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Abstract

We introduce a sub-cell shock capturing method for scalar conservation laws built
upon the Jin-Xin relaxation framework. Here, sub-cell shock capturing is achieved
thanks to an original defect measure correction technique. The proposed correction
exactly restores entropy shock solutions of the exact Riemann problem while otherwise,
it produces monotone and entropy satisfying approximate self-similar solutions. These
solutions are then sampled thanks to the Glimm’s random choice method to advance the
method in time. The resulting scheme combines the simplicity of the Jin-Xin relaxation
method with the resolution of the Glimm’s scheme in the capture of discontinuities. The
strong benefit of using defect measure corrections over usual sub-cell shock capturing
methods stays in the property that the scheme can be easily made entropy satisfying
with respect to infinitely many entropy pairs. Consequently and under a classical CFL
condition, the method is proved to converge to the unique entropy weak solution of the
Cauchy problem for general non-linear flux functions.
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1 Introduction

Modern high resolution shock capturing methods for nonlinear hyperbolic systems of con-
servation laws contain two ingredients: building blocks (Godunov type upwind schemes
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based on exact or approximate Riemann solvers, Lax-Friedrichs type central schemes, ki-
netic schemes, etc.) [14] and reconstructions that hybridize higher order interpolations in
smooth part of the solution and first order methods around discontinuities–shocks and con-
tact discontinuities– (total-variation-diminishing (TVD), essentially-non-oscillatory (ENO)
or weighted essentially-non-oscillatory (WENO), Discontinuous Galerkin, etc) [27], [28].
These methods have been very successfully applied to many fluid flow problems, magnetohy-
drodynamics, reacting flows (see [6] and the references therein). Analyses of these methods,
on the other hand, are much less developed and are mostly available only for scalar problems.

In these high resolution methods, due to the use of first order methods near discontinu-
ities, the shocks and contact discontinuities, are smeared out across few grid points. Such
smearing is not an issue for most inviscid flow calculations, however, there are many prob-
lems where the smearing due to numerical viscosities can cause significant pitfalls which
lead to polluted or even unphysical numerical solutions. For examples, in multiphase flows,
the smeared numerical solutions across the interfaces between the two phases correspond
to unphysical phases [18]; in phase transition problems, such as van der Waals flows [29],
smeared solutions enter the elliptic regions which are unstable [18]; in the computation of
stiff reacting flows [8], the artificially smeared temperature profiles incorrectly trigger chemi-
cal reactions which lead to unphysical detonations that propagate with incorrect speeds (see
[2] for a correction based on a random projection method). Numerical viscosities are also
blamed for numerical oscillations behind slowly moving shocks [15], artificial wall heating
[23], and the carbuncle phenomena [25]. Indeed, it contributes to numerical instability in
Lax-Friedrichs and Godunov schemes for nonlinear hyperbolic systems [1].

This paper aims at developing a one-dimensional shock capturing method that captures
shocks sharply–without numerical smearing– and establishing an entropic convergence theory
of this method for scalar conservation laws. The method combines the Jin-Xin relaxation
approximation [16] with Dirac measure and Glimm sampling [10]. Thanks to the linear
convection of the Jin-Xin relaxation, the Riemann invariants are linear which can be easily
inverted and the entropy property satisfied by the scalar conservation laws can be lifted
to the relaxation system. We design a specific Dirac measure which allows us to obtain
the total-variation-diminishing property and cell entropy condition for both square [24] and
Kruz̆kov entropies [19]. The Glimm sampling gives a sharp shock. We refer to [13], [12] for
a related sampling strategy based on Roe’s approximate solvers and to [3] where a Suliciu
solver for the p-system is advocated. In [4], mixed hyperbolic-elliptic Euler equations are
solved within the frame of a Sulicu method but using a deterministic front tracking technique
while a Glimm front sampling could have be used as well.

Here, we provide a theoretical foundation for this approach, namely the method indeed
converges to the entropic solution of the scalar conservation law for general non-linear fluxes.

