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We employ a recently proposed model [Murisic et. al, JFM 2013] to study a finite-volume,
particle-laden thin film flowing under gravity on an incline. For negatively buoyant particles with
concentration above a critical value, the similarity solution is of the rarefaction-singular shock type.
We investigate the structure in detail and find that the particle/fluid front advances linearly to
the leading order with time to the one-third power as predicted by the Huppert solution [Huppert,
Nature 1982] for clear fluid (i.e. in the absence of particles). We also explore a deviation from this
law when the particle concentration is high. Both results are carried over for the buoyant particles
with any concentrations. We conduct several experiments with both buoyant and negatively buoyant
particles whose results qualitatively agree with the theoretics.

I. INTRODUCTION

Mixtures of particles in viscous liquid, despite their wide range of industrial and geophysical applications
[1, 2], have received far less attention than homogeneous flows [3, 4] and granular flows [5, 6]. Previous
work has focused on sedimentation of a uniform suspension of particles in a quiescent bulk flow [7–9]. For
gravitational transport of particles within a thin film of viscous oil, the authors in [10, 11] first derived a
lubrication model considering the effects of gravity, capillarity and hindered settling. In a subsequent study
[12, 13], the authors took into account the effect of shear-induced migration which successfully captured the
three different regimes observed in physical experiments carried out using slurries composed of negatively
buoyant particles. The three regimes are referred to as ‘settled’, where the particles settle to the substrate
with clear fluid flowing over them, ‘ridged’, where the particles accumulate at the front of the flow and
‘well-mixed’, which is a transient, intermediate regime (see [13, 14] for more details). Recent experimental
work [15] investigates the development of the above-mentioned regimes for bidisperse slurries composed of
negatively buoyant particles, with one species being heavier than the other. The authors conclude that, in
the ‘settled’ regime, they observe stratification of particles by densities, due to the dominant gravitational
effects. For slurries composed of buoyant particles, only the ‘ridged’ regime is observed experimentally.

The front position, among the macroscopic flow features, is of paramount importance as it yields insight
into the behavior of the various flow patterns. In [16], extensive experiments are carried out with qualitative
trends suggesting that, although the presence of particles affects the geometry of the propagating front
significantly, the measured average position versus time shows self-similar behavior as observed by Huppert
[3] in the study of clear, thin films. For neutrally buoyant particles, [17] gives a detailed experimental study
over a wide range of system parameters such as the particle concentration and the incline of the slope. The
authors address the role the particle migration plays in the shape of the velocity profile as well as the good
performance of the lubrication theory in predicting the fluid height and front position. A first attempt to
analyze this observation is given in [18], wherein the role of the precursor is addressed for a homogeneous
fluid, but the system of conservation laws describing the flow of slurry mixtures, especially in the high
concentration limit, lacks analysis.

Our analysis shares some similarity with the work carried out by Grunewald et al. [18]. The authors
employ a lubrication model for negatively buoyant particles, which does not incorporate all the relevant
physics of the problem; this is evident by its failure to capture the existence of the ‘settled’ regime at low
total particle concentrations. In the analysis presented in the current paper, we employ an ‘equilibrium
model’ [13], which has shown excellent agreement with physical experiments. We consider constant volume
initial data, for both negatively buoyant particles (focussing on the ‘ridged’ regime) and buoyant particles,
which leads to a self-similar solution of rarefaction-singular shock type. We approximate the rarefaction
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wave in concentration by its value at ξ = 0, where ξ = x
t , to the leading order, and recover the fact that

the particle/fluid front position moves linearly with time to the one-third power. We also derive a general
relationship between time and moving contact line without approximation, which shows a slight deviation
from the one-third power law. The singular mass corresponding to the particle-rich ridge is shown to converge
to a constant and we give an upper bound for it.

The rest of the paper is organized as follows. In Sec. II, we study in detail the rarefaction-singular shock
structure for the two cases: (i) for negatively buoyant particles with concentration higher than the critical
value and (ii) for buoyant particles. Since the latter case lacks analysis, we summarize the properties of its
equilibrium model as well as the formation of the singular shock. In Section III, we discuss comparisons
between experimental and theoretical results for suspensions composed of PDMS oil and small, noncolloidal
particles. Concluding remarks are given in Section IV.

