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Abstract. We design an asymptotic preserving scheme for the linear kinetic equation with anisotropic scattering that leads
to a fractional diffusion limit. This limit may be attributed to two reasons: a heavy tail equilibrium or a degenerate collision
frequency, both of which are considered in this paper. Our scheme builds on the ideas developed in [24] but with two major
variations. One is a new splitting of the system that accounts for the anisotropy in the scattering cross section by introducing
two extra terms. We then showed, via detailed calculation, that the scheme enjoys a relaxed AP property as opposed to the
one step AP for the isotropic scattering. Another contribution is for the degenerate collision frequency case, which brings in
additional stiffness. We propose to integrate a ‘body’ term, which appears to be the main component in the diffusion limit.
This term is precomputed once with a prescribed accuracy, via a change of variable that alleviates the stiffness. Numerical
examples are presented to validate its efficiency in both kinetic and fractional diffusion regimes.
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1. Introduction. In this paper, we consider the time evolution of the distribution function f(t, x, v)
which depends on time t > 0, position x ∈ RN and velocity v ∈ RN and solves the following linear kinetic
equation

∂tf + v · ∇xf = L(f), (t, x, v) ∈ (0,∞)×RN ×RN (1.1)

with the initial condition f(0, x, v) = f0(x, v). Here the collision operator L takes the form

L(f) =

∫
RN

φ(v, v′) [M(v)f(t, x, v′)−M(v′)f(t, x, v)] dv′, (1.2)

where φ(v, v′) ≥ 0 is the scattering cross-section symmetric in v and v′: φ(v, v′) = φ(v′, v), andM(v) ≥ 0 is
the unique equilibrium satisfying [11, 19]

L(M) = 0, M(v) =M(−v),

∫
RN

M(v) dv = 1 for all x ∈ RN . (1.3)

In cases when φ(v, v′) ≡ 1, the scattering becomes isotropic. Equations of this type take a wide range of
applications in physics, examples including electron transport in semiconductor devices [21], evolution of
plasmas [8, 7], fluxes of neutrons or photons [11] and etc.

Conventionally, one can rewrite L(f) as

L(f) = K(f)− ν(v)f , (1.4)

where K(f) is the gain term defined as

K(f) =

∫
RN

φ(v, v′)f(t, x, v′) dv′M(v), (1.5)

and ν(v)f is the loss term with

ν(v) =

∫
RN

φ(v′, v)M(v′) dv′ (1.6)

being the collision frequency. Typical macroscopic scaling of such equation is the diffusive scale, which leads
to a diffusion equation. Specifically, the dimensionless form of (1.1), with a little abuse of notation, reads

εα∂tf + εv · ∇xf = L(f) , (1.7)
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where ε is the Knudsen number. It is well known that in the small mean free path (ε � 1) and long time
(t ∼ ε−α) regime with α = 2, the distribution of the particles is at equilibrium given by a Maxwellian
distribution function, and density, as the zeroth moment of f , solves a diffusion equation

∂tρ−∇x · (D∇xρ) = 0, ρ =

∫
RN

fdv ,

where D is the diffusion matrix

D =

∫
RN

v ⊗ L−1(vM) dv. (1.8)

The reader can make references to [3, 6, 11, 18] for an extensive review of this limit.

However, such a limit fails when the diffusion matrix D becomes unbounded, which may be attributed
to two different reasons. To explain, let us consider for now a simple case in which

φ(v, v′) =
ν(v)ν(v′)

〈νM〉
, (1.9)

then the collision L reduces to

Lf = ν(v)(ρνM− f), ρν =
〈νf〉
〈νM〉

, (1.10)

and the diffusion matrix becomes

D =

∫
RN

v ⊗ v M
ν(v)

dv. (1.11)

In the sequel, 〈·〉 always denote the average in v direction, i.e., 〈f〉 =
∫
RN f dv.

One reason that renders D infinite is due to the large velocity behavior of the equilibriumM. WhenM
is not a Maxwellian but rather a heavy tail function, i.e.,

Mt(v) =

{ κ0

|v|N+α for |v| ≥ 1

κ0 for 0 ≤ |v| < 1
, 0 < α < 2 , (1.12)

then ∫
v2Mtdv ∼

∫
|v|≥1

1

|v|N+α−2
dv =∞ , (1.13)

and therefore D becomes infinite. Here we assume that φ is bounded from above and below. The equilibrium
(1.12) arises in numerous areas of applications such as granular plasmas with dissipative collision [5, 8, 7,
13, 23], astrophysical plasmas [22], economy [12] and transport in atmospheric clouds [14]. See also [23] for a
review of granular materials in which power law like distribution appears as a typical equilibrium in inelastic
kinetic theory.

Another reason comes from the degeneracy in the collision frequency ν(v) when v is small. In particular,
we assume that

ν(v) = ν0|v|N+2+β for |v| ≤ δ, β > 0 , (1.14)

and let M be the classical Maxwellian or

Md(v) =

{
M0 |v| ≤ δ
0 otherwise

(1.15)

for simplicity, then D ∼ M0

∫
|v|≤δ |v|

−N−βdv = ∞. This case arises in the modeling of weak turbulence of

chains of harmonic oscillators [4]. We use Mt and Md to distinguish two different equilibrium. Hereafter,
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we omit the superscript if the argument works for both cases. Similar notations apply to collision frequency
ν and diffusion coefficient κ that appear later as well.

In either case the classical diffusion limit breaks down and one needs to consider a different time scale
with α < 2. The limiting behavior, as a result, is governed by a fractional diffusion equation. In the former
case, a rigorous derivation is undertaken in [20] via the Fourier-Laplace transform and extended in [19] for
a more general space dependent or anisotropic scattering based on a weak formulation and particular choice
of test function. It is revisited in a more recent work [2] following a Hilbert expansion approach which is
capable in proving strong convergence results. In the latter case, a weak convergence has been laid out in
[1] via an auxiliary function.

Our goal in this paper is to design an efficient numerical method for linear transport equation (1.1)
wherein ε can take a wide range of magnitude and α 6= 2. Method of this type is coined as Asymptotic
Preserving (AP) by Jin [16] since it preserves the corresponding asymptotic limit at the discrete level when
mesh size and time step are kept fixed. As with analytical investigations, AP methods for equation (1.7)
with classical diffusion scaling (α = 2) are well developed (see [17] for review), whereas there exists only
a few methods for the anomalous diffusion. In [24], the authors designed an AP scheme for isotropic
scattering (i.e., σ(v, v′) is independent of v or v, but may depend on x) with heavy tail equilibrium. The key
ingredients there consist of a macro-micro decomposition that splits the kinetic equation following a reshuffled
Hilbert expansion, and a tail compensation to account for the information lost in the overpopulated tail.
In [10, 9], Crouseilles, Hivert and Lemou developed three methods—a fully implicit scheme, a micro-macro
decomposition based scheme and a scheme using Duhamel formulation—for the special case: (1.9) with
(1.14) for the degenerate collision frequency and (1.9) with ν ≡ 1 for the heavy tail equilibrium case.

We intend to design a method that works for general scattering φ(v, v′), not only confined to the special
case (1.9). The method we develop here builds on our previous work [24] but with substantial modification
to handle the difficulties anisotropy brings in. As in [24], we first conduct a macro-micro decomposition.
However, the main difficulty, in contrast with isotropic scattering, comes from the fact that we cannot
simply split the gain and loss parts of the collision and distribute them into the macro and micro parts of
the equation. To alleviate this issue, we propose a variant of decomposition such that the resulting system
is well posed, at the cost of introducing two new terms 〈K(g)〉 and 〈K(g)〉M. Consequently, instead of a
strong AP property obtained in [24], we get a relaxed-AP property [25] here, meaning that the solution f will
relax to the local equilibrium not in the first step but after a few steps. To extend the idea to the degenerate
collision frequency case, the same system decomposition can be applied, but since equilibrium has a compact
support in the velocity space, there is no need for tail compensation. Rather, we need to take care of the
information for small velocity because 1) it makes the major contribution in the diffusion limit and 2) it
brings singularity. Our new idea is to construct an integrated body part, which can be pre-computed via a
change of variable to resolve the singularity.