Numerically we only use Dirac measure and Glimm sampling near the shock. Elsewhere
standard high resolution mechanism, such as higher order TVD or ENO/WENO reconstruc-
tion can still be used to offer better numerical accuracy.

There were other efforts focused on obtaining sharp shocks numerically. One is the front
tracking method which relies on solving Riemann problems exactly. Within the framework
of shock capturing methods, which is the approach in this paper, Harten [11] introduced
the subcell method, which creates an intermediate state based on the conservation property.
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However, conservation itself only guarantees the capturing of a weak solution according to
the celebrated Lax-Wendroff theorem, it does not prevent the formation of entropy violating
shocks. Our approach always produces entropic shocks.

Like the subcell method, our approach will also encounter major challenges when extended
to nonlinear systems and higher dimensions. This will be a subject of future research.

The next section is a follow up to the Introduction. We further motivate the introduction
of a Dirac measure correction to the classical numerical application of the Jin-Xin relaxation
framework. For that purpose, we recall known mathematical properties of this convenient
framework while introducing the required notations. We are then in a position to shade light
in the design principle of the Dirac measure correction we develop hereafter in the paper.
Its format is given at the end of the section.

2 Relaxation defect measures and their numerical ap-

plication

We consider the Cauchy problem for a non-linear scalar conservation law{
∂tu+ ∂xf(u) = 0, t > 0, x ∈ R,
u(t, 0) = u0(x),

(2.1)

supplemented with the following entropy selection principle

∂t U(u) + ∂xF(u) ≤ 0. (2.2)

Here we assume a smooth flux function f ∈ C2(R). Inequality (2.2) has to be satisfied in the
sense of the distributions for all smooth convex functions U(u) with F ′(u) = U ′(u)f ′(u). In
(2.1), the initial data u0 is chosen in L∞(R)∩BV(R). It is well-known (see [26] for instance)
that the Cauchy problem (2.1)–(2.2) admits a unique entropy weak solution, the so-called
Kruz̆kov solution. In [16], Jin and Xin proposed to approximate this solution by the solution
of the following relaxation system∂tu

ε + ∂xv
ε = 0, (2.3a)

∂tv
ε + a2∂xu

ε = −1

ε
(vε − f(uε)), (2.3b)

with well-prepared initial data

u(0, x) = u0(x), v(0, x) = v0(x) = f(u0(x)). (2.4)

Here ε > 0 denotes a small relaxation time. For any given fixed ε > 0, existence and
uniqueness of a solution (uε, vε) can be established (see for instance [5], [22]). Under the
sub-characteristic condition

sup |f ′(u)| < a, (2.5)

for all the u under consideration, the sequence {uε, vε}ε>0 is shown to converge strongly as
ε→ 0+ in C((0,∞), L1

loc(R)) to (u, f(u)) with u being the Kruz̆kov solution of (2.1) (see [5],
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[22] for a precise statement). In particular, this result applies to any initial data u0 under
the form

u0(x) = uL + (uR − uL)H(x), x ∈ R, (2.6)

where H denotes the Heaviside function. In (2.6) the constant states uL and uR satisfy

−σ(uL, uR)(uR − uL) + f(uR)− f(uL) = 0, (2.7)

and for all entropy pairs (U ,F)

−σ(uL, uR) (U(uR)− U(uL)) + F(uR)−F(uL) ≤ 0. (2.8)

This initial data defines a Riemann problem for (2.1) that gives rise to an entropy shock
solution

u(t, x) = uL + (uR − uL)H(x− σ(uL, uR)t), t > 0, x ∈ R. (2.9)

Under the stability condition (2.5), the well-prepared initial data (2.4) for (2.3) built from
u0 in (2.6) thus gives rise to a family of solutions {(uε, vε)}ε>0 which converges as ε goes to
zero to (u, v ≡ f(u)) where u is given by (2.9). It can be easily shown that the following
limit holds in the sense of the distributions

lim
ε→0

1

ε
(f(uε)− vε) =

{
− σ(uL, uR)(f(uR)− f(uL)) + a2(uR − uL)

