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Let A be a supersingular abelian variety defined over a finite field k. We give
an approximate description of the structure of the group A(k) of k-rational points
of A in terms of the characteristic polynomial f of the Frobenius endomorphism of
A relative to k. Write f = > gei

i for distinct monic irreducible polynomials gi

and positive integers ei . We show that there is a group homomorphism
.: A(k) � > (Z�gi (1) Z)ei that is ``almost'' an isomorphism in the sense that the
sizes of the kernel and the cokernel of . are bounded by an explicit function of
dim A. � 2001 Academic Press
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1. INTRODUCTION

Let A be an abelian variety of dimension d defined over a finite field k
of characteristic p with q elements. Let f be the characteristic polynomial
of the Frobenius endomorphism of A relative to k. An abelian variety A
over k is supersingular if each complex root of f can be written as ` - q, the
product of some root of unity ` and the positive square root - q. This
definition is equivalent to the standard ones as in [6] or [5]. The group
structure of rational points on an elliptic curve over a finite field has been
well studied (see [9, Chap. V]). We have studied the question for elemen-
tary supersingular abelian varieties in [10]. In this paper and [10], an
elementary abelian variety means an abelian variety that is k-isogenous to
a power of a simple abelian variety. Here we study arbitrary supersingular
abelian varieties.

For a finite abelian group G we write *G for its order. Let log( } ) be the
natural logarithm. Write f => t

i=1 gei
i for distinct monic irreducible poly-

nomials g i with integer coefficients and positive integers ei .
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Theorem 1.1. Let A be a supersingular abelian variety over k of dimen-
sion d�2. Write f => t

i=1 gei
i as above. Then there exists a group

homomorphism

.: A(k) � `
t

i=1

(Z�gi (1) Z)ei

such that

*Ker(.)=*Coker(.)

<{(2 log(2d&2))2d

(2 log(100d&100))2d

if d>4.35_107

if 2�d�4.35_107.

If q is a nonsquare, the l-part of *Ker(.) divides l3d&2 if l=2, divides
l[(2d&2)�(l&1)] if l>2, and is trivial if l>d or l= p. If q is a square, the l-part
of *Ker(.) divides l[(2d&2)�(l&1)] if l�2, and is trivial if l>2d or l= p.

Let Z[?] be the Z-algebra generated by the Frobenius ? in the
endomorphism ring of A. Let k� be an algebraic closure of k.

Theorem 1.2. Let A be a supersingular abelian variety over k of dimen-
sion d�2. Write f =>t

i=1 gei
i as above. Let Ri=Z[?]�(gi (?)) and Ri( p) be

its localization at p. There is a surjective Z[?]-module homomorphism

.: A(k� ) � `
t

i=1

(Ri( p) �Ri)
ei,

where

*Ker(.)<{(2 log(2d&2))2d

(2 log(100d&100))2d

if d>4.35_107

if 2�d�4.35_107.

Our theorems essentially demonstrate the following observation: The
group structure of a supersingular abelian variety over a finite field is deter-
mined by the characteristic polynomial of its Frobenius endomorphism
with an ``error term'' depending only on dim A, not on the size of the base
field.

The organization of this paper is as follows: Sections 2 and 3 are techni-
cal. Section 2 contains a lemma (see Lemma 2.1) from analytic number
theory which will be used for Section 3. In Section 3 we will determine all
possible irreducible factors of the characteristic polynomial f and compute
their mutual resultants so as to give a useful approximation (see
Lemma 3.2). In Section 4, we consider finitely generated torsion-free
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modules over a fibre product of rings by applying Goursat's lemma. Finally,
by considering the l-adic Tate module of A as a torsion-free module over
Z[?], we apply Section 4 to our problem and prove the two theorems.

This paper is based on a portion of the author's Ph.D thesis. The author
thanks Professor Hendrik W. Lenstra, Jr., for his guidance and the Mathe-
matical Science Research Institute (Berkeley) for its excellent working
environment and support while she was preparing this paper. The author
also thanks the referee for many very helpful comments.

2. A VARIATION OF MERTENS'S THEOREM

Here we prove a lemma from analytic number theory that will be used
in Lemma 3.2 in the next section. An immediate consequence is
Corollary 2.2 which was initially conjectured by Lenstra (see [7, Sect. 1]
for its application). Mertens's theorem implies that when n is large enough
we have > l�n l1�l < n, where l ranges over all primes �n (see [2,
Theorem 425] or [8, (2.5)]). Let ,( } ) denote the Euler phi-function. In this
section we will prove that when n is large enough we have >l | n l1�(l&1)<
log ,(n). The subscript l | n denotes that l ranges over all distinct primes
dividing n.

Let C be Euler's constant (r0.5772) and pi the ith prime number.

Lemma 2.1. Let n0 :=2 >9
i=1 pi r4.46_108. Then

`
l | n

l1�(l&1)<{log ,(n)
log(50,(n))

if n>n0 ,
if 2�n�n0 .