II. SIMILARITY THEORY

We use a theoretical model, derived in detail in [13], to describe the spatio-temporal evolution of a
slurry mixture composed of silicon oil and noncolloidal particles. A schematic of the apparatus used in the
experiments is shown in Fig. 1, where x is the axial flow direction, z is the direction normal to the flow and
α denotes the plane angle of inclination. We note that the width of the plane is considered to be infinitely
wide and, hence, any transverse effects are assumed to be negligible.
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Figure 1: Schematic plot of the geometry of the setup.

The mathematical model consists of a 2×2 system of conservation laws which describe the evolution of
the film thickness, h(x, t), and integrated particle volume, n(x, t), as follows:

ht +
(

h3f (φ0)
)

x
= 0, nt +

(

h3g (φ0)
)

x
= 0, (1)

where φ0(x, t) =
n

h
∈ [0, φmax] is the particle volume fraction. Here φmax is the particles’ maximum

packing fraction. Since the equilibrium equations are independent of the axial flow and time, we introduce
a new variable s = z

h(t,x) with 0 ≤ s ≤ 1 to eliminate the implicit dependence on h(x, t). The fluxes,

f (φ0) =
∫ 1

0
u(x, t; s)ds and g (φ0) =

∫ 1

0
φ(x, t; s), are a result of the equilibrium model for particle settling
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and resuspension, which takes the following form:



























(

1 + C1
φ

φmax − φ

)

σφ′ + C2 − (C2 + 1)φ− ρsφ
2 = 0, (2a)

σ′ = −(1 + ρsφ), (2b)

σ(1) = 0, (2c)

σ(0) = 1 + ρsφ0(x, t). (2d)

Here ρs =
ρpar−ρliq

ρliq
, C1 = 2(Kv−Kc)

Kv
, C2 = 2ρs cotα

9Kc
and σ(x, t; s) is the shear stress. The equilibrium model

(2) gives solutions for φ(s) and σ(s) which need to be updated at every point in x. Using the aforementioned
equilibrium solutions, we construct the suspension velocity u as follows:

u′(x, t; s) =
σ(x, t; s)

µ (φ(x, t; s))
, u(x, t; 0) = 0. (3)

This model, derived systematically on an equilibrium theory [13], applies to both buoyant and negatively
buoyant particles with different parameters. For negatively buoyant particles, the equilibrium system (2)
has an unstable critical value for the particle concentration, which leads to three different regimes observed
in the experiments: settled (< critical value), mixed (=critical value) and ridged (> critical value). The
three regimes are shown in Fig. 2 for negatively buoyant particles.

Figure 2: Flow regime patterns emerging from a fixed volume of silicon oil laden with negatively buoyant beads. Here,
the particle volume fraction is fixed at 0.40 while the plane angle of inclination is varied from 15◦ (left) to 30◦ (middle)
to 45◦ (right) corresponding to the ‘settled’, ‘well-mixed’ and ‘ridged’ regime, respectively. In the ‘settled’ regime,
clear fluid (shown in yellow) flows over the particle-rich fluid while in the ‘ridged’ regime, the particles accumulate at
the front forming a particle-rich ridge. The middle panel shows an intermediate regime where the particles remain
well mixed in the fluid. The images show the patterns at their fully developed state. The experiments were run in
the Applied Mathematics Laboratory at University California, Los Angeles (UCLA).

Some analysis for these different regimes are available in [19], and also in [20] with emphasis on the
exploration of singular shock in ridged regime. For buoyant particles, it is shown that all particles move to
the free surface and form a particle-rich ridge for any value of the particle concentration.
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A. Negatively buoyant particles

In this section, we consider the flow of a mixture of oil and negatively buoyant particles described mathe-
matically by Eqs. (1)–(2) with conserved volume initial data

h(0, x) =

{

hI , for 0 ≤ x ≤ xI = 1,
0, elsewhere,

φ0(0, x) = φI , n(0, x) = φIh(0, x). (4)

Here, we focus on the high concentration case, i.e., φI > φcrit. Figure 3 shows the numerical solution using
the initial data given by Eq. (4) [shown in panel (a)]. In panel (b), we show the solution for h and n at
t = 65 characterized by a shock followed by a rarefaction. Finally, in panel (c), we show the solution for the
particle volume fraction, φ0 at t = 65.
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Figure 3: (a) Initial profile for h representing a finite volume setup. (b) Numerical solution for h and n at t = 65.
(c) Numerical solution for φ0 at t = 65. The plane angle of inclination was chosen as α = 30o and the initial total
volume fraction was set to φ0 = 0.5.