}
δx−σ(uL,uR)t

= (a2 − σ2(uL, uR))(uR − uL)δx−σ(uL,uR)t.
(2.10)

Hence the limit pair (u, v) solves again in the sense of the distributions the following system
involving a measure source term :{

∂tu+ ∂xv = 0,
∂tv + a2∂xu = (a2 − σ2(uL, uR))(uR − uL)δx−σ(uL,uR)t,

(2.11)

with initial data :

u0(x) = uL + (uR − uL)H(x), v0(x) := f(u0(x)) = f(uL) + (f(uR)− f(uL))H(x), x ∈ R,
(2.12)

where we have used the definition of the Heaviside function in the last equality. In the sequel,
the measure source term entering (2.11) is referred to as a relaxation defect measure.

At this level, it is crucial to observe that despite the Cauchy problem (2.3) with the
Riemann data (2.12) does not admit a self-similar solution (uε, vε) for any given fixed ε > 0,
the limit PDE model (2.11) does by contrast admit the self similar solution

u(t, x) = uL + (uR − uL)H(x− σ(uL, uR)t), t > 0, x ∈ R,
v(t, x) = f(uL) + (f(uR)− f(uL))H(x− σ(uL, uR)t),

(2.13)

where the u-component is nothing but the entropy satisfying shock solution (2.9) of (2.1)-
(2.6).

With this in mind, let us briefly revisit the widely used application of the relaxation model
(2.3) to the numerical approximation of the Kruz̆kov solution of (2.1). An operator splitting
strategy is generally promoted to circumvent the lack of self-similar solutions. Covering R+

t
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by a collection of small time steps, one thus solves in each time step first the homogeneous
Cauchy problem {

∂tu+ ∂xv = 0, (2.14a)

∂tv + a2∂xu = 0, (2.14b)

with appropriate initial data, and then the following singular ODE problem

dtu
ε = 0, dtv

ε = −1

ε
(vε − f(uε)), in the limit ε→ 0+, (2.15)

again with appropriate data. Of course, the first step now allows for self-similar solutions.
Such solutions are just made of a single intermediate state (u?, v?) separated by two dis-
continuities propagating with speed −a and +a respectively. But this step yields a poor
resolution of the shock solutions of the original conservation law (2.1). Actually and under
the mandatory stability condition (2.5), it can be seen [14] that the intermediate value u?

in the self-similar solution of (2.14)–(2.12) coincides with the space averaging of the exact
self-similar solution (2.9) whose fan is bordered by the two waves −a and +a. Put in other
words, exact shock waves are inherently smeared from the very first step of the procedure.
The rough splitting performed on the relaxation PDEs (2.3) is responsible for that. Too little
from the relaxation mechanism has been accounted for in the first step. In order to involve
those mechanisms in a deeper manner at the first step, we again argue of the limit of the
singular source term (f(uε) − vε)/ε in the limit ε → 0+. Formally speaking and for general
well-prepared initial data (2.4), the limit under consideration can be split in two contribu-
tions. A first singular part is a Radon measure Mt,x, made of the sum of all the relaxation
defect measures concentrated on the shocks in the limit solution u(t, x). A second smooth
contribution comes from the smooth part of the Kruz̆kov solution and reads ∂tf(u) + a2∂xu.
Motivated by this natural decomposition, we propose a new splitting procedure involving
in the first step the singular first part Mt,,x while the second step is devoted to handle the
smooth second part. The first step then consists in solving{

∂tu+ ∂xv = 0, (2.16a)

∂tv + a2∂xu =Mt,x. (2.16b)

and then

dtu
ε = 0, dtv

ε = −1

ε
(vε − f(uε)), in the limit ε→ 0+, (2.17)

with appropriate initial data. Let us stress that the second step cannot develop relaxation
defect measures. With this respect, we really have performed a consistent splitting of the
PDE model (2.3) in the limit ε → 0+. Then we underline that the Cauchy problem (2.16)
can be solved by a succession of non interacting Riemann problems of the form (2.11) , once
the Radon measure Mt,x is conveniently approximated.

