplitude parameter qo, it is straightforward to see that, in the limit qo → 0, one

recovers the usual 1-soliton solution of the focusing NLS equation with ZBC. Explicitly, keeping

the location of the discrete eigenvalue fixed at z1 = iZ, as qo → 0 one obtains

q(x, t) = −i ei Z2t+φ sech[Z x + log(2Z ) + ξ ] + O(qo) .

B. Non-stationary solitons

We now discuss the one-soliton solutions obtained for a generic position of the discrete eigen-

value. Again, we use the scaling invariance of the NLS equation to set qo = 1 without loss of

generality. It is convenient to parametrize such eigenvalue as z1 = iZ eiα , with Z > 1 and α ∈
( − π /2, π /2). Tedious but straightforward algebra shows that from the general N-solution formula

(3.18) we then have

q(x, t) =
cosh(χ + 2iα) + 1

2
A [c+2 (Z2 sin(s + 2α) − sin s) − ic−2 (Z2 cos(s + 2α) − cos s)]

cosh χ + A [Z2 sin(s + 2α) − sin s]
,

(4.5)

with

χ (x, t) = c−x cos α − c+2t sin(2α) + c′
0 + ξ , (4.6a)

FIG. 3. Non-stationary 1-soliton solutions of the focusing NLS with NZBC, obtained with a discrete eigenvalue z1 =
√

2 eiπ/4

(left) and with z1 = 2 eiπ /6 (right), resulting in an asymptotic phase difference of π and 2π /3, respectively.
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Re k

Im k

Re k

Im k

Re k

Im k

FIG. 4. Discrete spectrum (red dots) and continuous spectrum (blue lines) in the k-plane for a stationary soliton (left), a

Galilean-boosted stationary soliton (center), and the non-stationary soliton (center) described in the text.

s(x, t) = c+x sin α + c−2t cos(2α) + ϕ , (4.6b)

and where

c+2 = Z2 + 1/Z2 , c−2 = Z2 − 1/Z2 = c+c− , (4.7a)

A = 1/(c′
+c′

−) , c′
0 = log(c′

+/c′
−) , (4.7b)

c′
+ = |1 − Z2 e−2iα| , c′

−(Z + 1/Z )/(2 cos α) , (4.7c)

with c± as before and where the addition formula for the hyperbolic cosine was used: cosh (a + ib)

= cosh acos b + isinh asin b. This solution was first derived by Tajiri and Watanabe in 199840 and

rediscovered recently by Zakharov and Gelash using the dressing method.41 Figure 3 (left) shows a

solution with z1 = 1 + i, yielding an asymptotic phase difference of π , while Fig. 3 (right) shows

a solution with z1 = 2 eiπ /6, yielding an asymptotic phase difference of 2π /3.

Like the solutions (4.1), the solutions (4.5) are homoclinic in x. Now however the peak of the

solution does not remain localized at a fixed value in x, unlike the solutions generated from purely

imaginary eigenvalues. The motion of the center of mass can be easily obtained by noting that, like

with the stationary solitons, the maximum of |q(x, t)| is still found for ξ = 0. The equation χ (x, t) =
0 then yields the straight line in the xt-plane along which the peak is located, resulting in a soliton

velocity of vZ ,α = sin α (Z2 + 1/Z2)/(Z − 1/Z ).

It is important to realize, unlike what happens with the solitons of the focusing NLS equation

with ZBC, the traveling solution (4.5) is not a simply Galilean transformation of the stationary

solution (4.1). This difference can be understood in two ways. First, by noting that both solutions

satisfy the same constant BCs q(x, t) → q± as x → ±∞, whereas a Galilean-boosted stationary

solutions would have an oscillating phase with respect to x as x → ± ∞. The difference between

the two solutions can also be understood from a spectral point of view, as shown in Fig. 4. For

the Galilean-boosted stationary solution, the real part of the discrete eigenvalue coincides with the

location of the branch cut. In contrast, for the traveling soliton solution (4.5), the discrete eigenvalue

does not lie directly above the branch cut. Of course, in the limit qo → 0 both kinds of solutions

FIG. 5. Two so-called Akhmediev solitons, obtained for α = π /3 (left) and α = π /4 (right).
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— namely, the traveling soliton (4.5) and the Galilean-boosted stationary soliton — reduce to the

same, traveling soliton solution of the focusing NLS equation with ZBC.