The rest of the paper is organized as follows. In the next section we summarize the basic results
regarding the fractional diffusion limit. The material is kept to a minimum to satisfy the needs in explaining
the numerical methods that follow. Section 3 is devoted to the major part of our schemes. A system
decomposition that suits both cases are presented first with a proof of its well-posedness. Then two different
cases are considered separately. For the heavy tail equilibrium, we conduct a velocity truncation and tail
compensation, whereas for the degenerate collision frequency, we perform a regular velocity discretization
along with a special body integration. Numerical examples are given in Section 4 to illustrate the efficiency
of the new scheme. Finally the paper is concluded in Section 5.

2. Fractional diffusion limit. In this section, we present a formal derivation of the fractional diffusion
limit of (1.7) with the general collision (1.4) in two cases—heavy tail equilibrium and degenerate collision
frequency, under the appropriate choice of time scale εα. Rigorous theory is available in [2, 19, 20] in
the former case through various approaches including the Laplace-Fourier transform, moment method and
Hilbert expansion; whereas in the latter case a weak convergence is obtained in [1] via an auxiliary function.

Our presentation here follows a reshuffled Hilbert expansion [2, 24]. Specifically, expand f as

f = f0 + g1 + g2 + · · · ,
3



and plug it into (1.7) (1.4), then the leading terms solve

0 = L(f0), (2.1)

εv · ∇x(f0 + g1) = −ν(v)g1, (2.2)

εα∂tf0 = K(g1) + L(g2). (2.3)

At variance with the classical diffusion limit, the terms K(g1) and εv · ∇xg1 in (2.2) (2.3) swap the places.
This is due to the observation that the gain term of the collision operator is of higher order than the loss
term and the convection term [2]. From (2.1), one gets

f0 = ρ0M(v), (2.4)

and the solvability condition in (2.3) yields

εα∂tρ0 = 〈K(g1)〉 . (2.5)

Now we take the Fourier transform in (2.2) with respect to x and get g1. More precisely, denote ĝ(t, k, v)
the Fourier transform of g(t, x, v), i.e., ĝ =

∫
RN ge

−ik·xdx, then we have

(ν(v) + iεv · k)ĝ1 = −iεv · kf̂0,

and thus

ĝ1 = − iεv · k
ν(v) + iεv · k

f̂0 .

Similarly, we take the Fourier transform in (2.3) and integrate in v to get

∂tρ̂0 =
1

εα
〈K(ĝ1)〉 (2.6)

where

1

εα
〈K(ĝ1)〉 =

1

εα
〈νĝ1〉 = − 1

εα

∫
RN

iεv · k
ν(v) + iεv · k

M(v)ν(v) dvρ̂0 . (2.7)

To proceed, we need to examine the integral in the last term of (2.7) with vanishing ε. This will be discussed
separately for each cases.

2.1. Case I: heavy tail equilibrium. In the case of heavy tail equilibrium, let us assume that

0 < φ0 ≤ φ(v, v′) ≤ φ1 , (2.8)

and the equilibriumMt(v) takes the form (1.12) where κ0 is chosen such thatMt(v) integrates to one. We
further assume that

νt(v)→ ν0 as |v| → ∞ , (2.9)

where νt is defined in (1.6) with M =Mt. First we recall a Lemma from [24].

Lemma 2.1. ([24]) Sending ε→ 0 , we have

1

εα

∫
RN

iεv · kν0

ν0 + iεv · k
Mt(v) dv → κt|k|α (2.10)

with κt given by

κt = κ0ν0

∫
RN

(w · e)2

ν2
0 + (w · e)2

1

|w|N+α
dw. (2.11)

Now it is obvious that, equipped with the above lemma, equation (2.6) in the zero limit of ε has the form
of fractional diffusion. More precisely, we have:
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Theorem 2.2. ([20]) The solution f of (1.7) converges in L∞(0, T ;L2(RN ×RN ))-weak to a function
ρ(t, x)Mt(v) where ρ(t, x) is the unique solution of the fractional diffusion equation{

∂tρ+ κt(−∆)
α
2 ρ = 0,

ρ(x, 0) = ρin(x),
(2.12)

with

κt = κ0ν0

∫
RN

(ω · e)2

ν2
0 + (ω · e)2

1

|ω|N+α
dω . (2.13)

2.2. Case II: degenerate collision frequency. When the collision frequency degenerates with small
velocity, a fractional diffusion is also expected. In particular, we assume thatMd(v) takes the form of (1.15)
and consider the degenerate collision frequency (1.14), then we first have the following lemma regarding the
integral in (2.7), and the proof herein provides some techniques that will be used in designing the numerical
methods later on.

Lemma 2.3. Sending ε→ 0, we have

1

εα

∫
RN

iεv · k
νd(v) + iεv · k

ν(v)Md(v) dv → κd|k|α , (2.14)

where ν(v) satisfies (1.14), Md(v), κd and α take the form (1.15), (2.21) and (2.19), respectively.

Proof. Using the form of Md(v) in (1.15), we have

1

εα

∫
RN

iεv · k
νd(v) + iεv · k

νd(v)Md(v) dv = ε2−α
∫
|v|≤δ

(v · k)2M0ν
d(v)

νd(v)2 + (εv · k)2
dv. (2.15)

Denote

γ = N + 1 + β , (2.16)

then upon changing variable

ω =
ε|k|v
ν(v)

=
ε|k|v

ν0|v|γ+1
, (2.17)

we have

|ω| = ε|k|
ν0
|v|−γ , dv =

1

γ

(
ε|k|

ν0|ω|γ+1

)N/γ
dω , (2.18)

and (2.15) becomes

ε2−α
∫
|ω|≥ ε|k|

ν0δ
γ

M0

(
ν0

ε |v|
γ+1ω · e

)2
(ν0|v|γ+1)2 + (ν0|v|γ+1ω · e)2

1

γ

(
ε|k|

ν0|ω|γ+1

)N/γ
ν0|v|1+γ dω

=
M0ν0

γ
ε−α

∫
|ω|≥ ε|k|

ν0δ
γ

(ω · e)2

1 + (ω · e)2

(
ε|k|

ν0|ω|γ+1

)N
γ
(
ε|k|
ν0|ω|

) γ+1
γ

dω

=
M0ν

1−α
0

γ

∫
|ω|≥ ε|k|

ν0δ
γ

(ω · e)2

1 + (ω · e)2

1

|ω|N+α
dω|k|α ,

which converges to κd|k|α as ε→ 0, where κd is defined in (2.21).

Then we cite the following theorem from [1] but omits the details of the proof. Indeed, one major
component in the proof has been outlined in the above lemma.
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Theorem 2.4. ([1]) Assume that (1.14) and
∫
|v|≥δ

|v|2
ν(v)M

d(v) dv ≤ +∞,
∫
RN ν(v)2Md(v)dv ≤ +∞

hold, then the solution f of (1.7) with

α =
β + 2N + 2

β +N + 1
(2.19)

converges weakly in L2
νM−1(RN ×RN × (0, T )) to ρ(t, x)Md(v), where ρ(t, x) solves{

∂tρ+ κd(−∆)
α
2 ρ = 0,

ρ(x, 0) = ρin(x) ,
(2.20)

and κd is given by

κd =
M0ν

1−α
0

1 +N + β

∫
RN

(w · e)2

1 + (w · e)2

1

|w|N+α
dw. (2.21)

3. Numerical methods. In view of (1.7), the major challenge in numerical computation comes from
the stiffness, which renders any explicit numerical schemes too expensive in the small ε limit. For this
reason, an implicit treatment is often expected, but it always brings in another difficulty—a need to solve
a large algebraic system. Our goal is to design a scheme that treats the stiff terms implicitly but does not
generate any burden in inverting the resulting system. This is accomplished following two steps: a system
decomposition, and a tail/body compensation in velocity discretization.

3.1. System decomposition. The first component in our scheme is the splitting of the original kinetic
equation into two sub-equations, as is done in [24]. This is to distinguish different scales so that they can
be treated in different manners. The main difference here as opposed to that in [24] is attributed to the
anisotropy in the collision cross-section, which introduces two extra terms in the splitting that need a special
treatment. We will address this issue in the next subsection.

Recall the initial value problem{
εα∂tf + εv · ∇xf = K(f)− ν(v)f,

f(0, x) = fin(x).
(3.1)

Decompose f into a macroscopic part and a microscopic part

f = ρM+ g, (3.2)

where ρM accounts for the equilibrium part and g characterizes the non-equilibrium perturbation. Note
here that ρ is not the average of f for nonzero ε, i.e, ρ 6= 〈f〉 and 〈g〉 6= 0, only when ε→ 0, we have ρ→ 〈f〉
and 〈g〉 → 0.