Let us now describe the main building principle for relevant approximations of Mt,x.
Approximations are to be performed locally for Riemann problems under the generic form{

∂tu+ ∂xv = 0, (2.18a)

∂tv + a2∂xu = m(uL, uR)δx−σ(uL,uR)t, (2.18b)
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with well-prepared initial data

u(0, x) = u0(x) =

{
uL, x < 0,
uR, x > 0,

v(0, x) = v0(x) =

{
f(uL), x < 0,
f(uR), x > 0.

(2.19)

In (2.18), m(uL, uR) refers to the mass of a Dirac measure concentrated at x = σ(uL, uR)t
where σ(uL, uR) plays the role of a velocity to be defined under the natural condition

|σ(uL, uR)| < a. (2.20)

Both the mass m and velocity σ are to be defined depending on the states uL, uR to meet
suitable properties in the solution of the Cauchy problem (2.18)–(2.19). But whatever the
precise definitions are, the solution we seek for is clearly self-similar. To condense the
notations, U = (u, v)T ∈ R2 refers to the unknown in (2.18). The case of an identically zero
massm(uL, uR) = 0 boils down to a Riemann solution for the 2×2 homogeneous linear system
(2.14). It is generically made of three constant states UL, U? and UR separated by two waves
propagating with speed −a and +a respectively. For a non-zero mass, easy considerations
on the weak form of the PDEs (2.18) reveal the existence of an intermediate discontinuity
propagating with speed σ(uL, uR) (see indeed the condition (2.20)) which separates, in the
wave span, two inner states denoted U?

L and U?
R. Across the intermediate discontinuity, these

two states have to satisfy the following jump conditions :

−σ(uL, uR)(u?R − u?L) + (v?R − v?L) = 0,
−σ(uL, uR)(v?R − v?L) + a2(u?R − u?L) = m(uL, uR).

(2.21)

We propose to define the mass m(uL, uR) and the velocity σ(uL, uR) in order to preserve
some of the essential properties of the exact solution of the Riemann problem

∂tu+ ∂xf(u) = 0,

u(0, x) =

{
uL, x < 0,
uR, x > 0.

(2.22)

Properties to be preserved include the monotonicity property in the self-similar variable
ξ = x/t, some consistency requirement with the entropy inequalities (2.2) and an exactness
property regarding discontinuous solutions of (2.22). For pairs of states (uL, uR) satisfying
(2.7)–(2.8), the exactness requirement we propose amounts to define the mass m(uL, uR)
and velocity σ(uL, uR) in the Cauchy problem (2.18)–(2.19) so that its self-similar solution
U(ξ, uL, uR) reduces component-wise to (2.13). Doing so, we naturally recover the definition
of the relaxation defect measure stated in (2.11).

Lemma 1. Given any pair of states (uL, uR) verifying the Rankine-Hugoniot condition (2.7)
and the entropy inequalities (2.8), define the velocity

σ(uL, uR) =
f(uL)− f(uR)

uL − uR
, uL 6= uR; σ(uL, uR) = f ′(uL) = f ′(uR), otherwise, (2.23)

and the mass
ms(uL, uR) =

(
a2 − σ2(uL, uR)

)
(uR − uL). (2.24)

Then the U(ξ, uL, uR) of the Riemann problem (2.18)–(2.19) is given by the self-similar
function (2.13).
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Proof. One has to prove to that the self-similar function (2.13) is a solution of the Riemann
problem (2.18)–(2.19) with intermediate states U?