As with the stationary solitons, one can take the limit Z → 1 of the solution (4.5). In this

case, however, the additional parameter α = arg z1 − π/2 is present. As a result, performing again

a translation of coordinates so that the maximum of the solution is at the origin, one obtains the

so-called Akhmediev solitons:8

q(x, t) =
cosh[2 sin(2α)t − 2iα] − cos α cos[2 sin(α)x]

cosh[2 sin(2α)t] − cos α cos[2 sin(α)x]
, (4.8)

where again the complex addition formula for the hyperbolic cosine was used. Two examples are

described in Fig. 5, corresponding to α = π /3 (left) and α = π /4 (right). Note that these solutions

are periodic in x and homoclinic in t, which is the opposite kind of behavior to that of the solution

(4.5). While this may appear counter-intuitive, it is easily understood by noting that the slope of the

characteristic line that governs the center of mass motion tends to infinity as Z → 1. In other words,

limZ→1 |vz,α| = ∞.

Of course the solution (4.8) reduces to the Peregrine soliton for α = 0. And, like the Peregrine

soliton, this solution originates from a zero of s1,1(z) along the branch cut, which is part of the

continuous spectrum, and as a result it does not correspond to a bound state for the eigenfunctions.

For generic non-zero values of α, the spatial period of the solution (4.8) is easily found to be π /sin α,

while the maximum is [cos α − cos (2α)]/(1 − cos α). Both are decreasing functions of |α|, and

in particular the maximum tends to 1 (resulting in the uniform solution) as α → ± π /2. Like the

soliton solution (4.1), the Akhmediev solitons (4.8) also possess cavitation points. More precisely,

for |α| ≤ π /3, q(x, 0) = 0 at x = ± 1
2

csc α arc cos[sec α cos(2α)].

C. Multi-soliton solutions

Of course the expressions derived in Sec. IV are not limited to one-soliton solutions, and

it allows one to obtain explicit solutions with an arbitrary number of solitons. As an example,

Figure 6 shows two different two-soliton solutions, obtained with different sets of discrete eigen-

values. Explicitly, Fig. 6 (left) shows a bound state, obtained for z1 = 2i and z2 = 3i, while Fig. 6

(right) shows a soliton interaction, obtained for z1 = − 1 + 2i and z2 = 2 + i. Solutions with larger

numbers of solitons can be obtained just as easily.

V. CONCLUDING REMARKS

The results of this work provide a framework to address a number of interesting issues. Among

them: (i) the characterization of the soliton interactions (e.g., see Refs. 5 and 32 for the case of ZBCs);

(ii) the use of the IST to solve the direct problem and study the time evolution of various classes of ICs

FIG. 6. Two-soliton solutions of the NLZ equation with NZBCs at infinity and qo = 1. Left: z1 = 2i and z2 = 3i, resulting

in a bound state. Right: z1 = − 1 + 2i and z2 = 2 + i, resulting in a soliton interaction.