The shock dynamics have been extensively studied in [10, 19, 20], while the analysis for rarefaction is
briefly mentioned in [19]. Here, we begin our discussion with the rarefaction theory. The Jacobian of the
hyperbolic system (1) is given by

J = h2

(

3f − φ0f
′ f ′

3g − φ0g
′ g′

)

:= h2J̃ . (5)

For a given state (hI , nI), the sets of the states (hr, nr) that can be connected to (hI , nI) by a rarefaction

curve lie on the integral curve, which is defined as

(

h′
r(ξ)

n′
r(ξ)

)

= r̃i(φr)

∇(h2
rλ̃i(φr))·r̃i(φr)

, i = 1, 2, where λ̃i and

r̃i are the eigenvalues and corresponding eigenvectors for J̃ . A typical plot of the integral curve for a given
right state (hR, nR) = (1, 0.5) is displayed in Fig. 4, where the dashed curve refers to the 1-wave and solid
curve refers to the 2-wave.

Figures 3 and 4 suggest that the solution for system (1)–(2) with initial data (4) is a 2-rarefaction following
a singular shock. Therefore, the rarefaction wave (hr(ξ), nr(ξ)) takes the form

(

h′
r(ξ)

n′
r(ξ)

)

=
r̃2(φr)

∇
(

h2
rλ̃2(φr)

)

· r̃2(φr)
=

r̃2(φr(ξ))

hr(ξ)
(

2λ̃2(φr)− φrλ̃
′
2(φr), λ̃′

2(φr)
)

· r̃2(φr(ξ))
, (6)

with the right boundary condition

hr

(xliq

t

)

= hliq, nr

(xpar

t

)

= npar, (7)

where the subscripts ‘liq’ and ‘par’ represent liquid and particle, respectively. Here λ̃2 and r̃2 represent the
larger eigenvalue and corresponding eigenvector to matrix J̃ .

We claim that the solution to (6)–(7) satisfies hr(0) = 0, nr(0) = 0. This is obtained by noticing that

the rarefaction wave satisfies the relation ξ = x
t = h2

r(ξ)λ̃2(φr(ξ)), where h2
r(ξ)λ̃2(φr(ξ)) is the eigenvalue
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Figure 4: Rarefaction integral curve for a given right state (hR, φR) = (1, 0.5) (shown by a circle marker). The dashed
curve refers to the 1-wave and the solid curve refers to the 2-wave.

of system (1) and λ̃(φr(ξ)) is checked to be nonzero, thus hr(ξ = 0) = 0. Moreover, if nr(0) 6= 0, we have

φr(0) =
nr(0)
hr(0)

= ∞, which is physically unrealistic.

Next, we compute φr(0) using

φr(0) =
n′
r(0)

h′
r(0)

=
r
(2)
2 (φr(0))

r
(1)
r (φr(0))

=
λ̃2(φr(0))− (3f(φr(0))− φr(0)f

′(φr(0)))

f ′(φr(0))
, (8)

by noting that n′
r(0) = h′

r(0)φr(0). Therefore, λ̃2(φr(0)) = 3f(φr(0)) and thus φr(0) = φcrit. Now,
approximate φ0 at the leading order: ξ near 0, i.e., φr(ξ) ≃ φr(0), (6) becomes

h′
r(ξ) ≃ 1

hr(ξ)

r
(1)
2 (φr(0))

(

2λ̃2(φr(0))− φr(0)λ̃′
2(φr(0)), λ̃′

2(φr(0))
)

· r2(φr(0))
:=

1

hr(ξ)
A, (9)

n′
r(ξ) ≃ 1

nr(ξ)

r
(2)
2 (φr(0))φr(0)

(

2λ̃2(φr(0))− φr(0)λ̃′
2(φr(0)), λ̃′

2(φr(0))
)

· r2(φr(0))
:=

1

nr(ξ)
B, (10)

therefore

hr(ξ) ≃
√
2A
√

ξ, nr(ξ) ≃
√
2B
√

ξ. (11)