L = UL and U?
R = UR as soon as the

velocity and mass are prescribed according to (2.23) and (2.24). In such a case the jumps in
the waves with speed −a and +a have to be trivial. One thus has to ckeck that the jump
conditions (2.21) across the intermediate wave are satisfied with U?

L = UL and U?
R = UR.

But, clearly

−σ(uL, uR)(u?R − u?L) + (v?R − v?L) = −σ(uL, uR)(uR − uL) + f(uR)− f(uL) = 0, (2.25)

by the definition of σ(uL, uR) while the mass ms(uL, uR) has to prescribed to meet the
identity :

−σ(uL, uR)(v?R − v?L) + a2(u?R − u?L) = −σ2(uL, uR)(uR − uL) + a2(uR − uL) := ms(uL, uR).
(2.26)

This concludes the proof.

Obviously the property that the pair (uL, uR) under consideration verifies the entropy
condition(s) stated in (2.8) plays no role in the fact that (2.13) actually solves (2.18)–(2.19).
In the definition of the mass ms(uL, uR), only the satisfaction of the jump condition (2.7)
matters. But in the present scalar setting, it is always possible to define the velocity σ(uL, uR)
so as to meet (2.7) for any given pair of states (uL, uR). Then choosing (2.24) to define
m(uL, uR) for arbitrary pairs would systematically result in a solution given by (2.13). In
other words, we would merely end up with a Roe scheme which is known [14] to be entropy
violating in the approximation of the solutions of (2.22).

We thus propose to modulate the definition of the mass in (2.24) by looking for a monitoring
factor θ(uL, uR), namely a suitable real valued mapping θ : (uL, uR) ∈ R2 → θ(uL, uR) ∈ R,
to define

m(uL, uR) = θ(uL, uR)
(
a2 − σ2(uL, uR)

)
(uR − uL), (2.27)

with σ(uL, uR) given by (2.23). Clearly, θ(uL, uR) acts as an anti-diffusive parameter, allow-
ing for a continuous shift from the Lax Friedrichs scheme when θ(uL, uR) = 0 to the Roe
scheme for θ(uL, uR) = 1.

2.1 Design principle of approximate defect measures

Let us briefly put forward the design principle we propose for relevant anti-diffusive laws
θ(uL, uR).

In that aim, let us first consider the case of a strictly convex flux function f(u). A first
obvious choice for the anti-diffusive law θ(uL, uR) would be :

θ(uL, uR) =

{
1, uL > uR,
0, otherwise,

(2.28)

since the situation uL > uR yields an entropy satisfying shock solution, while the converse
gives rise to a rarefaction. Actually we will prove that more anti-diffuse choices for θ(uL, uR)
can be performed while still allowing for convergence to the Kruz̆kov solution. In particular,
we will prove that θ(uL, uR) can be set close to 1 (at the order O(∆x) with ∆x > 0 the
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space step) in the smooth part of the approximate solution. Hence rarefaction waves in
the discrete solution can be handled with values asymptotically close to 1 and not to 0 as
advocated in (2.28). The derivation of relevant anti-diffusive laws θ essentially relies on
a consistency requirement with the entropy inequalities (2.2). In the case of a genuinely
non-linear flux f(u), it is known after Panov [24] that a single strictly convex entropy pair
suffices to select the Kruz̆kov solution of (2.1). θ-laws are derived accordingly on the ground
of a single entropy pair.

The situation of a general non-linear flux function is more involved. First and clearly, the
obvious choice (2.28) no longer applies. Then, infinitely many entropy pairs are required to
single out the Kruz̆kov solution. We are thus led to design θ-laws accordingly when asking
consistency with all the Kruz̆kov entropy pairs. We thus have to handle infinitely many
entropy pairs in the design of the anti-diffusive laws.