Proof. Given an integer n�2 we find the positive integer t such that
>t

i=1 pi�n<> t+1
i=1 pi . Since n has at most t distinct prime factors and

(log l )�(l&1) is a decreasing function,

:
l | n

log l
l&1

� :
t

i=1

log pi

pi&1
. (1)

By [8, (2.8) and (3.23)], we have for t�12 that

:
t

i=1

log pi

pi&1
= :

t

i=1

log p i

pi
+ :

�

m=2

:
t

i=1

log pi

pm
i

<log pt+
1

log pt
&C. (2)

Suppose n�>13
i=1 p i . The two auxiliary functions F(n) :=F0 (n)+

1�F0 (n)&C and F0 (n) :=log log n&log(1&1�(log log n&0.7093)) are
increasing with respect to n. By Bertrand's Postulate (see [2, 22.3]) and
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[8, (3.32)], we obtain pt>pt+1 �2>(log n)�2.0325; thus by [8, (3.16)] we
have log pt<log log n&log(1&1�(log pt))<F0 (n). Combining (1) and (2)
yields

:
l | n

log l
l&1

<F(n). (3)

Define H(n) :=exp(C) log log n+2.5�(log log n). Since n�H(n) is an
increasing function for n�30, by [8, (3.41)] we get

> t
i=1 pi

H(> t
i=1 pi)

<
n

H(n)
<,(n) for all n{ `

9

i=1

p i . (4)

Suppose n�>25
i=1 pi . It is not hard to show that n>(H(n))21, and so

n<,(n) H(n)<,(n)(n�H(n))1�20<,(n)1.05. (5)

Now F(n)&log log n is decreasing, so F(n)<log log n&0.0529. Then (3)
and (5) yield �l | n ((log l )�(l&1))<log log n&0.0529<log(1.05 log ,(n))&
0.0529<log log ,(n).

Suppose >10
i=1 p i�n<>25

i=1 p i ; by explicit calculation for each 10�t�
24 and by (4) we have

`
l | n

l1�(l&1)� `
t

i=1

p1�( pi&1)
i <log

> t
i=1 p i

H(> t
i=1 p i)

�log
n

H(n)
<log ,(n).

Suppose n<>10
i=1 pi . This implies that n has at most 9 distinct prime

factors. Since l1�(l&1)>1 and l1�(l&1) is decreasing in l, we have >l | n l1�(l&1)

�>9
i=1 p1�( pi&1)

i . When 3 >9
i=1 pi�n<>10

i=1 pi , by explicit computation
and (4) we have

`
l | n

l1�(l&1)� `
9

i=1

p1�( pi&1)
i <log

3 >9
i=1 p i

H(3 >9
i=1 pi)

<log ,(n).

When n0<n<3 >9
i=1 pi , by similar computation we have

`
l | n

l1�(l&1)�p1�( p10&1)
10 `

8

i=1

p1�( pi&1)
i <log

n0

H(n0)
<log ,(n).

This proves the first half of the lemma.
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Suppose 30�n�n0 and n{>9
i=1 pi . By (1), (4), and explicit computa-

tion on each 3�t�9, we obtain

`
l | n

l1�(l&1)� `
t

i=1

p1�( pi&1)
i <log

50 > t
i=1 pi

H(> t
i=1 p i)

<log(50,(n)).

This is easy to verify for n=>9
i=1 pi and 2�n<30. K

By a similar but easier calculation, we can show that >l | n l1�(l&1)<log n
for all n so that p8 >6

i=1 p i<n�n0 and thus for all n>n0 by the above
lemma. This gives the following corollary.

Corollary 2.2. For all n>p8 >6
i=1 p i=570570, we have >l | n l1�(l&1)

<log n.

Remark 2.3. The minimal bounds for n in Lemma 2.1 and Corollary 2.2
are both sharp. It is not hard to verify the following: if n=n0=2 >9

i=1 p i ,
then >l | n l1�(l&1)>log ,(n); if n= p8 >6

i=1 p i , then >l | n l1�(l&1)>log n.

3. SUPERSINGULAR POLYNOMIALS

In this section, we will quote algebraic number theory from [1] or [3]
without comment. Recall that q is a power of the prime p. An algebraic
number in C is called a supersingular q-number if it is of the form ` - q,
the product of some root of unity ` and the positive square root of q.
Obviously it is an algebraic integer. Here we determine all minimal polyno-
mials of supersingular q-numbers, calculate their mutual resultants, and
prove Lemma 3.2. This lemma is a core technical point for our proof of
Theorems 1.1 and 1.2 in Section 5.

Let ( a
b) be the Jacobi symbol for an integer a and odd integer b; further,

define ( a
1)=1 and define ( a

2)=0 if 2 | a and ( a
2)=(&1) (a2&1)�8 if 2 |% a.