The singular shock formation for negatively buoyant particles with high concentration is well studied in
[20]. In the presence of the singularity at the wave front, the mass of the mixture and particles (h and
n) accumulate in the singular region, and the accumulation rate satisfies the generalized Rakine-Hugoniot
condition [21]. More precisely, we define the singular mass as

Mh(t) =

∫

|x−st|<δ

h(t, x)dx, Mn(t) =

∫

|x−st|<δ

n(t, x)dx, (12)

where s is the shock speed. Then, the growth rate satisfies

dMh

dt
= s[h]−

[

h3f
(n

h

)]

,
dMn

dt
= s[n]−

[

h3g
(n

h

)]

. (13)
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where [⋆] = ⋆R − ⋆L. Now, using the conservation of mass, we have

t

∫
xs
t

0

√
2A
√

ξdξ +Mh(t) = hIxI , (14)

t

∫
xs
t

0

√
2B
√

ξdξ + φmaxMh(t) = φIhIxI , (15)

for any t, and xs(t) is the shock position. Here, we make use of the fact that the singular mass in n and
h satisfy the relationship Mn(t) = φmaxMh(t) as explained in [20]. Notice that when φr(0) = φcrit, the

2-eigenvalue and 2-eigenvector is λ2 = 3f(φcrit), r2 = (1 φcrit)
T
. Therefore, B = φ2

critA, and the following
relations are satisfied

Mh(t) =
(φI − φcrit)hIxI

φmax − φcrit
, xs =

(

(φmax − φI)hIxI

2
3

√
2A(φmax − φcrit)

)
2

3

t
1

3 := C0
s t

1

3 . (16)

Further simplification leads to

xs =

[

(1 + ρsφcrit)

(

1− φI

φmax

)2
9h2

Ix
2
I

4

]
1

3

t
1

3 , (17)

where we use the fact that A = 1
6f(φcrit)

obtained from (9). This is reminiscent of Huppert’s formula for the

clear fluid [3], which may be applied to the well-mixed particle-laden flow with concentration φI , such that

xs =

[

(1 + ρsφI)

(

1− φI

φmax

)2
9h2

Ix
2
I

4

]
1

3

t
1

3 . (18)

Then a comparison of (17) and (18) implies that the effects of particle settling and resuspension slow down
the advancing flow a little bit. Another observation is that the coefficient in (17) decreases as φI increases,
which is consistent with the experimental results discussed by Ward et al. [16]. We have shown the particle

(liquid) front position versus time
1

3 in Fig. 5(a), where the solid line is obtained by solving the system of
conservation laws (1) and the dashed line has a slope given by (17). We observe that (17), is somewhat
underestimated due to the approximation (11) being only accurate to the leading order.

In fact, we can have a more precise result without doing the approximation. The shock position satisfies
the following relation due to the singular shock speed formula in [20]:

x′
s(t) =

φmaxh
3
r(ξ)f(φr)− h3

r(ξ)g(φr)

φmaxhr − hrφr
=

φmaxf(φr)− g(φr)

(φmax − φr)λ̃2(φr)

xs

t
:= Pc

xs

t
, (19)

where we have used relation ξ = x
t = h2

r(ξ)λ̃2(φr(ξ)). This implies xs(t) ∝ tPc , where Pc is given in Fig. 5.

Here, one observes that Pc is around 1
3 for φ0 > φcrit. Then, the conservation of mass

t

∫
xs
t

0

hr(ξ)dξ +Mh(t) = hIxI , t

∫
xs
t

0

nr(ξ)dξ + φmaxMh(t) = hIxIφI

gives rise to hr(ξ) ∝ ξα and nr(ξ) ∝ ξα with α = Pc

1−Pc
. Moreover, we obtain the form of the singular mass:

Mh(t) =
φI−φr

φmax−φr
hI with φr ∈ [φcrit, φI ], which implies the following upper bound

0 ≤ Mh(t) ≤ hI min

{

φI − φcrit

φmax − φcrit
, φI

}

. (20)
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Figure 5: (a) Plots of position xpar/liq versus time1/3 for different concentration φ0 = 0.5, 0.55, 0.6. Grey solid lines:
numerical simulation of (1). Black dash lines: slope calculated from (16). (b) Plots of Pc in (19). The plane angle of
inclination was chosen as α = 30◦.