Our consistency condition with the entropy inequalities (2.2) is built from the relaxation
entropy pairs associated with the Jin-Xin’s model (2.18). As established in [5] (see also [22]),
any given smooth convex entropy pair (U ,F) for (2.1) can be suitably lift to give rise to a re-
laxation entropy pair for (2.18), we denote (Φ,Ψ) in the sequel. Under the sub-characteristic
condition (2.5), the relaxation mechanism in (2.18) can be shown to be dissipative with re-
spect to any of those relaxation entropy pairs. More precisely, an invariant domain for the
solutions of (2.18) may be built from (2.5). Convexity and dissipative properties for any
pair (Φ,Ψ) are proved to hold true within that invariant domain. These crucial properties
are generically lost outside of the invariant domain. It is thus of central importance to keep
invariant the aforementioned domain for the solution of the Riemann problems (2.18) involv-
ing an approximation of the exact defect measure Mt,x in the limiting PDE model (2.16).
This requirement will be fairly easily achieved from the choice (2.27), allowing us in turn to
enforce consistency with the entropy inequalities (2.2).

2.2 Organization of the paper

In section 3, the Riemann problem (2.18)–(2.19) with a defect measure correction given by
(2.27) is solved for a general pair of states (uL, uR). A central property due to the choice
(2.27) is then revealed in the characteristic variables (v− av , u+ av). Indeed, this property
allows to prove in section 4 that preserving the entropy invariant domain for self-similar
solutions of (2.18) is achieved by requiring the anti-diffusive law θ(uL, uR) to take values
in [0, 1]. Equivalence of the reported invariance property with a monotonicity property for
the u-component of the solution (2.18) is then established. As a consequence, uniform sup-
norm and BV estimates are inferred, allowing us to prove the convergence of the Jin-Xin
relaxation solver with defect measure correction to a weak solution of (2.1). To enforce the
entropy condition with the expected Kruz̆kov solution, we then ask in subsection 4.2 that the
discontinuity induced by the approximate defect measure in (2.18) is entropy satisfying with
respect to relaxation entropy pairs (Φ,Ψ). This requirement further reduces the admissible
graph of relevant anti-dissipative law θ : (uL, uR) ∈ R2 → [0,Θ(uL, uR)], where the positive
real number Θ(uL, uR) denotes some optimal upper-bound. Θ(uL, uR) is in general strictly
less than 1 for arbitrary pairs (uL, uR) but turns to be equal to 1 for the pairs satisfying (2.8).
In other words, exact capture of entropy shock solutions is thus assured. In subsection 4.4,
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analysis is performed for a strictly convex flux on the ground of a single entropy inequality.
Analysis is extended in subsection 4.4 to general flux functions, involving the whole Kruz̆kov
entropy pairs family. In both settings, the optimal upper-bound Θ(uL, uR) is given an explicit
form whose evaluation turns to be fairly simple. In section 5, two numerical methods for
approximating the Kruz̆kov solution of (2.1)–(2.2) are introduced. The convergence of the
corresponding families of approximate solutions is established in section 6. At last, we
propose some numerical results to assess the central importance of designing optimal anti-
diffusive law Θ(uL, uR) according to infinitely many entropy pairs in the frame of a flux
function without genuine nonlinearities.

3 Relaxation Riemann problem with defect measure

correction

Consider a pair of real numbers (uL, uR) and a constant positive velocity a prescribed under
the sub-characteristic condition

sup
u∈buL,uRe

|f ′(u)| < a, (3.1)

where for any given pair of real numbers (a, b), ba, be denotes in the sequel the interval
[min(a, b),max(a, b)]. Motivated by the Introduction, we first give the precise form of the
self-similar solution of the Riemann problem (2.18)–(2.19).

Proposition 2. For a general pair of states (uL, uR), define the velocity σ(uL, uR) according
to (2.23) and consider a mass m(uL, uR) under the form (2.27) for some given mapping
θ : (uL, uR) ∈ R2 → θ(uL, uR) ∈ R. Then the solution U(.;uL, uR) of the Riemann problem
(2.18)–(2.19) is generically made of four constants states UL, U?