 This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to  IP:

128.205.113.160 On: Thu, 27 Mar 2014 12:55:29



031506-17 G. Biondini and G. Kovačič J. Math. Phys. 55, 031506 (2014)

(e.g., as in Ref. 37 for the focusing case with ZBCs and Ref. 22 for the defocusing case with NZBCs);

(iii) the characterization of the nonlinear stage of the Benjamin-Feir instability; (iv) the study of

the long-time asymptotic using the nonlinear steepest descent method17, 18 or other techniques;5, 32

(v) a characterization of the scattering problem with regard to the existence of discrete eigenvalues

(similar Refs. 27 and 28 for the focusing case with ZBCs and to Ref. 15 for the defocusing case

with NZBCs). Also, a number of related research problems exist that can now be studied using a

similar approach. Among them: (vi) the solution of the initial-value problem (IVP) for the vector

focusing NLS equation with NZBCs, which, remarkably, is still completely open (indeed, even the

IVP for the defocusing case with NZBCs was only solved recently35); (vii) the solution of the IVP

for the Maxwell-Bloch equations with NZBCs (see Refs. 3 and 23 for the IST with ZBCs). We plan

to address some of the above issues and investigate some of these problems in the near future.
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APPENDIX A: ANALYTICITY OF THE EIGENFUNCTIONS

In this and Appendices B–D we provide the explicit proofs of various results presented in the

text. For brevity, we omit the time dependence when doing so does not cause ambiguity.

We start by rewriting the first of the integral equations (2.13) that define the Jost eigenfunctions:

μ−(x, z) = Y−

[

I +
x

∫

−∞

eiλ(x−y)σ3 Y −1
− �Q−(y)μ−(y, z) e−iλ(x−y)σ3 dy

]

. (A1)

The limits of integration imply that x − y is always positive for μ− and always negative for μ+ .

Note the special structure of the product eiξσ3 M e−iξσ3 , namely,

eiξσ3 M e−iξσ3 =

(

m1,1 e2iξ m1,2

e−2iξ m2,1 m2,2

)

. (A2)

Also note that the matrix products in the RHS of (A1) operate column-wise. In particular, letting

W (x, z) = Y −1
− μ−, for the first column w of W one has

w(x, z) =
(

1

0

)

+
x

∫

−∞

G(x − y, z)�Q−(y)Y−(z) w(y, z) dy , (A3)

where

G(ξ, z) = diag
(

1, e−2iλ(z)ξ
)

Y −1
− (z) =

1

γ

(

1 −i(q−/z)

i(r−/z) e−2iλξ e−2iλξ

)

. (A4)

Now we introduce a Neumann series representation for w:

w(x, z) =
∞

∑

n=0

w(n) , (A5a)

with w(0) =
(

1

0

)

, w(n+1)(x, z) =
x

∫

−∞

C(x, y, z) w(n)(y, z) dy , (A5b)

 This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to  IP:

128.205.113.160 On: Thu, 27 Mar 2014 12:55:29



031506-18 G. Biondini and G. Kovačič J. Math. Phys. 55, 031506 (2014)

and where C(x, y, z) = G(x − y, z)�Q(y)Y− (z). Introducing the L1 vector norm ‖w‖ = |w1| + |w2|
and the corresponding subordinate matrix norm ‖C‖, we then have

‖w(n+1)(x, z)‖ �

∫ x

−∞
‖C(x, y, z)‖‖w(n)(y, z)‖ dy . (A6)

Note ‖Y± ‖ = 1 + qo/|z| and ‖Y −1
± ‖ = (1 + qo/|z|)/|1 + q2

o/z2|. The properties of the matrix norm

imply

‖C(x, y, z)‖ � ‖ diag(1, e−2iλ(z)(x−y))‖‖Y−‖‖�Q(y)‖‖Y −1
− ‖

= c(z) (1 + e2λim(z)(x−y)) |q(y) − q−| , (A7)

where λim(z) = Im λ(z) and c(z) = ‖Y−‖‖Y −1
− ‖ = (1 + qo/|z|)2/|1 + q2

o/z2| is the condition num-

ber of Y− . Now recall that Im λ(z) < 0 for z in D− . On the other hand, c(z) → ∞ as z → ± iqo.

Thus, given ǫ > 0, we restrict our attention to the domain D−
ǫ = D− \ (Bǫ(iqo) ∪ Bǫ(−iqo)), where

Bǫ(zo) = {z ∈ C : |z − zo| < ǫqo}. It is straightforward to show that cǫ = maxz∈D−
ǫ

c(z) = 2 + 2/ǫ.