B. Buoyant particles

In this section we consider suspensions with buoyant particles. The model for particle suspension remains

the same as in (1)–(2) but with different parameters: ρs =
ρpar−ρliq

ρliq
< 0. Then, C1 = 2(Kv−Kc)

Kv
> 0,

C2 = 2ρs cotα
9Kc

< 0. It is easy to check that for φ ∈ [0, φmax], ρsφ
2 + (C2 + 1)φ − C2 > 0 for any angle

α ∈ [0, 90◦], thus there is no critical point for this case, contrary to the negatively buoyant case. Moreover,
since φ′ > 0, we have g(φ0) ≥ f(φ0)φ0, i.e., any φ0 ∈ [0, φmax] leads to a particle-rich ridge. Figure 6
gives a typical plot of particle volume fraction φ, shear stress σ and suspension velocity u for α = 30◦. It
is interesting to point out that the shape of velocity u is blunting in contrast to the parabolic profile for
homogeneous Newtonian fluids, which is in good agreement with the experimental observation in [17]. Figure
7 compares the fluxes f (φ0) and g (φ0) for buoyant and negatively buoyant particles for α = 30◦.
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Figure 6: Plots of solutions to (2) for α = 30◦. The horizontal axis represents the s variable. Different curves refer
to different initial data φ0. In panels (a), (b) and (c), we show the particle volume fraction φ, shear stress σ and
suspension velocity u, respectively.

1. Singular shock formation

Since the formation of the singular shock for buoyant particles is similar to the negatively buoyant case
with high particle concentration, the results in [20] may be applied here with a slight change to fit the
buoyant parameters. Figure 8 shows the Hugoniot loci for left and right states (hL = 1, φI = 0.3) and
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Figure 7: Fluxes f [panel (a)] and g [panel (b)] for buoyant and negatively-buoyant cases. The plane angle of
inclination is set to α = 30◦.

(hR = 0.01, φI = 0.3), we observe that these two curves are asymptotically parallel and thus give rise to a
singular shock. Denote

B =
ρsφ

2
max + (C2 + 1)φmax − C2

C1φmax(1 + ρsφmax)
,

θ = arccos

(

1 +
3B2(2B + 3)φ2

maxµl

2(φmax − φL)3(1 + ρsφmax)(1 +B)4
(g(φI)− φmaxf(φI))

)

,

then, for a given left state (hL, φI), we have the threshold value h∗
R = hL

1−cos θ
3
+
√
3 sin θ

3

1+2 cos θ
3

in the sense that

when hR ≤ h∗
R there is a singular shock and when hR > h∗

R a double shock emerges. Moreover, the singular

shock speed is s =
(h2

L+h2

R+hLhR)(φmaxf(φI)−g(φI ))

φmax−φI
. The reader is referred to [20] for more details.
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Figure 8: (a) The entropy-satisfying shocks connecting the left state (hL, φL) = (1, 0.3) (black curves) and right state
(hR, φR) = (0.01, 0.3) (grey dashed curves). (b) Replotted Hugoniot loci from panel (a) with vertical axis representing
φmax − φ0 and horizontal axis representing 1

h
. The plane angle of inclination is α = 30◦.

8



2. Rarefaction-singular shock solution

By analogy with the negatively buoyant case, we first approximate φr(ξ) by φr(0) near ξ = 0, then we can
compute φr(0) as in (8), and get φr(0) = 0 in this case. A similar approach in (9)–(15) applies and yields the
relationship between particle front position and time as in (16). This relation is shown in Fig. 9(a), where
the black line is obtained by solving the hyperbolic conservation laws and the dashed line has the slope in
(16). We can also derive the relations between time and shock position similarly using (19) but with f and
g for the buoyant case. A typical plot of Pc is given in Fig. 9(b) for α = 30◦. It is again shown that Pc is in
the neighborhood of 1

3 . As a result, the singular mass has the same estimate (20).
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Figure 9: (a) Plots of position xpar/liq versus time1/3 for different values of concentration: φI = 0.3, 0.4, 0.5. Grey
solid lines: numerical simulation of (1); black dash lines: slope calculated from (16). (b) Plots of Pc in (19) for the
buoyant case. Again, α = 30◦.

We also compare the particle front position versus time through Eq. (17) for negatively buoyant and
buoyant cases. The results are shown in Fig. 10; it is observed that these qualitatively agree with the
experimental results in [16] and [17]. The comparison with Huppert’s formula (18) is also presented. Here,
we conclude that in the presence of particle setting and resuspension, if the particles are negatively buoyant,
the speed of the slurry mixture is decreased, while, on the other hand, if the particles are buoyant, the speed
of the slurry mixture is increased.