Plugging (3.2) into (3.1), it rewrites as

εα∂t(ρM+ g) + εv · ∇x(ρM+ g) = K(ρM+ g)− ν(v)(ρM+ g) ,

which can be split into two sub-equations as suggested by the Hilbert expansion (2.1)–(2.3):

εα∂tρ = 〈K(g)〉 , (3.3)

εα∂tg + εv · ∇x(ρM+ g) = −ν(v)g +K(g)− 〈K(g)〉M . (3.4)

As opposed to the isotropic case where φ is independent of v and v′, here K(g) 6= 〈K(g)〉M in (3.4). Likewise,
an initial value decomposition is chosen to be ρin =

〈ν(fin − gin)〉
〈νM〉

=
〈νfin + εv · ∇xfin〉

〈νM〉
,

gin = fin − ρinM.

(3.5)
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which is suggested from the observation that εv · ∇x(ρM + g) = −ν(v)g holds in the limit of ε → 0. Then
equations (3.3) (3.4) along with initial condition (3.5) constitute an alternative formulation for (3.1). To be
more precise, we first have the following propositions regarding the relationship between the solutions to the
original and decomposed systems. The results are similar to that in [24], but the proof is more involved.

Proposition 3.1. Let (ρ, g) be the solution to (3.3)(3.4) with initial data (3.5), then f = ρM+ g is a
solution to (3.1). Denote the energy by

Ef =

(∫∫
f2M−1 dxdv

)1/2

=

(∫∫
(ρM+ g)2M−1 dxdv

)1/2

, (3.6)

then both systems enjoy an energy dissipation d
dtEf ≤ 0.

Proof. It is easy to show that f = ρM+ g is a solution to (3.1) if (ρ, g) solve (3.3) (3.4) with initial data
(3.5) by simply adding the equations, and energy dissipation (3.6) directly follows from an energy estimate.
Indeed, multiply (3.1) by 2fM−1 and integrate against both x and v, we have

d

dt

∫∫
f2M−1 dxdv =

2

εα

∫∫∫
φ(v, v′)(f ′M− fM′)fM−1 dv dv′ dx ,

where f ′ and M′ are short notation of f(t, x, v′) and M(t, x, v′). Notice that

2

∫∫∫
φ(v, v′)(f ′M− fM′)fM−1 dv dv′ dx = −

∫ ∫ ∫ (
f

M
− f ′

M′

)2

φ(v, v′)MM′ dv dv′ dx (3.7)

and thus d
dt

∫
f2M−1 dxdv ≤ 0. Likewise, for the decomposed system (3.3) (3.4), multiply (3.3) by ρM

and (3.4) by gM−1 and integrate both of them in x and v, we have the following equality by adding them
together

1

2

∫∫
εα∂t(ρ

2M+ g2M−1 + 2ρg) + εv · ∇x(ρM+ g)
g

M
dxdv

=

∫∫
〈K(g)〉 ρM− ν g

2

M
+K(g)

g

M
− 〈K(g)〉 g

+ 〈K(g)〉 g − νρg − εv · ∇x(ρM+ g)ρ+K(g)ρ− 〈K(g)〉Mρ dxdv .

Notice that
∫∫

v · ∇xg g
M dxdv =

∫∫
v · ∇x(ρM)ρdx dv = 0, it follows that

d

dt

∫∫
(ρ2M+ g2M−1 + 2ρg) dxdv =

∫∫
(K(g)− νg)(ρM+ g)

1

M
dxdv

≤
∫∫
L(f)f

1

M
dx dv ≤ 0 , (3.8)

where the last inequality comes from (3.7).

Now we are in the position to show that the decomposition (3.3) (3.4) is well-posed: the existence is out
of question due to the linearity of the problem, and the stability is owing to the following proposition.

Proposition 3.2. Let (ρ, g) solve (3.3)(3.4) with initial data (3.5), then ρ ∈ L∞(0,∞;L2(RN )),
g ∈ L∞(0,∞;L2

M−1(RN ×RN )). That is,

Eρ :=

(∫
ρ2 dx

)1/2

and Eg :=

(∫∫
g2

M
dx dv

)1/2

(3.9)

are both uniformly bounded in time.

Proof. Multiplying ρ on both sides of (3.3) and integrating over x, one has

1

2
εα
d

dt

∫
ρ2 dx =

∫
ρ 〈K(g)〉 dx =

∫
ρ

∫∫
φ(v, v′)(f − ρM)M′ dv′ dv dx

=

∫∫∫
φρfM′ dv′ dv dx−

∫∫∫
φρ2MM′ dv′ dv dx.
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Since φ(v, v′) is uniformly bounded from above and below (2.8) and ρ, f and M are all positive, the above
equality has the following estimate

εα

2

d

dt

∫
ρ2 dx ≤ φ1

∫∫∫
ρfM′ dv′ dv dx− φ0

∫∫∫
ρ2MM′ dv′ dv dx

= φ1

∫∫
ρf dv dx− φ0

∫
ρ2dx ≤ φ1

(∫
ρ2 dx

)1/2(∫∫
f2

M
dx dv

)1/2

− φ0

∫
ρ2 dx .

Rewrite it using the notation (3.9), it condenses to

1

2
εα∂tE

2
ρ ≤ φ1EρEf − φ0E

2
ρ ,

and thus

εα∂tEρ ≤ φ1Ef − φ0Eρ ,

Since Ef decays with time from Proposition 3.1, Eρ is uniformly bounded in time. Note that

E2
g =

∫∫
(f − ρM)2M−1 dv dx ≤ 2

∫∫
(f2 + (ρM)2)M−1 dv dx = 2(E2

f + E2
ρ), (3.10)

therefore Eg is also uniformly bounded in time.

3.2. First order semi-discretization in time. This section is devoted to a first order temporal semi-
discrete scheme based on the decomposition (3.3) (3.4). Specifically, we treat the stiff terms implicitly and
the regular terms explicitly, and the scheme reads:

εα
ρn+1 − ρn

∆t
=
〈
K(gn+1)

〉
,

εα
gn+1 − gn

∆t
+ εv · ∇x(ρ∗M+ gn+1) = −νgn+1 +K(gn)− 〈K(gn)〉M,

(3.11)

where the initial data is obtained by (3.5). Here ρ∗ can be either ρn+1 or ρn, leading to an implicit or explicit
treatment of the fractional diffusion equation in the limit.

Now we provide a glimpse into the AP property. Taking the Fourier transform in (3.11) with respect to
x, we have

ρ̂n+1 − ρ̂n

∆t
=

1

εα
〈
K(ĝn+1)

〉
, (3.12)

εα
ĝn+1 − ĝn

∆t
+ iεv · k(ρ̂∗M+ ĝn+1) = −νĝn+1 +K(ĝn)− 〈K(ĝn)〉M, (3.13)

where (3.13) yields

ĝn+1 =
−iεv · kρ̂∗M
εα

∆t + ν + iεv · k
+

εα

∆t ĝ
n

εα

∆t + ν + iεv · k
+
K(ĝn)− 〈K(ĝn)〉M

εα

∆t + ν + iεv · k
:= Aρ̂∗ + Bĝn + Cĝn . (3.14)

Here A, B and C are three linear operators. In what follows, we will show that in both scenarios,

1

εα
〈
K(ĝn+1)

〉
→ −κ•|k|αρ̂∗

for fixed ∆t with κ• being either κt or κd, and thus the limiting scheme in (3.12) solves the fractional
diffusion equation.