Denote by `m the primitive m th root of unity, exp(2? - &1�m). The
Galois group Gal(Q(`m)�Q) consists of the _ i defined by _ i (`m)=` i

m with
i coprime to m and 1�i�m. We claim that - p # Q(`m) implies
_i (- p)=( p

i ) - p. Since they are both multiplicative, it suffices to show that
_l (- p)=( p

l ) - p for each prime l dividing i. If l is odd then _ l (- p)#
(- p) l= p(l&1)�2

- p mod l and thus _l (- p)=( p
l ) - p. Suppose l=2. Since

m is odd, our hypothesis implies that Q(- p)�Q(`p)�Q(`m). Denote by
_� 2 the image of _2 in Gal(Q(`p)�Q), then _2 (- p)=_� 2 (- p)=- p or
&- p. It equals the former if and only if _� 2 # Gal(Q(`p)�Q(- p)), that is,
if and only if 2 is a square in (Z�pZ)*. Thus _2 (- p)=( p

2) - p.
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Let 8m be the m th cyclotomic polynomial. We write (m1 , m2) for the
greatest common divisor for integers or polynomials m1 and m2 . Let C(?)
be the conjugacy class of ? in C.

Proposition 3.1. Let g be the minimal polynomial of a given super-
singular q-number ?.

I. If q is a squar, then C(?)=C(`m - q) for some m, and

g=9m (X) :=(- q),(m) 8m \ X

- q+ .

II. If q is a nonsquare, then C(?)=C(`&
m - q) for some primitive mth

root of unity `&
m with m�2 mod 4. Define

Gm (X) :=q,(m)�(2, m)8m�(2, m) (X2�q). (6)

(i) If Q(?){Q(?2), then g=Gm (X).

(ii) If Q(?)=Q(?2), then

g=Em, \1 (X) := `

1�i�m�(2, m)
(i, m�(2, m))=1

\X�\q
i+ ` i

m - q+ . (7)

Proof. Part I is straightforward. We shall show part II. Write
?=`&

m - q for some primitive mth root of unity `&
m . If 2 & m, then

?=&`&(m+2)�4
m�2 - q; but since m�2 is odd, ? is conjugate to `+

m�2 - q for
some primitive (m�2)th root of unity `+

m�2 . Thus we may assume
m�2 mod 4 for the rest of the proof.

Now [Q(?) : Q(?2)]=1 or 2. Let 2 denote the discriminant of a number
field extension. It can be shown that Q(?)=Q(?2) if and only if
2Q(- p)�Q | m and 22Q(- p)�Q |% m (see [10, Lemma 2.6]). Suppose
[Q(?) : Q(?2)]=2. It is not hard to see that ? is a root of Gm and its
minimal polynomial is Gm since Gm has degree 2,(m)�(2, m) and

[Q(?) : Q]=
[Q(?) : Q(`m�(2, m))][Q(`m) : Q]

[Q(`m) : Q(`m�(2, m))]
=2,(m)�(2, m).

Suppose [Q(?): Q(?2)]=1. Then - p # Q(`m) and so by the argument
preceding this proposition we have _i (?)=_i (`&

m - q)=( q
i ) ` i&

m - q for all
_i # Gal(Q(`m�(2, m))�Q). The degree of ? is ,(m�(2, m)), so its minimal
polynomial is E

m, ( q
&)=> (X&( q

i ) `&i
m - q) where the product ranges over i

with (i, m�(2, m))=1 and 1�i�m�(2, m). K
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We introduce some notation here. For any prime number l, we write nl

and n(l ) for the l-part and the non-l-part of a positive integer n, respectively.
Let E denote the set of supersingular q-numbers `&

m- q for some
primitive mth root of unity `&

m where p |% m, p{2, and q is not a square,
such that (I) 4 |% m when p#1 mod 4 while (II) 4 & m when p#3 mod 4.

Let Q be the set of supersingular q-numbers `&
m - q for some primitive

mth root of unity `&
m such that either (I) m=1, 2 or (II) q is a square,

(2, p) p |% m and ord( p mod m( p)) is odd. We note that ? # Q (respectively,
E) if and only if C(?)/Q (respectively, E). In other words, these defini-
tions are independent of the choice of ? from its conjugacy class.

For i=1, 2, ..., t, let Ci be conjugacy classes of supersingular q-numbers
with minimal polynomials gi . By Proposition 3.1, Ci=C(`&i

mi
- q) where

mi �2 mod 4 when q is a nonsquare. We order the Ci 's so that m1� } } } �
mt . For i=1, 2, ..., t, let ei be positive integers such that (I) ei�ei+1

when mi=mi+1 and (II) ei is even when ?i=`&i
mi

- q # Q. Under these
conditions, the numbers defined by d :=�i�1 ei deg(gi)�2 and
dE :=� i�1, ?i # E ei deg(g i)�2 are positive integers (see [10, Proposi-
tion 3.3]). These two technically defined numbers will be used in Section 5.

Let R( } , } ) denote the resultant of two polynomials. For any real
number r we denote the largest integer �r by [r].

Lemma 3.2. Let the notation be as above and let d�2. Then

\2dE `
t

i=2

`
i&1

j=1

|R(gi , gj)| ei+ ( p)

<{(2 log(2d&2))2d

(2 log(100d&100))2d

if d>4.35_107;
if d�4.35_107.