III. EXPERIMENTS

A. Procedure

In this section, we provide details of the experimental setup and procedure. A schematic of the apparatus
is shown in Fig. 1; it consists of an acrylic track of length 90 cm and width 14 cm with an inclination angle,
α, where the latter may be adjusted within 5◦ < α < 80◦. In the experiments we carry out, we are interested
in the flow patterns that emerge from gravity-driven fslurry flows composed of PDMS oil and noncolloidal
beads. Two types of beads are used: negatively buoyant (approximately 2.5 times heavier than the fluid)
and buoyant (approximately 0.6 times lighter than the fluid). The two system parameters we are interested
in are α and the total particle volume fraction, φI . Slurry mixtures of 100 ml total volume are prepared for
different values of φI and deposited in the reservoir with the release gate initially closed. The start of each
run is marked at the point when the gate is lifted. The slurry mixture subsequently flows down the track
and the motion is recorded using a digital camera until the front of the flow reaches the end of the track.
The runs are repeated 2-3 times to validate the experimental results. The experimental parameters used are
summarized in Table I.

In the case of negatively buoyant particles, we observe three distinct regimes, depending on the particle
volume fraction, as shown in the work of Murisic et al. [13, 14]. As discussed in Section II, the equilibrium
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Figure 10: Plots of C0

s , obtained using Eq. (16) against φ0
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. Grey solid curve: buoyant case; black solid curve:

negatively buoyant case. Grey dashed curve: Huppert formula (18) with buoyant parameters; black dashed curve:
Huppert formula with negatively buoyant parameters. Again, α = 30◦.

model exhibits an unstable critical value for the particle volume fraction, denoted by φcrit. While the slurry
mixture starts off as ‘well-mixed’, within 0 < φ < φcrit, gravitational settling dominates thus clear fluid flows
over particles which settle fast to the substrate. Within φcrit < φ < φmax, competition between gravitational
settling and shear-induced migration, leads to the particles accumulating at the front of the flow forming a
particle-rich ridge. As previously discussed, the two regimes are termed ‘settled’ and ‘ridged’, respectively. In
this section we are interested in making comparisons between experimental and theoretical results focussing
on the ‘ridged’ regime. The reader is referred to previous work [13, 14] for comparisons within the ‘settled’
regime.

Table I: Experimental parameters used

particles d (mm) ρp (kg/m3)

Glass, negatively buoyant 0.25-0.50 2500
Glass, buoyant 0.25-0.55 640

fluid ν (m2/s) ρl (kg/m
3)

PDMS oil 10−3 970

B. Comparison between experimental results & theoretical predictions

In Fig. 11 we show a series of static images of the slurry mixtures flowing down the plane with the angle of
inclination fixed at α = 40◦. The pictures show a comparison between the evolution of the flow patterns for
the cases of buoyant particles (pink slurry flows) and negatively buoyant particles (red slurry flows). Figure
11 depicts the flow patterns initially [panels (a), (b)], when the slurries have travelled approximately half way
down the plane [panels (c), (d)] and in their fully developed patterns [panels (e), (f)]. The different times
corresponding to each panel are included in the figure caption. We observe that for both particle species,
the flow patterns develop in the ‘ridged’ regime where the majority of particles accumulate at the front of
the flow hence the particle and fluid fronts coincide. We note that for the set of system parameters shown
in Fig. 11, the slurry made of negatively buoyant particles traveled the same distance in approximately a
third of the time.
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Figure 11: Static images for buoyant (pink) and negatively buoyant (red) slurries flowing down the plane inclined at
α = 40◦. The total particle concentration for both slurry mixtures is fixed at φI = 0.40. The images of the buoyant
slurry mixtures are captured at t = 13, 125, 625 seconds [shown in panels (a), (c), (e)] while the negatively buoyant
slurry mixtures are captured at t = 4, 46, 237 seconds [shown in panels (b), (d), (f)].