For the ease of calculation, we only show AP property for the special case when φ(v, v′) takes the form
of (1.9), and leave a remark for more general situations. Notice that for (1.9), the gain term in the collision
simplifies to

K(g) =
νtMt

〈νtMt〉
〈
νtg
〉
. (3.15)
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3.2.1. AP property: heavy tail equilibrium. In the case of heavy tail equilibrium, we assume that
φ0 ≤ φ(v, v′) ≤ φ1, and since νt(v) =

∫
RN φ(v, v′)Mt(v′) dv′, we immediately have φ0 ≤ νt(v) ≤ φ1. Then

by taking the average in v of equation (3.13), one sees that〈
νtgn+1

〉
∼ O(ε), for any n ≥ 0 . (3.16)

Therefore,

〈K(ĝn)〉 =
〈
νtĝn

〉
∼ O(ε), and K(ĝn) =

νtMt

〈νtMt〉
〈
νtĝn

〉
∼ O(ε), (3.17)

and consequently from equation (3.14),

ĝn+1 ∼ O(ε) (3.18)

thanks again to the boundedness of ν. Then we can check that

1

εα
〈K (Bĝn)〉 =

1

εα
〈
νtBĝn

〉
=

〈 1
∆tν

tĝn

εα

∆t + νt + iεv · k

〉
→ 0 as ε→ 0. (3.19)

For Cĝn, notice that

1

εα
〈K(Cĝn)〉 =

1

εα

∫
RN

νtCĝn dv =
1

εα

∫
RN

νtCĝn −
(
νtMt

〈νtMt〉
−Mt

)〈
νtĝn

〉
dv

=
1

εα

∫
RN

〈
νtĝn

〉 νMt

〈νMt〉 −M
t

εα

∆t + νt + iεv · k
νt −

(
νtMt

〈νMt〉
−Mt

) dv

= −
〈
νtĝn

〉
εα

∫
RN

εα

∆t + iε · k
εα

∆t + νt + iεv · k

(
νtMt

〈νMt〉
−Mt

)
dv . (3.20)

Then from the fact that
εα

∆t+iε·k
εα

∆t+νt+iεv·k ∼ O(ε) and (3.16), and 0 < α < 2, (3.20) vanishes in the zero limit of ε.

For Aρ̂∗, we have

1

εα
〈K(Aρ̂∗)〉 =

1

εα
〈
νtAρ̂∗

〉
=

1

εα

∫
RN

−εv · ikρ̂∗
εα

∆t + νt + εv · ik
νt(v)Mt(v) dv ,

whose limit becomes

lim
ε→0

1

εα
〈K(Aρ̂∗)〉 = lim

ε→0

1

εα

∫
RN

−(εv · k)2

νt2 + (εv · k)2
νt(v)Mt(v) dvρ̂∗ = −κt|k|αρ̂∗ , (3.21)

where κt is given by (2.11). Plugging (3.21) into the Fourier transform of the first equation in (3.11), one
obtains as ε→ 0,

ρ̂n+1 − ρ̂n

∆t
= ε−α

〈
Kĝn+1

〉
= −κt|k|αρ̂∗,

which gives a first order discretization of the limit equation (2.12).

Remark 3.3. The assumption (1.9) is not mandatory here. For the general case without this assump-
tion, we can get relaxed-AP property, a concept put forward in [25], meaning that the AP property is satisfied
after an initial transition time. The argument will be similar to that in the next subsection.

3.2.2. AP property: degenerate collision frequency. When the collision frequency ν(v) degen-
erates to zero at small velocity, it poses singularity in the denominator of (3.14), thus all the estimates
(3.16)–(3.18) in the first case can not be apply here, and more detailed analysis is needed.

In fact, we show below that we only get a relaxed-AP property rather than the strong AP property in
the heavy tail case. The difference is that, given an non-equilibrium initial data, a relaxed-AP scheme takes
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a few steps to converge to the local equilibrium with an asymptotic error depending on the scale parameter,
whereas for a strong AP scheme, it only takes one step. Coming back to our problem, it means that we need
to allow the scheme (3.11) to run a few time steps before it reduces to the solver for the limiting fractional
diffusion equation.

More specifically, we start with the form (3.14), and let ρ̂∗ to be ρ̂n+1, i.e.,

ĝn+1 = Aρ̂n+1 + Bĝn + Cĝn .

The case with ρ̂∗ = ρ̂n can be proved in exactly the same way. Now let us march one step forward to get

ĝn+2 = Aρ̂n+2 + B(Aρ̂n+1 + Bĝn + Cĝn) + C
(
Aρ̂n+1 + Bĝn + Cĝn

)
,

and then one step further to arrive at

ĝn+3 = Aρ̂n+3 + B(Aρ̂n+2 + BAρ̂n+1 + B2ĝn + BCĝn + CAρ̂n+1 + CBĝn + C2ĝn)

+C(Aρ̂n+2 + BAρ̂n+1 + B2ĝn + BCĝn + CAρ̂n+1 + CBĝn + C2ĝn) . (3.22)

Now it amounts to show that 1
εα

〈
K(ĝn+3)

〉
→ −κd|k|αρ̂n+3. Note from Lemma 2.3 that

1

εα
〈
K(Aρ̂n+3)

〉
=

1

εα
〈
νdAρ̂n+3

〉
→ κd|k|αρ̂n+3 as ε→ 0 . (3.23)

Therefore, it remains to show that all the rest terms, upon applying operator K, taking average in v and
dividing by εα, vanish in the zero limit of ε. We summarize the results in the following Proposition and leave
the proof in the appendix.

Proposition 3.4.

1) If initially ρ̂0 and ĝ0 are bounded, then ĝn obtained from (3.13) is bounded;
2) For ∀n ≥ 1, we have

lim
ε→0

∣∣∣∣ 1

εα
〈K(BAρ̂n)〉

∣∣∣∣ = 0, lim
ε→0

∣∣∣∣ 1

εα
〈
K(B3ĝn)

〉∣∣∣∣ = 0, lim
ε→0

∣∣∣∣ 1

εα
〈
K(B2Cĝn)

〉∣∣∣∣ = 0

lim
ε→0

∣∣∣∣ 1

εα
〈K(CAρ̂n)〉

∣∣∣∣ = 0, lim
ε→0

∣∣∣∣ 1

εα
〈
K(BC2ĝn)

〉∣∣∣∣ = 0;

3) For big enough m and ∀n ≥ 1, limε→0
1
εα 〈K(Cmρ̂n)〉 = 0.

This proposition does not include all terms in (3.22), for those terms that do not appear here can be
estimated in a similar way. Details are available in the appendix.

Remark 3.5. For a relaxed AP scheme, one can use a successive time discretization to accelerate the
convergence, as described in [25]. In particular, we can reformulate (3.11) into

εα
ρn+1 − ρn

∆t
=
〈
K(gn+1)

〉
,

εα
g∗ − gn

∆t
= K(gn)− 〈K(gn)〉M,

εα
gn+1,1 − g∗

∆t/k
+ εv · ∇x(ρn+1M+ gn+1,1) = −νgn+1,1,

...

εα
gn+1 − gn+1,k−1

∆t/k
+ εv · ∇x(ρn+1M+ gn+1) = −νgn+1 .

3.3. Numerical scheme: heavy tail equilibrium.

3.3.1. Velocity truncation. Similar to the isotropic scattering in [24], we need to consider the trunca-
tion in the velocity space as well as a special treatment for the tail such that it is computationally affordable
and numerically accurate. To this end, we further decompose Mt and g into

Mt(v) =Mt
B

(v) +Mt
T

(v), g(t, x, v) = g
B

(t, x, v) + g
T

(t, x, v), (3.24)
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where Mt
B

and g
B

support on the domain of |v| ≤ vmax representing the ‘body’ part, whereas Mt
T

and g
T

support on |v| > vmax representing the ‘tail’ effect, i.e.,

Mt
B

(v) =Mt(v)1|v|≤vmax
, Mt

T
(v) =Mt(v)1|v|>vmax

,

g
B

(v) = g(v)1|v|≤vmax
, g

T
(v) = g(v)1|v|>vmax

.
(3.25)

Likewise, let

v
B

= v1|v|≤vmax
, v

T
= v1|v|>vmax

. (3.26)

Equations (3.3) (3.4) then rewrite

εα∂tρ =
〈
νt
B
g
B

〉
+
〈
νt
T
g
T

〉
, (3.27)

εα∂tgB + εv · ∇x(ρM
B

+ g
B

) = −νt
B
g
B

+K(g)
∣∣
B
− 〈K(g)〉Mt

B
, (3.28)

εα∂tgT + εv · ∇x(ρM
T

+ g
T

) = −νt
T
g
T

+K(g)
∣∣
T
− 〈K(g)〉Mt

T
. (3.29)

As written, (3.27)–(3.29) cannot be solved practically with ease. In a grid based numerical method one needs
to truncate the velocity space at |v| < vmax and place finite number of grids in [−vmax, vmax]. Therefore all
the integrations appeared here will be approximated by the integration in the truncated domain, and the
tail g

T
has to be approximated in an integrated manner. More precisely, we propose the following ideas (here

we write everything in the continuous sense and in implementation, the integration is done with quadrature
rule, and we use mid-point rule with uniform grid in this paper):

• νt
B

in (3.28) is approximated by

νt
B

(v) '
∫
φ(v

B
, v′
B

)Mt
B
dv′ . (3.30)

Compare to its exact value νt
B

=
∫
φ(v

B
, v′)Mtdv′, this approximation introduces error

errorνt
B

=

∫
φ(v

B
, v′
T

)Mt
T
dv′ . (3.31)