Next we prove that, for all z ∈ D−
ǫ and for all n ∈ N,

‖w(n)(x, z)‖ �
Mn(x)

n!
, (A8a)

where

M(x) = 2cǫ

x
∫

−∞

|q(y) − q−| dy . (A8b)

We will prove the result by induction, following Ref. 4. The claim is trivially true for n = 0. Also,

note that, for all z ∈ D− and for all y ≤ x one has 1 + e2λim(x−y) � 2. Then, if (A8a) holds for n = j,

(A6) implies

‖w( j+1)(x, z)‖ �
2cǫ

j!

x
∫

−∞

|q(y) − q−| M j (y) dy =
1

j!( j + 1)
M j+1(x) , (A9)

proving the induction step, namely, that the validity of (A8a) for n = j implies its validity for n

= j + 1. Thus, for all ǫ > 0, if q(x) − q− ∈ L1( − ∞, a] for some a ∈ R the Neumann series

converges absolutely and uniformly with respect to x ∈ ( − ∞, a) and z ∈ D−
ǫ . Since a uniformly

convergent series of analytic functions converges to an analytic function,1, 25 this demonstrates that

the corresponding column of the Jost solution is analytic in this domain. It is important to note

that, since q+ �= q− in general, q(x) − q− /∈ L1(R), and therefore one cannot take a = ∞. This

non-uniformity with respect to x ∈ R is analogous to that in the defocusing case. This problem

can be resolved using an alternative approach, similar to that in Ref. 36. Note also that, as in the

defocusing case, additional conditions need to be imposed on the potential to establish convergence

of the Neumann series at the branch points.19

APPENDIX B: BEHAVIOR AT THE BRANCH POINTS

We now discuss the behavior of the Jost eigenfunctions and the scattering matrix at the branch

points k = z = ± iqo. The complication there is due to the fact that the λ( ± iqo) = 0, and therefore

at z = ± iqo the two exponentials e± iλx reduce to the identity. Correspondingly, at z = ± iqo the

matrices Y± (z) are degenerate. Note however that, even though det Y±(±iqo) = 0 and Y −1
± (±iqo)

do not exist, the term Y±(z) e−iλ(x−y)σ3 Y −1
± (z) appearing in (2.13) remains finite as z → ± iqo:

lim
z→±iqo

Y±(z) e−iλ(x−y)σ3 Y −1
± (z) = I + i(x − y)(Q± ∓ qoσ3) .

Thus, both columns of φ ± (x, t, z) remain well-defined at z = ± iqo as long as the potential satisfies

appropriate regularity conditions (see Appendix A).
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Let us therefore investigate the integral representation of the Jost solutions at the branch points.

Since det φ±(x, t,±iqo) = 0, the two columns of φ − (x, t, iqo) are proportional to each other, and

similarly for the columns of φ − (x, t, − iqo), φ + (x, t, iqo), and φ + (x, t, − iqo). Comparing the

boundary conditions of φ ± (x, t, ± iqo) as x → ± ∞, one then obtains

φ±,2(x, t, iqo) = −eiθ±φ±,1(x, t, iqo) , φ±,2(x, t,−iqo) = eiθ±φ±,1(x, t,−iqo) , (B1)

where θ± = arg q±. Owing to the well-defined limit of the Jost solutions at the branch points and

to the Wronskian representations (2.19a), all entries of the scattering matrix have a well-defined

limiting behavior near the branch points as well. That is, we can write

S(z) =
1

z ∓ iqo

A± + B± + O(z ∓ iqo). (B2a)