Let l be a prime different from p. If q is a nonsquare, we have

1 if l>d;

\2dE `
t

i=2

`
i&1

j=2

|R(gi , g j)| ei+ l
divides {l[(2d&2)�(l&1)] if 2<l�d;

23d&2 if l=2.

If q is a square, we have

\2dE `
t

i=2

`
i&1

j=1

|R(gi , gj)| ei+ l
divides {1

l[(2d&2)�(l&1)]

if l>2d;
if l�2d.

Remark 3.3. The strategy of our proof is first to compute the resultants
of cyclotomic polynomials (in Lemma 3.4) and then to reduce our problem
to the cyclotomic case (see Lemma 3.5). Finally, we apply Lemma 2.1 to
approximate our desired bounds.
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Lemma 3.4. For any positive integers m>n, we have

R(8m , 8n)={(&1),(n) ,(m) l,(n)

1
if m�n is a power of a prime l,
otherwise.

Proof. Let l be a prime number. Write m=m(l ) l: and n=n(l ) l;, then

8m (X)=
8m(l)

(X l :
)

8m(l)
(X l :&1

)
#

8m(l)
(X) l :

8m(l)
(X) l :&1

=8m(l)
(X),(m)�,(m(l)) mod l.

Hence, l | R(8m , 8n) if and only if m(l )=n(l ) , that is, m�n # lZ. Thus we
have |R(8m , 8n)|=1 if m�n is not a prime power. Now assume m(l )=n(l ) .
Then

R \8n (X),
Xm&1
X m�l&1+=R(8n (X), 8l (Xm�l))= `

(i, n)=1

8l (` im�l
n )=l,(n).

According to the factorization (Xm&1)�(Xm�l&1)=8m (X) >s 8m�s (X)
where s ranges over divisors of m(l ) that are not equal to 1, we get

l,(n)= }R \ Xm&1
Xm�l&1

, 8n (X)+}=|R(8m , 8n)| `
s

|R(8m�s , 8n)|.

The last product is trivial since n�(m�s) is not a prime power. This proves
our assertion up to a sign. It remains to show that R(8m , 8n) is positive
if and only if m{2. Indeed, if m�3 then complex conjugation is contained
in Gal(Q(`m)�Q) and so R(8m , 8n)=NQ(`m)�Q (8n (`m)) is positive. If m=2
then it is trivial to see that R(82 , 81)=&2. This finishes our proof. K

Let E� be the complement of E in the set of all supersingular q-numbers
with nonsquare q.

Lemma 3.5. Let the notation be as in Lemma 3.2,

\`
i> j

|R(gi , gj)| ei+ ( p)

divides 2
( p)

[ :
?i # E�

ei deg( gi)�2]

`
i�2, l | 2mi

l[ei deg(gi)�(l&1)]
( p) .

Proof. (a) Denote by F the set of ?i 's with mi=mi+1 . Let l be a
prime different from p. For any fixed ?i , by Lemma 3.5, the product
> |R(8mi

, 8mj
)| l over all j with 1� j�i&1, ? j � F attains its maximum
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when each mj=mi �li& j. In this case we have � i&1
j=1 ,(mj)�,(mi �l )+

,(mi �l2)+ } } } +,(mi �l i&1)�,(mi)�(l&1). Hence

`
1� j�i&1, ?j � F

|R(8mi
, 8mj

)| l divides l,(mi)�(l&1) for prime l | m i . (8)

(b) Assume q is a square. Since F is empty, by Proposition 3.1(I),

`
i> j

|R(g i , gj)| ei
( p)= `

i> j

|R(9mi
, 9mj

)| ei
( p)= `

i> j

|R(8mi
, 8mj

)| ei
( p) ,

which divides >i�2, l | mi
l[ei deg(gi)�(l&1)]

( p) by (8). This proves the lemma in the
case.

(c) Assume q is a nonsquare. Then ?i # F if and only if the pairs ? i ,
?i+1 have minimal polynomials gi=Emi , \1 and gi+1=Emi , �1 . Since the
product > i> j |R(g i , gj)| ei

( p) divides

`
?i&1 # F

|R(Emi , 1 , Emi , &1)| ei
( p) `

i> j, ?j � F

|R(g i , Gmj
)| ei

( p) ,

it suffices to show that the two divisibilities

`
?i&1 # F

|R(Emi , 1 , Emi , &1)| ei
( p) divides 2

( p)

[ :
?i # E�

ei deg( gi)�2]

(9)

`
i> j, ?j � F

|R(gi , Gmj
)| ei

( p) divides l[ei deg(gi)�(l&1)]
( p) (10)

hold. We first prove (9): Let _ and $ range over the embeddings of Q(? i)
in C. By (7) we have

`
?i&1 # F

|R(Emi , 1 , Emi , &1)| ei
( pi)

= `

_, $
?i&1 # F

|?_
i &(&?i)

$| ei
( p) .