• K(g)
∣∣
B

in (3.28) is computed via

K(g)
∣∣
B

=

∫
φ(v

B
, v′
B

)g′
B
dv′Mt

B
(3.32)

which compared with its true value K(g)
B

=
∫
φ(v

B
, v′)g′dv′Mt

B
, introduces error

errorK(g)
B

=

∫
φ(v

B
, v′
T

)g′
T
dv′Mt

B
. (3.33)

• Given the above calculation, 〈K(g)〉 in (3.28) is then computed as

〈K(g)〉 =

∫∫
φ(v

B
, v′
B

)g′
B
dv′Mt

B
dv , (3.34)

which introduces the following error

error〈K(g)〉 =

∫
φ(vB , v

′
T )g′T dv

′MBdv+

∫
φ(vT , v

′
T )g′T dv

′MT dv+

∫
φ(vT , v

′
B)g′Bdv

′MT dv (3.35)

as compared to the true value 〈K(g)〉.
• Mt

B
in (3.28) is replaced by

Mt

B

〈Mt
B
〉 to guarantee conservation of total mass upon integration in v and

x, and the error we introduce here is

errorMt
B

=
〈
Mt

B

〉
− 1 . (3.36)
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• For the tail g
T

, like in the isotropic case [24], is approximated by its steady state. In particular, it
solves

εv · ∇x(ρF
T

+ g
T

) = −νt
T
g
T
.

Now apply the Fourier Transform in x, the functions with a hat depend on the frequency variable
k. Hence the average

〈
νt
T
ĝ
T

〉
is given by

1

εα
〈
νt
T
ĝ
T

〉
= − 1

εα

∫
|v|≥vmax

iεv · kνt
T

νt
T

+ iεv · k
Mt

T
(v) dvρ̂

= − 1

εα

∫
|v|≥vmax

νt
T

(εv · k)2

νt
T

2 + (εv · k)2

κ0

|v|N+α
dvρ̂ := −Cε(k)ρ̂, (3.37)

where Cε(k) is precomputed numerically with any accuracy. Since α ≤ 2, and vmax is independent
of ε (see (3.38) below), there is no difficulty in precomputing Cε(k) with varying ε.
The assumption on g

T
of being at steady state is based on the fact that εα∂tgT is a higher order

term for small ε, thus its form (3.37) is only valid when ε is small. It is also important to point out
that Cε(k)→ κt|k|α as ε→ 0, as one would expect.

All the above arguments are lumped into the following criteria of choosing vmax. We need the errors
errorνt

B
, errorK(g)

B
, error〈K(g)〉, errorMt

B
in (3.31) (3.33), (3.35) and (3.36) to be bounded by δ, and 1

εα

〈
νdT gT

〉
should be of O(δ) when ε ∼ O(1). As a consequence, we have∫

|v|>vmax

Mt dv < δ, (3.38)

and thus in a first order method, δ = O(∆t). Note specifically that vmax is independent of ε. One does
not need to worry about the amplification of the error by 1

εα in (3.28) for small ε as in such case, the tail
part dominates and the evolution of 〈g

T
〉 in (3.37) gives a correct compensation to the limit equation (3.27).

Then an AP property guarantees both the uniform stability and uniform accuracy of our scheme [15].

3.3.2. First order scheme. To summarize, we write down the following first order scheme for the
heavy tail case. The spatial derivative is treated using the Fourier transform based spectral method. Let
k be the variable as opposed to x, we denote variables with a hat as their corresponding quantities in the
Fourier space.

εα
ρ̂n+1 − ρ̂n

∆t
=
〈
νt
B
ĝn+1
B

〉
+
〈
νt
T
ĝn+1
T

〉
,

εα
ĝn+1
B
− ĝn

B

∆t
+ iεv · k(ρ̂∗M

B
+ ĝn+1

B
)

= −νt
B
ĝn+1
B

+

∫
φ(v

B
, v′
B

)ĝ′
B
dv′Mt

B
−
∫∫

φ(v
B
, v′
B

)ĝ′
B
dv′Mt

B
dv
Mt

B〈
Mt

B

〉 ,
1

εα
〈
νt
T
ĝn+1
T

〉
= − 1

εα

∫
|v|≥vmax

iεv · kνt
T

νt
T

+ iεv · k
Mt

T
(v) dvρ̂∗,

(3.39)

where ρ̂∗ can again be chosen as ρ̂n or ρ̂n+1.

To be more precise, we list out the steps needed in our scheme. First choose vmax such that it meets the
criteria (3.38). Denote

Cε(k) =
1

εα

∫
|v|≥vmax

νtT (εv · k)
2

νtT
2

+ (εv · k)
2
Mt

T
(v) dv, (3.40)

and precompute it with a prescribed accuracy. Then given
〈
νt
T
ĝn
T

〉
(k), ĝnB(k, v) and ρ̂n(k), we have, at time

tn+1:
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• Step 1. Compute 1
εα

〈
νt
T
ĝn+1
T

(k, v)
〉

via

1

εα
〈
νt
T
ĝn+1
T

(k, v)
〉

= −Cε(k)ρ̂∗(k) . (3.41)

If ρ∗ = ρn, one can get the values for
〈
νt
T
ĝn+1
T

〉
(k). If ρ∗ = ρn+1, one writes

〈
νt
T
ĝn+1
T

〉
(k) in terms

of ρ̂n+1(k).
• Step 2. Solve ĝn+1

B
(k, v) for |v| ≤ vmax from the second equation in (3.39). Again if ρ̂∗ = ρ̂n, one

can get the values for ĝn+1
B

; and if ρ̂∗ = ρ̂n+1, one writes ĝn+1
B

(k) in terms of ρ̂n+1(k).
• Step 3. Compute

〈
νt
B
ĝn+1
B

〉
by a simple quadrature rule of νt

B
ĝn+1
B

in velocity space.

• Step 4. Plug 1
εα

〈
νt
B
ĝn+1
B

〉
and 1

εα

〈
νt
T
ĝn+1
T

〉
into

ρ̂n+1 = ρ̂n +
∆t

εα
(〈
νt
T
ĝn+1
T

〉
+
〈
νt
B
ĝn+1
B

〉)
.

to get ρ̂n+1(k).

Repeat the above three steps until the end of time t = tM , and perform the inverse Fourier transform to get
ρM (x) and gMB (x, v) from ρ̂M (k) and ĝMB (k, v), respectively, and recover fM (x, v) via

fM (k, v) = ρM (x)
Mt

B
(v)〈

Mt
B

(v)
〉 + gM

B
(x, v) for |v| ≤ vmax . (3.42)

3.4. Numerical scheme: degenerate collision frequency.

3.4.1. Velocity discretization. In contrast with the heavy tail case, the equilibrium Md has a com-
pact support and there is no special care needed in the truncation of the velocity space. Rather, it is the
small velocity that makes the major contribution when ε is small, as seen in the integral (2.14) in Lemma 2.3.
Therefore, to capture the correct asymptotic limit numerically, we need to calculate this integration accu-
rately enough around the origin, which, as a result, requires finer mesh for smaller ε. Then the question
immediately arises: finer mesh in the velocity space needs more expensive computation. However, this
integration is independent of time and thus can be precomputed with arbitrary accuracy.

To be more precise, recall the semi-discrete scheme (3.11), then upon the Fourier transform in space, it
reads

ρ̂n+1 − ρ̂n

∆t
=

1

εα
〈
K(ĝn+1)

〉
=

1

εα
〈
νdĝn+1

〉
, (3.43)

εα

∆t
(ĝn+1 − ĝn) + iεv · k(ρ̂∗Md + ĝn+1) = −νdĝn+1 +K(ĝn)− 〈K(ĝn)〉Md , (3.44)

where (3.44) implies

ĝn+1 = − iεv · kMd

εα

∆t + νd + iεv · k
ρ̂∗ +

εα

∆t ĝ
n +K(ĝn)− 〈K(ĝn)〉Md

εα

∆t + νd + iεv · k
.