Or, elementwise,

si, j (z) =
1

z ∓ iqo

a±
i, j + b±

i, j + O(z ∓ iqo) (B2b)

in the appropriate regions of the complex z-plane. In (B2) and throughout this section, we use the

superscripts ± for the scattering matrix and the scattering coefficients to denote the behavior in a

neighborhood of z = ± iqo, respectively. In particular,

a±
1,1 = ±

1

2
iqoWr(φ−,1(x, t,±iqo), φ+,2(x, t,±iqo)) , (B3a)

b±
1,1 = ±

3

2iqo

a±
1,1 ±

1

2
iqo

d

dz
Wr(φ−,1(x, t, z), φ+,2(x, t, z))|z=±iqo

. (B3b)

From (B3a) it is clear that there are two possibilities: (i) If φ − ,1(x, t, z) and φ + ,2(x, t, z) are linearly

independent at z = ± iqo, then a±
1,1 �= 0, and s1,1(z) has a simple pole singularity at both points,

which is also what happens generically in the defocusing case.20 (ii) If φ − ,1(x, t, z) and φ + ,2(x, t,

z) are linearly dependent at z = iqo or at z = − iqo, then either a11, + or a11, − or both vanish, and

s1,1(z) is non-singular at iqo or − iqo. In this case the points z = iqo or z = − iqo are called virtual

levels.20 We next characterize the constants a±
i, j and b±

i, j in both of these cases.

Comparing the Wronskian representations of the scattering coefficients and using the propor-

tionality relations (B1), one obtains

a±
1,2 = ∓eiθ+a±

1,1 , a±
2,1 = ±e−iθ−a±

1,1 , a±
2,2 = −ei�θa±

1,1 , (B4)

where �θ = θ + − θ − . Thus, the reflection coefficients ρ(z) and ρ̃(z) defined in Sec. II C satisfy

lim
z→±iqo

ρ(z) = ±e−iθ− , lim
z→±iqo

ρ̃(z) = ±eiθ− . (B5)

Relations between the a±
i, j and the b±

i, j can be obtained by recalling that det S(z) = 1 for all z ∈ 
\
{± iqo} and taking the limit of the determinant as z → ± iqo.

For reflectionless potentials, s2,1(z) ≡ 0 for all z ∈ 
\{± iqo} implies a±
2,1 = 0. Then, by the

first of (B4), we have a±
1,1 = 0 as well, so we conclude that both iqo and − iqo are always virtual

levels for reflectionless potentials. In the generic case in which z = ± iqo are not virtual levels, using

the symmetries in Sec. II D, one has

a±
1,1 = (a∓

2,2)∗ = e−i�θa±
2,2 , a±

1,2 = −(a∓
2,1)∗ = ei(θ++θ−)a±

2,1 , (B6)

implying a relation between the behavior at the two branch points.

(a±
1,1)∗ = ei�θa∓

1,1 , (a±
1,2)∗ = −e−i(θ++θ−)a∓

1,2 . (B7)

Note that z = iqo is a virtual level if and only if z = − iqo is.
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APPENDIX C: SYMMETRIES OF THE EIGENFUNCTIONS

We first prove (2.20). If φ(x, t, z) is a solution of the scattering problem [the first of (2.1)], so is

w(x, t, z) = σ∗ φ∗(x, t, z∗) , (C1)

where

σ∗ =
(

0 1

−1 0

)

(C2)

[because σ 2
∗ = −Iσ∗σ3σ∗, = σ 3, and σ∗Q∗σ∗ = Q† = − Q]. By the same token, so is w C , where C

is any constant 2 × 2 matrix. Now let z ∈ 
, take φ ≡ φ ± , and look the asymptotic behavior of w±
as x → ± ∞. Note that θ∗(x, t, z∗) = θ (x, t, z) and σ∗Y ∗

±(z∗) = σ∗(I − iσ3 Q∗
±/z) = Y (z)σ∗. Also,

a little algebra shows that σ∗eiaσ3σ∗ = −e−iaσ3 . Therefore, w±(x, t, z) σ∗ = Y±(z) eiθ(x,t,z)σ3 + o(1)

as x → ± ∞. The uniqueness of the solution of the scattering problem with given BCs then implies

w± σ∗ = φ±, which in turn yields (2.20).