Splitting the product into two parts according to _=$ and _{$, they are

= `
?i&1 # F, _

|2?_
i | ei

( p) } `
?i&1 # F, _{$ }

?2_
i &?2$

i

?_
i &?$

i }
ei

( p)

=2
( p)

[ :
?i&1 # F

ei deg( gi)]

} `
?i&1 # F

}
2Z[?i

2]�Z

2Z[?i]�Z }
ei

( p)

.
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The last product is trivial since the inclusion chain Z[?2
i ]=

Z[q`mi�(2, mi)
]�Z[?i]�Z[`mi�(2, mi)

] has p-power index. Note that ?i&1 # F

implies ?i&1 , ?i # E� ; but ei&1�e i by our hypothesis, so we have

:
?i&1 # F

e i deg(gi)� :
?i # E�

ei deg(gi)�2.

Then (9) follows.
Second, we prove (10): Let n(2, p) denote the non-2 and non-p part of the

integer n. Now we claim that for any i> j,

`
?j � F

|R(g i , Gmj
)| ( p) divides 2deg(gi) `

?j � F

|R(8mi
, 8mj

)|
deg(gi)�,(mi)
(2, p) .

By Proposition 3.1(II), it suffices to consider the following two cases:

Case 1. Suppose gi=Gmi
. By the definition in (6), we have

|R(Gmi
, Gmj

)| ( p)=|R(8mi
(X 2�(2, mi)), 8mj

(X2�(2, mj)))| ( p) .

Note that 8mi
(X 2)=8mi

(X) 82mi
(X) when 2 |% mi . Further calculations via

Lemma 3.4 and (8) yield that

`
?j � F

|R(Gmi
, Gmj

)| ( p) divides 2deg(Gmi
) `

?j � F

|R(8mi
, 8mj

)| 2�(2, mi)
(2, p) .

Note that deg(Gmi
)�,(mi)=2�(2, mi). Thus (11) holds.

Case 2. Suppose gi=Emi , \1 . From (6) and (7), Gmi
=Emi , 1Emi , &1 and

|R(Emi , 1 , Gmj
)| ( p)=|R(Emi , &1 , Gmj

)| ( p) , so we have

|R(Emi , \1 , Gmj
)| ( p)=|R(Gmi

, Gmj
)| 1�2

( p) .

But deg(Emi , \1)=deg(Gmi
)�2, thus (11) follows from Case 1.

By (11) and (8), the divisibility in (10) follows. This finishes our
proof. K

Proof of Lemma 3.2. If t=1, then 2dE > i> j |R(gi , gj)|ei=2dE divides 2d

since dE �d. In this case it is straightforward to verify our assertion. For
the rest of the proof we assume that t�2. We shall prove the local bound
first. Below let l{ p.

(I) Let q be a nonsquare. Let l>d�2. We claim that >i> j |R(gi , gj)|
ei
l

=1. Suppose the contrary. By Lemma 3.5, we have that l | mi for some i.
Suppose mi=l or 2l, then Q(?i){Q(?2

i ) and so gi=Gmi
by Proposi-

tion 3.1(III). Thence d�deg(gi)�2+1=,(mi)+1=l, which contradicts
our assumption that l>d. Suppose mi�3l, then l�,(mi)�2+1�
deg(gi)�2+1�d which is absurd.
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Let q be a square. Let l>2d. We claim that >i> j |R(gi , gj)| ei
l =1. Sup-

pose the contrary, that there are i and j such that mi �mj=ls for some
integer s>0. Then 2d�,(mi)+,(mj)=,(lsmj)+,(mj)�l, which leads to
a contradiction.

Second, if l>2 or q is a square, then by Lemma 3.5 the l-exponent of
2dE >i> j |R(gi , gj)|

ei�[(�i�2 ei deg(gi))�(l&1)]�[(2d&2)�(l&1)] since
e1 deg(g1)�2.

Similarly, by Lemma 3.5, the 2-exponent of 2dE >i> j |R(gi , gj)| ei
2 is less

than or equal to �?i # E ei deg(gi)�2+�?i # E� ei deg(gi)�2+� i ei deg(gi)�
3d&2.

(II) Now we prove the global bound. Let m$i be the non-2-part of mi .
Let the notation be as in Lemma 3.5; (2dE >i> j |R(g i , gj)| ei) ( p) divides

2[(�i ei deg(gi))�2] `
l | 2m$i

l[(ei deg(gi))�(l&1)]

<2d `
i \ `

l | 2m$i

l1�(l&1)+
ei deg(gi)

.

Note that ,(2m$i)=,(m$i)�2d&2, so by Lemma 2.1 we have

`
l | 2m$i

l1�(l&1)<log(50,(2m$i))<log(100d&100).

Thus

\2dE `
i> j

|R(gi , gj)| ei+ ( p)

<2d (log(100d&100))�i ei deg(gi)

�(2 log(100d&100))2d.

Now assume that d>4.35_107. If 2m$i>n0 then Lemma 2.1 implies that
>l | 2m$i

l1�(l&1)<log(2d&2). Otherwise, by inequality (1) in the proof of the
same lemma and explicit computation, >l | 2m$i

l1�(l&1)�>9
i=1 p1�( pi&1)

i <
log(2d&2). Therefore,

2d `
i \ `

l | 2m$i

l1�(l&1)+
ei deg(gi)

<2d (log(2d&2))2d<(2 log(2d&2))2d.