Hence

1

εα
〈
νdĝn+1

〉
= − 1

εα

〈
iεv · kMdνd

εα

∆t + νd + iεv · k

〉
ρ̂∗ +

1

εα

〈
νd

εα

∆t ĝ
n +K(ĝn)− 〈K(ĝn)〉Md

εα

∆t + νd + iεv · k

〉
(3.45)

Then our idea is to compute the first integral on the right hand side of (3.45) accurately. This is accomplished
as follows. Like what is done analytically (see the proof in Lemma 2.3), let

w =
ε|k|v

ν0|v|γ+1
, dv =

1

γ

(
ε|k|

ν0|w|γ+1

)N
γ

dw (3.46)
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and recall (1.15), we have

BODY(ε, k) :=
1

εα

〈
iεv · kMdνd

εα

∆t + νd + iεv · k

〉
=

1

εα

∫
|v|≤δ

(εv · k)2M0ν0|v|γ+1(
εα

∆t + νd
)2

+ (εv · k)2
dv

=
1

εα

∫
|w|≥ ε|k|

ν0δ
γ

M0(w · e)2ν0

(
ε|k|
ν0|ω|

) γ+1
γ

[
εα

∆tν0

(
ν0|w|
ε|k|

) γ+1
γ

+ 1

]2

+ (w · e)2

(
ε|k|

ν0|w|γ+1

)N
γ 1

γ
dw

= |k|αM0ν
1−α
0

γ

∫
|w|≥ ε|k|

ν0δ
γ

(w · e)2

(w · e)2 +

[
1 +

ν
1
γ
0

∆t

(
|w|
|k|

) γ+1
γ

ε
N
γ

]2

1

|w|
(N+1)(γ+1)

γ

dw , (3.47)

where the singularity in the last integral can be treated using integration by parts. Here e is an unitary
vector. Once BODY is computed, (3.45) reduces to

1

εα
〈
νdĝn+1

〉
= −BODY ρ̂∗ +

1

εα

〈
νd

εα

∆t ĝ
n +K(ĝn)− 〈K(ĝn)〉Md

εα

∆t + νd + iεv · k

〉
,

and we can summarize the first order scheme in the next subsection.

We would like to point out that ‘Body’ integration looks similar to that in [9], but it is indeed very
different. For one thing, it can be considered as the counterpart of the ‘Tail’ in the previous case, wherein
the integration in tail constitutes the major component in the fractional diffusion limit. Here, on the other
hand, is the integration near the degenerate point that plays the major role. Therefore, the same idea—
precomputing the main part—applies in both cases. As regards the way of doing the integration, we use
the change of variable, which is inspired from the analytical derivation in Lemma 2.3. Moreover, besides the
integration, the structure of the scheme is completely different from those developed in [9].

3.4.2. First order scheme. Simply put, the first order scheme for the degenerate collision frequency
case reads 

ρ̂n+1 − ρ̂n

∆t
= −BODY ρ̂∗ +

1

εα

〈
νd

εα

∆t ĝ
n +K(ĝn)− 〈K(ĝn)〉Md

εα

∆t + νd + iεv · k

〉

ĝn+1 = − iεv · kMd

εα

∆t + νd + iεv · k
ρ̂∗ +

εα

∆t ĝ
n +K(ĝn)− 〈K(ĝn)〉Md

εα

∆t + νd + iεv · k

, (3.48)

where ρ̂∗ can be either ρ̂n or ρ̂n+1. A more detailed algorithm is summarized as follows. Before starting the
time evolution, we first compute BODY in (3.47) with a very fine mesh in v. Here the singularity is treated
using the integration by parts, the infinitely domain is replaced by a big enough computational domain via
trier and error. And we store the the values of BODY for different k in a table. Then given ρ̂n(k) and
ĝn(k, v), we have, at time tn+1:

• Step 1. Compute ρ̂n+1 from the first equation in (3.48). If ρ̂∗ = ρ̂n+1, this equation can be easily
inverted.

• Step 2. Compute ĝn+1 through the second equation in (3.48).

Repeat the above three steps until the end of time t = tM , and fM is restored from

fM (x, v) = ρM (x)Md(v) + gM (x, v), for |v| ≤ δ (3.49)

with ρM (x) and gM (x, v) obtained from the inverse Fourier transform.

Two remarks are in order.

Remark 3.6.

1) The scheme we designed here can be directly generalized to the spatial dependent collision, as done
in [24].

2) A second order scheme can be constructed for (3.39) and (3.48) using the backward difference for-

mula. Specifically, one just replace the time discretization by 3ρn+1−4ρn+ρn+1

2∆t , and replace any term
at tn by an extrapolation. See [24] for more details.
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4. Numerical examples. This section is devoted to numerical illustration of our AP schemes for
anisotropic transport equation in both kinetic and fractional diffusion regimes. Here the spatial domain
is chosen x ∈ [0, 2π] with periodic boundary condition, and the derivative in x is treated via the Fourier
spectral method. If without further notice, we use implicit method, meaning that ρ∗ = ρn+1 in the schemes.

For the heavy tail case, we choose

φt(v, v′) = 1 + e−v
2−v′2 , Mt(v) =

{ α
2+2α

1
|v|1+α for |v| ≥ 1
α

2+2α for 0 ≤ |v| < 1
; (4.1)

and for the degenerate collision frequency case, we use

Md(v) =

{
1
2 for 0 ≤ |v| ≤ 1
0 for |v| > 1

, ν(v) = ν0|v|1+γ , φ(v, v′) =
ν(v)ν(v′)

〈νMd〉
, (4.2)

where

γ = β + 2, α =
β + 4

β + 2
, β > 0 . (4.3)

ν0 is chosen such that
∑
j ν(vj)Md(vj)∆v = 1 only to simplify the computation of φ(v, v′) in (4.2).

4.1. Tail effect. In the first test, we will address the need of adding the tail in the heavy tail equilibrium
case. Particularly, we compute the following integral in the truncated velocity space {|v| < vmax},

I(k) =
1

εα

∫
|v|<vmax

(εvk)2

νt2 + (εvk)2
νt(v)Mt(v)dv (4.4)

which arises in (3.21) and constitutes a major part in the diffusion limit. Here Mt takes the form in (4.1)
and

νt(v) =

∫
|v|<vmax

φt(v, v′)Mt(v′)dv.

With varying vmax, Fig. 4.1 on the left displays I(k) in terms of k for α = 1.5 and ε = 10−5. On the right of
Fig. 4.1, we show the change of I(k) with a fixed vmax = 105 but varying ε. As shown, vmax has to be large
enough such that I(k) behaves like |k|α for all ranges of k, and vmax increases with vanishing ε.
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Fig. 4.1. Plots plot of log(I)/ log(10) versus log(|k|)/ log(10). α = 1.5. Left: ε = 10−5, vary cutoff vmax. Right:
vmax = 105, vary ε.
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4.2. Velocity discretization effect for degenerate collision frequency case. For the degenerate
case, we check that the computation of ‘BODY’ part gives us the correct behavior when ε is small. In one
dimension, (3.47) reduces to

I2(k, ε) =
1

εα

∫
|v|≤1

iεv · kνMd

εα

∆t + νd + iεv · k
dv

= |k|αM0ν
1−α
0

γ

2

2− α

− ( ε|k|ν0
)2−α(

ε|k|
ν0

)2

+

(
1 + a

∣∣w
k

∣∣ γ+1
γ

)2

+

∫ +∞

ε|k|
ν0

w2−α
(

2w + 2
(

1 + a
∣∣w
k

∣∣ξ) a
|k|ξ ξw

ξ−1
)

[
w2 +

(
1 +

∣∣w
k

∣∣ γ+1
γ a

)2
]2 dw

 , (4.5)

where a = ε
N
γ
ν

1
γ
0

∆t and ξ = γ+1
γ . Fig. 4.2 plots I2(k) for different ε in log scale. It is obvious that when ε is

getting smaller, log(I2(k)) has a shape of straight line in terms of log(|k|) with a slope α, indicating that
I2(k) ∝ |k|α for small ε, a key element in preserving the asymptotic limit for (3.48).
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Fig. 4.2. Plot of log(I2)/ log(10) versus log(|k|)/ log(10) for different ε. Here β = 1, and α = 5/3, ∆t = 0.02.

4.3. Test on asymptotic property. In the course of showing the asymptotic property in Section 3.2,
the quantity 〈νg〉 plays a key role. Therefore, we consider

∫
〈νg〉 dx as the indicator for the asymptotic error,

which, in the discrete version reads

E〈νg〉 =
∑
i

∣∣∣∣∣∣
∑
j

νjgi,j

∣∣∣∣∣∣∆x∆v , νj = ν(vj) , gi,j ' g(xi, vj) . (4.6)

Special care need to be taken for the heavy tail case, and we have a modified version of (4.6)

E〈νg〉 =
∑
i

∣∣∣∣∣∣
∑
j

νjgi,j + 〈νT gT 〉i

∣∣∣∣∣∣∆x∆v , (4.7)
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where 〈νT gT 〉 is computed via (3.37).