In Figs. 12 and 13, we compare the theoretical prediction of the relationship between the fluid/particle
front and time1/3 [given by Eq. (17)] to the experimental results for negatively buoyant and buoyant beads,
respectively. Figure 12 depicts the results using negatively buoyant particles for an angle of inclination
of 40◦ [panel (a)] and 50◦ [panel (b)] for φI = 0.50, 0.55. We observe that, after an initial transient time,
wherein the mixture moves from the initial well-mixed state to the ‘ridged’ regime, the relation of the moving
front with time1/3 shows good agreement between the theoretical and experimental results. Figure 13 shows
the relationship between the theoretical prediction and experimental results for buoyant particles. The
experiments are carried out for two angles of inclination: 30◦ [panel (a)] and 40◦ [panel (b)] at φI = 0.30, 0.40.
As previously mentioned, in the case of buoyant particles any φI within 0 < φI < φmax results in the
development of the ‘ridged’ regime leading to the two fronts (liquid and particle) coinciding. We observe a
longer initial transient time compared to the negatively buoyant case. At late times, while the theoretical
prediction approaches the slope of the experimental results, we note that the agreement is not as good as in
the results shown in Fig. 12. A possible reason for this behavior is given by the experimental images shown
in Fig. 11: for the buoyant particles (pink slurry flows), we observe the presence of significant wall boundary
effects. The beads advance to the front and concentrate in the middle of the plane. Since the theoretical
prediction is based on a one-dimensional model, a more uniform averaged front is expected to compare more
closely to theoretical predictions. It can be observed in Fig. 11, that the averaged front of the flow in the
case of negatively buoyant particles (red slurry flows) is more uniform compared to the buoyant case.

IV. CONCLUDING REMARKS

This paper focuses on the ‘ridged’ regime observed in the gravitational flow of a finite-volume, particle-
laden thin film down a rectangular plane. In the case of slurries composed of negatively buoyant particles,
this regime is observed experimentally at high particle concentrations and high angles of inclinations while
for buoyant particles, the ‘ridged’ regime is the dominant flow pattern. In this paper we use a previously
derived model [13] based on the lubrication approximation and the assumption that the particle distribution
in the normal direction to the plane is in equilibrium.

We discuss our findings for slurries made up of both negatively buoyant particles (approximately 2.5 times
heavier than the fluid) and buoyant particles (approximately 0.6 times lighter than the fluid). In both
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Figure 12: Comparison of experimental results against the theoretical formula given by Eq. (17) on the relationship

of the location of the front, xpar/liq and time1/3. In panel (a), α is set at 40◦ while in (b), α = 50◦. In both panels,
the particle concentration is varied from φI = 0.50 (experiment: circle markers, theory: dashed line) to φI = 0.55
(experiment: diamond markers, theory: solid line). For all system parameters shown, the experimentally observed
flow pattern was within the ‘ridged’ regime.
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Figure 13: Comparison of experimental results against the theoretical formula given by Eq. (17) on the relationship

of the location of the front, xpar/liq and time1/3 for buoyant particles. The plane angle of inclination α is set at 30◦

and the particle concentration is varied from φI = 0.30 to φI = 0.40.

cases, the solution is described by a rarefaction-singular shock. In the long time scaling, we approximate the
rarefaction wave at its leading order and find that the particle/fluid front moves linearly with time to the one
third power. This is reminiscent of Huppert’s result for clear fluid [3]. We also derive a general relationship
between the moving wave front and time which reveals some deviation form the one third power law. This
coincides with the experimental observations in [16].

Next, we carry out experiments to investigate how the time-dependent relationship of the front of the
flow obtained theoretically, compares against physical results. For the heavy particles, we choose particle
concentrations that exceed the critical value to ensure the flow patterns are in the ‘ridged’ regime. It is
noted that all slurry runs start off from a ‘well-mixed’ state. We carry out a series of experiments at two
different angles: 40◦ and 50◦ (negatively buoyant) and 30◦ and 40◦ (buoyant) and two different particle
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concentrations, φI = 0.50 and φI = 0.55 (negatively buoyant) and φI = 0.30 and φI = 0.40 (buoyant).

We find that, after an initial transient period, the front of the flow shows a linear relationship with time1/3

which approaches the slope of the formula obtained theoretically. For the negatively buoyant particles, the
good agreement between experiments and theory is consistent. For the buoyant particles, we observe a
longer initial transient period and, while we recover a linear relationship between xpar/liq and time1/3, the
agreement is not as good as in the negatively buoyant case due to significant wall boundary effects.
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