This finishes our proof. K

Example 3.6. Those local upper bounds in Lemma 3.2 are sharp. The
second bound is achieved in the following example: Let q be a square. Let
l be an odd prime different from p. Let ?i=`l i&1 - q and ei be even positive
integers for i=1, ..., t. Then we have 2dE > i> j |R(g i , gj)| ei

l =l (2d&2)�(l&1).
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Here is a nontrivial example in which the third bound is approached
very closely: Consider ?1=`3 - 3, ?2=`12 - 3, ?3=`7

12 - 3. It can be
checked that ?i # E� , so 2dE >i> j R(gi , gj)

ej=22e2+4e3, while 23d&2=
26e1+3e2+3e3&2.

4. TORSION-FREE MODULES AND FIBRE PRODUCTS

All rings are commutative with 1. Let t�2. Let ai be an ideal of a ring
Ri for i=1, ..., t. Inductively the fibre product R1_R2 �a2

R2_ } } } _Rt�at
Rt is

R$t&1_Rt�at
Rt :=[(r$t&1 , rt) # R$t&1_Rt | #t (r$t&1+a$t&1)=rt+at],

where R$t&1=R1 _R2 �a2
R2_ } } } _Rt&1 �at&1

Rt&1 has an ideal a$t&1 such that

there is an isomorphism R$t&1 �a$t&1 w�
#t Rt�at .

Given an Ri -module Mi with a submodule Ni $aiMi for i=1, ..., t,
define the fibre product of modules M1 _M2 �N2

M2_ } } } _Mt�Nt
Mt

analogously as

M$t&1_Mt�Nt
Mt

:=[(x$t&1 , xt) # M$t&1_Mt | %t (x$t&1+N$t&1)=(xt+Nt)],

where M$t&1=M1 _M2 �N2
M2 _ } } } _Mt&1 �Nt&1

Mt&1 has a submodule
N$t&1 $at&1 Mt&1 such that there is a #t -linear isomorphism %t :
M$t&1 �N$t&1 � Mt �Nt . (Note that #t -linear means that %tr$t&1=(#t r$t&1) %t

for every r$t&1 # R$t&1 .) Then we see that M1 _M2 �N2
M2_ } } } _Mt�Nt

Mt is a
module over R1 _R2 �a2

R2 _ } } } _Rt�at
Rt .

We have the following Goursat's Lemma for rings (also see [4, Exercise
5, p. 75] for Goursat's Lemma for groups).

Lemma 4.1. Let R1 , ..., Rt be rings. Suppose R is a subring of > t
i=1 R i

such that the projections R w�
\i R i are surjective. Let R$i be the image of the

projection R � > i
j=1 Rj . Denote the projection maps from R$i to R$i&1 and Ri

by \$i&1 and \i" , respectively. We may identify ai=Ker(\$i&1) and
a$i&1=Ker(\i") with ideals in Ri and R$i&1 , respectively. We obtain
isomorphisms R$i&1 �a$i&1 w�

#i Ri �ai for i=2, ..., t which define an isomorphism
R$R1_R2 �a2

R2 _ } } } _Rt�at
Rt . As abelian groups, (R$i&1_Ri)�R$i $Ri �ai

for i=2, ..., t.

Proof. From the inductive definition of the fibre product, it suffices to
prove the lemma for t=2. It is clear that a$1=R & (R1_[0]), and by
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assumption it can be identified with an ideal in R1 . Similarly, we identify
a2 with an ideal in R2 . Thus a$1_a2 is the largest ideal of R1_R2 that is
also an ideal in R. The natural map %: R � R1 �a$1 _R2 �a2 defines an
isomorphism #: R1 �a$1 � R2 �a2 whose graph is the image of R. In fact, if
two elements (r1 , r2), (r1 , r3) # R1_R2 lie in R, then (0, r2&r3) # R. Hence
r2&r3 # a2 . This shows that # is well-defined. Using the same argument, we
see that # is injective and surjective. From our construction R1_R2 �a2

R2 is
exactly the pullback of the map % and hence is identical to R. K

We have an analogous Goursat's Lemma for modules.

Lemma 4.2. Let R be as in Lemma 4.1. Let Mi be an Ri -module and M
be an R-submodule of >t

i=1 Mi such that the projections M w�
*i Mi are sur-

jective. Let M$i denote the image of the projection M � > i
j=1 Mj . Denote the

projection maps from M$i to M$i&1 and Mi by *$i&1 and * i" , respectively. We
may identify Ni=Ker(*$i&1) and N$i&1=Ker(*i") with submodules of Mi and
M$i&1 , respectively. We obtain #i -linear isomorphisms M$i&1�N$i&1 w�

%i Mi �Ni

which define an R-module isomorphism M$M1_M2 �N2
M2_ } } } _Mt�Nt

Mt .