For the heavy tail case, the initial data is chosen as

f(0, x, v) =
1√
π
e−v

2

e−5(x−π)2

, x ∈ [0, 2π] , (4.8)

with a velocity cutoff vmax = 100 and meshes ∆x = 0.0628, ∆v = 0.0781, ∆t = 0.01, whereas for the
degenerate case, the initial data is chosen the same but with a different computational domain for v, i.e.,

f(0, x, v) =
1√
π
e−v

2

e−5(x−π)2

, x ∈ [0, 2π], v ∈ [−1, 1] . (4.9)

The results are collected in Fig. 4.3. It is seen that for both cases, we have E〈νg〉 = O(ε) at the beginning of
simulation. This is the result of the initial splitting in (3.5). Then E〈νg〉 decays to O(εα) with α = 1.5 and

α = 5
3 respectively, suggesting the AP property of our scheme on both models, as proved in Section 3.2.
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Fig. 4.3. Left: heavy tail equilibrium case. Plot of (4.6) versus time. ∆t = 0.01, ∆x = 0.0628, vmax = 100, ∆v = 0.078,
α = 1.5. Right: Degenerate collision case. Plot of (4.7) versus time. ∆t = 0.02, ∆x = 0.0314, vmax = 1, ∆v = 0.0078,
α = 5/3.

4.4. Stability test. We now check the dissipation of total energy (3.6) and boundedness of energy for
g and ρ in (3.9), respectively. Numerically, the energy is computed via simple summation

Ef =

√√√√∑
i

∑
j

(ρiMj + gi,j)2

Mj
∆x∆v, Eρ =

√∑
i

ρ2
i∆x, Eg =

√∑
i

gi,j
Mj

∆x∆v (4.10)

Here we use the same set up as in Section 4.3 for both cases and we plot the energy for ε = 1, and ε = 10−6 for
the heavy tail case and ε = 1 and 10−8 for the degenerate collision frequency case. The results are collected
in Figure(4.4) for the fat tail equilibrium case and Figure (4.5) for the degenerate collision frequency case.
As expected in Section 3.1, the total energy Ef decays with time, and the energies for ρ and g are uniformly
bounded.

4.5. Convergence test . The test in this section is devoted to check the first order convergence of
our scheme (3.39) and (3.48) in time for both scenarios. For the heavy tail case, the initial condition is
take the same as (4.8), and the simulation is performed up to time T = 0.2, with number of time steps
Nt = 20, 40, 80, 160, 320. vmax is taken to be 100, and we choose α = 1.5, Nx = 100 and Nv = 2560. For the
degenerate case, the initial condition takes (4.9), and final time is T = 0.4 with the same partition of time
steps from 20 to 320, increased twice each time. Here β = 1, Nx = 200, Nv = 800. In Fig. 4.6 the implicit
first order method is tested and expected first order convergence is observed.
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Fig. 4.4. Plot of energy in f , ρ and g in (4.10)versus time for the heavy tail case. ∆t = 0.01, ∆x = 0.0628, vmax = 100,
α = 1.5 in (1.12). Left: ε = 1. Right: ε = 10−6.
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Fig. 4.6. Convergence test for the first order scheme. Left: fat tail case with scheme (3.39). Right: degenerate case with
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18



4.6. Different α. In this test, we consider a non-smooth initial data

f(0, x, v) =
1√
π
e−v

2

1|x−π|≤0.5 , (4.11)

with x ∈ [0, 2π] and v ∈ [−1, 1] for the degenerate case and v ∈ [−100, 100] for the heavy tail case. First,
we compare the solution to our AP scheme with the explicit solver to the original equation (1.7) for ε = 1
and with the diffusion solver for the limiting equation (2.12) or (2.20) when ε is small. The results in the
density ρ are gathered in Fig. 4.7 and 4.8 for two cases, at output time t = 0.3 and t = 0.5, respectively.
In both cases, good agreements are observed, indicating the effectiveness of our scheme in both kinetic and
fractional diffusion regimes. Here we would like to mention that for the degenerate collision case we choose
ε = 10−6 because the convergence to equilibrium is rather slow, the asymptotic error of which is around

O
(
ε

N
N+1+β

)
+O

(
ε

β
N+1+β

)
, as explained in [9].
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Fig. 4.7. Plot of ρ for the heavy tail case at time t = 0.3 with initial data (4.11). ∆x = 0.0157, α = 1.5. Left: ε = 1.
Right: ε = 10−5.
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Fig. 4.8. Plot of ρ for the degenerate collision frequency case at time t = 0.5 with initial data (4.11). ∆x = 0.0314,
α = 5

3
, ∆t = 0.02. Left: ε = 1. Right: ε = 10−10.

As a second test, we vary α. In Fig. 4.9, the profile of ρ is displayed for α = 1.2, 1.5 and 1.8 for the
heavy tail case at t = 0.3. When ε = 10−5, larger α leads to stronger diffusion, as one would expect from
the limiting equation (2.12). In contrast, the solution does not vary too much for ε = 1, and an opposite
trend is observed—smaller α induces larger “diffusion”. Similar observation can be make for the degenerate
collision frequency case, whose result is summarized in Fig. 4.10.

19



0 2 4 6

x

0

0.2

0.4

0.6

0.8

1
ǫ=1

α=1.2

α=1.5

α=1.8

0 2 4 6

x

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7
ǫ=10

-5

α=1.2

α=1.5

α=1.8

Fig. 4.9. Plot of ρ for the heavy tail case at time t = 0.3 for different α. Initial data is chosen as (4.11). ∆x = 0.0157,
∆t = 0.01. Left: ε = 1. Right: ε = 10−5.
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Fig. 4.10. Plot of ρ for the degenerate collision frequency case at time t = 0.5 for different α. Initial data is chosen as
(4.11). ∆x = 0.0314, ∆t = 0.02. Left: ε = 1. Right: ε = 10−10.

5. Conclusion. We constructed an asymptotic preserving scheme for a linear kinetic equation with
anisotropic scattering, whose asymptotic limit is a fractional diffusion equation. This limit emerges due to
the unboundedness of the diffusion matrix in the classical diffusion limit and it is attributed to two different
reasons. One is the heavy tail equilibrium and the other is the degenerate collision frequency. We consider
both cases here. Our idea follows that in [24], but with three major contributions: 1) we provide a special
treatment of the anisotropy for the collision cross section, which results in a different macro-micro splitting
of the original equation; 2) We showed, via detailed calculation, of the relaxed asymptotic property owing to
the two extra terms coming from the anisotropic scattering. We also mention a direction that can accelerate
the convergence; 3) For the degenerate collision frequency case that has not been considered before, we
introduce a pre-computation of integrated body rather than an integrated tail in the other scenario, and it is
implemented through a change of variable. Numerical examples are carried out in the end to validate the
needs of adding the tail or computing the body, the asymptotic property, and the effectiveness.

6. Appendix. Proof. [Proof of Proposition 3.4] To lighten the notation, we omit the superscript n
when it dose not cause any confusion in this appendix. (i) Notice from the definition of A and B in (3.14)
that

|A| ≤M0 , |B| ≤ 1 . (6.1)
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Also, the third term Cĝn is bounded in the special case (3.15). Indeed, from (3.13), we have

〈
νdĝ

〉
=

〈
εα
ĝn+1 − ĝn

∆t
+ iεv · kĝ

〉
, (6.2)

and thus

|Cĝ| =
∣∣∣∣ νdMd

〈νdMd〉
−Md

∣∣∣∣
∣∣∣∣∣∣
〈
εα ĝ

n+1−ĝn
∆t + iεv · kĝ

〉
εα

∆t + νd + iεv · k

∣∣∣∣∣∣ . O(1) . (6.3)

Therefore, if initially ρ̂ and ĝ are bounded, then ĝ obtained by (3.13) is bounded.