Next we prove (2.22). If φ(x, t, z) is a solution of the scattering problem, so is

w(x, t, z) = φ(x, t,−q2
o/z) (C3)

[since k(−q2
o/z) = k(z)]. As before, this implies that w C is also a solution, for any matrix C in-

dependent of t. If φ = φ ± , one has w±(x, t, z)C = Y±(−q2
o/z) e−iλ(z) xσ3 C + o(1) as x → ± ∞,

since θ (x, t,−q2
o/z) = −θ (x, t, z). Now note that Y±(−q2

o/z) e−iθ σ3 σ3 Q± = −i zY±(z) eiθ σ3 [be-

cause e−iaσ3 Q = Qeiaσ3 and (σ3 Q)2 = q2
o I ]. Thus, taking C = (i/z) σ 3Q we conclude, using the

same arguments as before, we obtain (2.22).

APPENDIX D: ASYMPTOTIC BEHAVIOR AS k → ∞

We first prove Eqs. (2.43). The proof proceeds by induction. The statement is trivially true for

μ
(0)
d and μ(0)

o . Moreover, using (2.6) and separating the diagonal and off-diagonal parts of (2.42c),

we have

μ
(n+1)
d (x, z) =

1

1 + (qo/z)2

[

x
∫

−∞

(

�Q−(y)μ(n)
o (y, z) −

iσ3 Q−

z
�Q−(y) μ

(n)
d (y, z)

)

dy

+
iσ3 Q−

z

x
∫

−∞

eiλ(z)(x−y)σ̂3

(

�Q−(y)μ
(n)
d (y, z) −

iσ3 Q−

z
�Q−(y) μ(n)

o (y, z)

)

dy

]

,

(D1a)

μ(n+1)
o (x, z) =

1

(1 + (qo/z)2)

[

iσ3 Q−

z

x
∫

−∞

(

�Q−(y)μ(n)
o (y, z) −

iσ3 Q−

z
�Q−(y) μ

(n)
d (y, z)

)

dy

+
x

∫

−∞

eiλ(z)(x−y)σ̂3

(

�Q−(y)μ
(n)
d (y, z) −

iσ3 Q−

z
�Q−(y) μ(n)

o (y, z)

)

dy

]

. (D1b)

where we have temporarily suppressed the time dependence for brevity. As z → ∞, the four terms

in the RHS of (D1a) are, respectively,

O(μ(n)
o ), O(μ

(n)
d /z), O(μ

(n)
d /z2), O(μ(n)

o /z3),

where the last two estimates are obtained using integration by parts (e.g., see Ref. 16), taking

advantage of the differentiability of q(y, t) and the fact that λ(z) = z/2 + O(1/z) as z → ∞.

Similarly, as z → ∞, the four terms in the RHS of (D1b) are, respectively,

O(μ(n)
o /z), O(μ

(n)
d /z2), O(μ

(n)
d /z), O(μ(n)

o /z2),
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(where again the last two estimates are obtained using integration by parts). Looking for the dominant

contribution when n is either odd or even one can then complete the induction step and therefore the

proof of (2.43).

We next prove (2.44). Again, the result is proved by induction. The claim is trivially true for μ
(0)
d

and μ(0)
o . And decomposing (2.42c) into its diagonal and off-diagonal parts yields (D1a) and (D1b)

as before. Finally, one shows that the four terms in the RHS of (D1a) and (D1b) are, respectively

O(z2μ(n)
o ), O(z μ

(n)
d ), O(z2μ

(n)
d ), O(z μ(n)

o )

for (D1a) and

O(zμ(n)
o ), O(μ

(n)
d ), O(z3μ

(n)
d ), O(z μ(n)

o )

for (D1b). Again, the last two estimates in each row are obtained using integration by parts and λ(z)

= O(1/z) as z → 0. And again, looking for the dominant terms one completes the induction step and

thereby the proof of (2.44).
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