Remark 4.3. Any subring R of >t
i=1 Ri with surjective projections R �

Ri is isomorphic to a fibre product of R1 , ..., Rt as defined in Lemma 4.1.
For the rest of the paper we define the fibre product R=R1_R2 �a2

R2_ } } } _Rt�at
Rt by the projections R w�

\i Ri . Similarly, we define a fibre
product of Ri -modules Mi by the projections M w�

\i Mi .

Assume that all modules are finitely generated. Let l be a prime. Suppose
K is a finite-dimensional separable Ql -algebra. Let R be an Zl -order in K,
that is, a Zl -algebra that spans K over Ql . An R-module M is torsion-free
if :m{0 for all non-zerodivisor : # R&[0] and m # M&[0]. (If R is a
domain then this is equivalent to the standard notation.) If M is a torsion-
free R-module, then there is a natural injective map M � M�R K; if
moreover M�R K$K e for some integer e then we say that M is of rank e.
See [10, Lemma 3.6] for the proof of the following auxiliary lemma.

Lemma 4.4. Let R, K be as above. Let r # R&[0] be a nonzero divisor.
Let M�M$ be torsion-free R-modules of rank e, then *M�rM=
(*(R�rR))e. There exist homomorphisms \: M�rM � M$�rM$ and \$: M$�rM$
� M�rM with *Ker(\)=*Coker(\) and *Ker(\$)=*Coker(\$) dividing
*(M$�M).

Proposition 4.5. For i=1, ..., t, let Ri be a Zl -order in a separable
Ql -algebra Ki . Let ai be an ideal in Ri such that R=R1_R2 �a2
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R2_ } } } _Rt�at
Rt . Let M be a torsion-free R-module, and denote by Mi the

image of the injection M � (M�Zp
Qp)�K Ki . The projections M � Mi

define an R-module isomorphism M $ M1_M2 �N2
M2_ } } } _Mt �Nt

Mt

for some Ri -submodules N i in Mi . Further, if Mi is of rank ei then
*((>t

i=1 Mi)�M) divides > t
i=2 *(Ri �a i)

ei.

Proof. By hypothesis, M�>t
i=1 Mi . We use induction on t to

show that M is the desired fibre product and *((> t
i=1 Mi)�M)=

>t
i=2 *(Mi �Ni). Suppose t=2. By Lemma 4.2, M$M1_M2 �N2

M2 for
some submodule N2 . Write a=a1_a2 . Since M1 _M2 �N2

M2=M$aM=
a(R1_R2) M=a(M1_M2)=a1M1 _a2M2 , we get a1M1 �N1 , a2 M2

�N2 and *((M1_M2)�M)=*(M2 �N2). Denote by M$i the image of the
projection M � > i

j=1 Mj . Suppose there are Ri -submodules Ni in Mi such
that, for i=2, ..., t&1, we have M$i=M1_M2 �N2

M2_ } } } _Mi �Ni
Mi , and

*(> i&1
j=1 Mj)�M$i&1=> i&1

j=2 (*Mj �Nj). Then M$M$t&1_Mt�Nt
Mt and

*\\`
t

i=1

Mi+<M+=*\\ `
t&1

i=1

Mi+<M$t&1+ } *\\M$t&1 _Mt+<M+
=\`

t&1

i=2

*(Mi �Ni)+ } *(Mt �Nt)

= `
t

i=2

*(Mi �Ni).

This finishes our induction. But we have *(Mi �N i) | *(Mi �aiMi)=
*(Ri �ai)

ei by Lemma 4.4, so our assertion follows. K

Below is an explicit example of a fibre product of rings.

Proposition 4.6. Let g1 , ..., gt # Z[X] be arbitrary monic polynomials
in one variable such that (gi , gj)=1 in Q[X] for i{ j. Denote by ? and ?i

the images of X in the Z-algebras Z[X]�(> t
i=1 gi) and Z[X]�(gi), respec-

tively. Let R=Z[?] l , Ri=Z[?i] l , and a i=(> i&1
j=1 gj (? i)) R i . The natural

projections R w�
\i R i define an isomorphism R$R1_R2 �a2

R2_ } } } _Rt�at
Rt

such that *Ri �ai=> i&1
j=1 |R(g i , g j)| l for all i�2.

Proof. Sending ? to (?1 , ..., ?t) defines a ring homomorphism R �
>t

i=1 Ri . It is injective since (gi , gj)=1 for all i{ j. For each i, this
map induces surjective projections R � Ri . The asserted isomorphism
follows from induction on t by invoking Lemma 4.1. Thus *Ri�ai=
*Ri �> i&1

j=1 gj (?i))=> i&1
j=1 |NQ(?i)�Q

(gj (?i))| l=> i&1
j=1 |R(gj , g i)| l . K
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5. ARBITRARY SUPERSINGULAR ABELIAN VARIETIES

In this section, we shall prove Theorems 1.1 and 1.2. We denote by A[n]
the subgroup of A(k� ) consisting of all points of order dividing n. Let l be
a prime { p. Let Tl :=Tl A be the l-adic Tate module of A and Vl :=
Tl �Zl