(ii) We first look at term BAρ̂. Recall that νd = ν0|v|1+γ , for |v| ≤ δ, we have∣∣∣∣ 1

εα
〈K(BAρ̂)〉

∣∣∣∣ =

∣∣∣∣ 1

εα
〈
νdBAρ̂

〉∣∣∣∣ =

∣∣∣∣∣
∫
|v|≤δ

νd
iεv · k(

εα

∆t + νd + iεv · k
)2 dvρ̂M0

∆t

∣∣∣∣∣
.
∫
|v|≤δ

νdε|v · k||v|N−1(
εα

∆t + νd
)2

+ (εv · k)2
d|v| ≤

∫
|v|≤δ

νdε|v · k||v|N−1

νd
2

+ (εv · k)2
d|v|

.
∫
|v|≤δ

ε|v · k||v|γ+N

|v|
2(γ+1)
p (εv · k)

2
q

d|v| , (6.4)

where the last inequality is obtained thanks to the Young’s inequality with 1
p + 1

q = 1. Here we have omitted

all O(ε0) constants and we keep doing this throughout this subsection. Let us choose

q = 2 + η, p =
2 + η

1 + η
, η > 0 ,

then (6.4) becomes ∣∣∣∣ 1

εα
〈K(BAρ̂)〉

∣∣∣∣ ≤ ∫
|v|≤δ

(ε|k|)1− 2
2+η |v|N−

2
2+η−

η
η+2 (γ+1)d|v| (6.5)

where γ is defined in (2.16). Therefore, as long as we choose η small enough, we have N− 2
2+η −

η
η+2 (γ+1) >

−1 and

lim
ε→0

∣∣∣∣ 1

εα
〈K(BAρ̂)〉

∣∣∣∣ = 0 . (6.6)

Next we look at B3ĝ:∣∣∣∣ 1

εα
〈
K(B3ĝ)

〉∣∣∣∣ =

∣∣∣∣ 1

εα
〈
νdB3ĝ

〉∣∣∣∣ =

∣∣∣∣∣ 1

εα

∫
νd

(
εα

∆t

)3(
εα

∆t + νd + iεv · k
)3 ĝdv

∣∣∣∣∣
. |ĝ|

∫
supp(ĝ)

νdε2α|v|N−1[(
εα

∆t + νd
)2

+ (εv · k)2
]3/2 d|v| . ∫

supp(ĝ)

νdε2α|v|N−1(
εα

∆t + νd
)3 d|v|

.
∫

supp(ĝ)

νdε2α|v|N−1

ε
3α
p |v|

3(1+γ)
q

d|v| =
∫

supp(ĝ)

ε2α−
3α
p |v|N+γ− 3(1+γ)

q d|v| , (6.7)

where the last inequality again uses the Young’s inequality and thus 1
p + 1

q = 1. In this case we choose

p =
3

2
+ η, q =

3 + 2η

1 + 2η
, η > 0 ,
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and thus N + γ − 3(1+γ)
q > −1 for small η. Therefore,

lim
ε→0

∣∣∣∣ 1

εα
〈
K(B3ĝ)

〉∣∣∣∣ = 0 . (6.8)

Thirdly, we consider B2Cĝ:∣∣∣∣ 1

εα
〈
K(B2Cĝ)

〉∣∣∣∣ =

∣∣∣∣ 1

εα
〈
νdB2Cĝ

〉∣∣∣∣ =

∣∣∣∣∣ 1

εα

∫
νd

(
εα

∆t

)2(
εα

∆t + νd + iεv · k
)2 (Cĝ)dv

∣∣∣∣∣
.
∫
|v|≤δ

νdεα|v|N−1(
εα

∆t + νd
)2

+ (εv · k)2
d|v||Cĝ| . (6.9)

Then use the same argument as above we can show that∫
|v|≤δ

νdεα|v|N−1(
εα

∆t + νd
)2

+ (εv · k)2
d|v| → 0 as ε→ 0 , (6.10)

which along with the fact (6.3) gives rise to

lim
ε→0

∣∣∣∣ 1

εα
〈
K(B2Cĝ)

〉∣∣∣∣ = 0 . (6.11)

We then take care of terms with C. For brevity of notation, let us denote

Cf = G
〈
νdf

〉
, G =

νdMd

〈νdMd〉 −M
d

εα

∆t + νd + iεv · k
(6.12)

for the special choice of K (3.15). Now we look at CAρ̂ first.

1

εα
〈K(CAρ̂)〉 =

1

εα
〈
νdAρ̂

〉 〈
νdG

〉
. (6.13)

Note that limε→0
1
εα

〈
νdAρ̂

〉
is bounded from (3.23) and

lim
ε→0

〈
νdG

〉
= lim
ε→0

∫ νd
(
νdMd

〈νdMd〉 −M
d
)

εα

∆t + νd + iεv · k
dv = 0 , (6.14)

we immediately have

lim
ε→0

1

εα
〈K(CAρ̂)〉 = 0 . (6.15)

Likewise, we consider BC2ĝ:∣∣∣∣ 1

εα
〈
K(BC2ĝ)

〉∣∣∣∣ =

∣∣∣∣ 1

εα
〈
νdBC2ĝ

〉∣∣∣∣ =

∣∣∣∣∣ 1

εα

∫
νd

εα

∆t
εα

∆t + νd + iεv · k
G
〈
νdCĝ

〉
dv

∣∣∣∣∣
=

∣∣∣∣∫ νd
1

∆t
εα

∆t + νd + iεv · k
G
〈
νdG

〈
νdĝ

〉〉
dv

∣∣∣∣
=

∣∣∣∣〈νdG〉 ∫ νd/∆t
εα

∆t + νd + iεv · k
Cĝdv

∣∣∣∣
≤
〈
νdG

〉 ∫
|v|≤δ

∣∣∣∣ νd

εα

∆t + νd + iεv · k

∣∣∣∣ dv|Cĝ| . 〈νdG〉 . (6.16)
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Since we have (6.14), it is easy to see that

lim
ε→0

∣∣∣∣ 1

εα
〈
K(BC2ρ̂)

〉∣∣∣∣ = 0 . (6.17)

Similarly, for the term BCAρ̂, we have

1

εα
〈K(BCAρ̂)〉 =

1

εα
〈
νdBCAρ̂

〉
=

1

εα

∫
νd ε

α

∆t
εα

∆t + νd + iεv · k
G 〈νAρ̂〉 dv

=
1

εα
〈νAρ̂〉

∫
νd ε

α

∆t
εα

∆t + νd + iεv · k

νdMd

〈νdMd〉 −M
d

εα

∆t + νd + iεv · k
dv . (6.18)

Note from (3.23) that 1
εα 〈νAρ̂〉 ∼ O(1) as ε→ 0, (6.18) reduces to

1

εα
〈K(BCAρ̂)〉 .

∫
|v|≤δ

∣∣∣∣∣ εαν(
εα

∆t + νd + iεv · k
)2
∣∣∣∣∣
∣∣∣∣ νdMd

〈νdMd〉
−Md

∣∣∣∣ dv . (6.19)

Since
∣∣∣ νdMd

〈νdMd〉 −M
d
∣∣∣ is an O(1) term, the limit of the above equation becomes zero following from (6.10).

At last, we consider C3ĝ:

1

εα
〈
K(C3ρ̂)

〉
=

1

εα
〈
νdC3ĝ

〉
=

1

εα

∫
νdG

〈
νdC2ĝ

〉
dv

=
1

εα
〈
νdG

〉 ∫
νdC 〈Cĝ〉 dv =

1

εα
〈
νdG

〉3 〈
νdg

〉
. (6.20)

Again note from (6.14), we can argue that for small ε〈
νdG

〉
< 1 . (6.21)

Therefore, for big enough m, we have

lim
ε→0

1

εα
〈K(Cmρ̂)〉 = 0 . (6.22)

To conclude, we would like to point out the following facts so that the rest terms in (3.22) can be
estimated with ease. For a general term denoted by Hf , that has been proved to admit the following limit

lim
ε→0

1

εα
〈K(Hf)〉 = 0 ,

where H is considered as an arbitrary operator in v and x, and f can be a function of t, x and v or just t
and x, then it also satisfies

lim
ε→0

1

εα
〈K(CnHf)〉 = 0 , n ∈ Z+ . (6.23)

Indeed,

1

εα
〈K(CHf)〉 =

1

εα
〈
νdCHf

〉
=

1

εα
〈
νdG

〈
νdHf

〉〉
=

1

εα
〈
νdG

〉 〈
νdHf

〉
,

and thus

lim
ε→0

1

εα
〈K(CnHf)〉 = lim

ε→0

1

εα
〈
νdG

〉n 〈
νdHf

〉
= 0

owing to (6.14). Furthermore, if f is only a function of t, x and v and still satisfies (6.23), we also have

lim
ε→0

1

εα
〈K(BnHf)〉 = 0, (6.24)

thanks to the fact (6.1).
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