Ql . There is a k-isogeny A w�
# > t

i=1 Ai , where Ai is an elementary
abelian variety with characteristic polynomial gei

i as in Section 1. Let Q[?]
be the Q-subalgebra generated by ? in the endomorphism algebra of A.
Write R :=Z[?] and Ri :=Z[?]�gi (?) Z[?]. Let Rl and Rl, i be the l-adic
completions of R and Ri , respectively. The isogeny # gives an isomorphism
of Q[?]-modules, Vl [ > t

i=1 Vl (Ai), and an injective map of R-modules,
Tl w�

# > t
i=1 T l (Ai). The image of # in T l (Ai), denoted by Tl, i , is an

Rl, i -submodule of finite index. We assume that Ai has been chosen in such
a way that # maps surjectively onto Tl (Ai), that is Rl, i=Tl (A i). This can
be seen from an elementary lemma below.

Lemma 5.1. For every Z[?] l -submodule M of finite index in TlA,
there is an abelian variety A$ over k and a k-isogeny A$ w�: A such that
:Tl A$=M.

Proof. Choose n so large that lnTlA�M. Let G be the image of
M�lnTlA in the isomorphism TlA�lnTlA w�

\ A[ln]. Since G has a Gal(k� �k)-
module structure and has order dividing ln (coprime to p), it determines a
finite e� tale subgroup scheme G of A over k with G(k� )=G. Let A$ :=A�G.
So the isogeny A w�l

n
A factors through A w�

; A$ and we have A w�;

A$ w�: A with :;=ln. Note that :T lA$$lnTlA. It is clear that : maps
Tl A$�;TlA onto :TlA$�lnTlA, whose image in \ is exactly G=Ker(;)(k� ).
Therefore, we have :TlA$=M. K

Clearly, Tl is a torsion-free Rl-module. Let ?i be the image of ? in
Q[?]�(gi (?)). Then Q[?]�(gi (?))=Q(?i) is actually a field, and we fix
their embedding in C. Since Vl (Ai)$ Q(?i)l

Q(? i)
ei
l , we note that Tl, i is a

torsion-free Rl, i -module of rank ei for each i.

Lemma 5.2. Let the notation be as above. Let r # R be a non-zerodivisor.
There is an Rl -module homomorphism

.l : Tl �rTl w�:l `
t

i=1

(Tl, i �rT l, i) w�;l `
t

i=1

(Rl, i �rRl, i)
ei

with *Ker(.l)=*Coker(.l) dividing (2dE > t
i=2 > i&1

j=1 |R(g i , gj)| ei) l .
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Proof. By Propositions 4.5 and 4.6, Rl=Rl, 1 _Rl, 2�a2
Rl, 2 _ } } } _Rl, t �at

Rl, t

and Tl $Tl, 1 _Tl, 2 �Nl, 2
Tl, 2_ } } } _Tl, t �Nl, t

Tl, t for some R l, i -submodules N l, i

in Tl, i such that

*\\`
t

i=1

Tl, i+<Tl+ divides `
t

i=2

`
i&1

j=1

|R(g i , g j)| ei
l . (12)

Applying Lemma 4.4., there is a map :l with *Ker(:l)=*Coker(:l)
dividing >t

i=2 > i&1
j=1 |R(gi , gj)| ei

l . On the other hand, by [10, Proposi-
tion 3.11], we have *(Tl, i �Rei

l, i) | 2ei deg(gi)�2 if (l, ?i) # [2]_E: it equals 1
otherwise. Applying Lemma 4.4 again, we get a map ;l with *Ker(;l)=
*Coker(;l) dividing

`
t

i=1

*(Tl, i �Rei
l, i)= `

?i # E

2ei deg(gi)�2
l =2dE

l . (13)

Hence the composition map .l=;l } :l has *Ker(.l)=*Coker(.l) divid-
ing the product of the last numbers of (12) and (13). K

Remark 5.3. If we order the ei such that e1�e2� } } } �et and denote
by R$l, i the image of the projection R l � Rl, 1_ } } } _Rl, i , then the
divisibility in (12) is actually equality if Tl, i $Rl , i

Rei
l, i and

Tl $Rl
Re1&e2

l, 1 _(R$l, 2)e2&e3_(R$l, 3)e3&e4_ } } } _(R$l, t&1)et&1&et_Ret
l .

Proof of Theorem 1.1. Suppose d=dim A�2. Noting that the l-Sylow
subgroup of A(k) is isomorphic to Tl �(?&1) Tl and that the p-Sylow sub-
group is trivial, we define . :=>l{ p . l , with the .l as in Lemma 5.2. Our
assertion follows from Lemmas 5.2 and 3.2. K

The proof of Theorem 1.2 is almost identical to that of [10,
Theorem 1.2]. We provide a sketch of its proof. For any integer n coprime
to p we find an R-module homomorphism A[n] � > t

i=1 (Ri �nRi)
ei with

kernel and cokernel bounded as in the assertion. These bounds do not
depend on n. After taking the suitable injective limit on both sides over n
we get the desired homomorphism . with the same bounds.
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