L(θ;uL, uR), U?
R(θ;uL, uR)

and UR separated by three discontinuities propagating with speed −a, σ(uL, uR) and +a re-
spectively. Defining

u? =
1

2
(uL + uR)− 1

2a

(
f(uR)− f(uL)

)
, v? =

1

2

(
f(uR) + f(uL)

)
− a

2
(uR − uL), (3.2)

the intermediate state U?
L(θ;uL, uR) reads component wise

u?L(θ;uL, uR) = u? − 1
2a
θ(uL, uR)(a− σ(uL, uR))(uR − uL),

v?L(θ;uL, uR) = v? + 1
2
θ(uL, uR)(a− σ(uL, uR))(uR − uL),

(3.3)

while U?
R(θ;uL, uR) is given by

u?R(θ;uL, uR) = u? + 1
2a
θ(uL, uR)(a+ σ(uL, uR))(uR − uL),

v?R(θ;uL, uR) = v? + 1
2
θ(uL, uR)(a+ σ(uL, uR))(uR − uL).

(3.4)
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Proof. One has to determine each of the two components in the intermediate states U?
L(θ;uL, uR)

and U?
R(θ;uL, uR). The two jump conditions (2.21) at the intermediate discontinuity are sup-

plemented with Rankine-Hugoniot relations for the waves propagating with speed −a and
+a respectively

a(u?L − uL) + (v?L − f(uL)) = 0, −a(uR − u?R) + (f(uR)− v?R) = 0. (3.5)

The resulting 4× 4 linear system is easily seen to be uniquely solvable for any given mass m
provided that |σ(uL, uR)| 6= a, which holds in view of the sub-characteristic condition (2.20)
satisfied with the choice (2.23). With little abuse in the notations, the components of the
intermediate states expressed for a general value of the mass read

u?L(m) = u? − m
2a(a+σ)

, v?L(m) = v? + m
2(a+σ)

,

u?R(m) = u? + m
2a(a−σ)

, v?R(m) = v? + m
2(a−σ)

,
(3.6)

with u? and v? given in (3.2). The required expressions (3.3)–(3.4) readily follow plugging
the particular form (2.27) for the mass under consideration.

Observe that the state U? ≡ (u?, v?) defined from (3.2) is nothing but the intermediate
state involved in the classical solution for the homogeneous Riemann problem (2.18)–(2.19),
i.e. with m(uL, uR) = 0. Let us then underline that the proposed formulas for the interme-
diate states U?

L(θ;uL, uR) and U?
R(θ;uL, uR) are well-behaved if the mapping θ(uL, uR) stays

bounded for all pairs of states (uL, uR) in R2. The next sections devoted to the derivation of
monitoring weight functions θ(uL, uR) will show that relevant mappings naturally keep their
values in the interval [0, 1].

A central property due to the choice (2.27) for defining the mass m(uL, uR) is revealed
when re-formulating the two intermediate states thanks to the characteristic variables

r± = v ± au. (3.7)

Corollary 3. Under the assumptions of Proposition 2, let us re-express the intermediate
states U?

L(θ;uL, uR) and U?
R(θ;uL, uR) in the characteristic variables

r±?L (θ) = v?L(θ;uL, uR)± au?L(θ;uL, uR), r±?R (θ) = v?R(θ;uL, uR)± au?R(θ;uL, uR). (3.8)

Then r−?L (θ) and r+?
R (θ) can be equivalently rewritten as linear combinations in θ of r±L =

f(uL)± auL and r±R = f(uR)± auR according to

r−?L (θ) = θ(uL, uR)r−L +
(
1− θ(uL, uR)

)
r−R ,

r+?
R (θ) =

(
1− θ(uL, uR)

)
r+
L + θ(uL, uR)r+

R ,
(3.9)

while we have

r−?R (θ) = r−R , r+?
L (θ) = r+

L . (3.10)
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Proof. Denoting r+? = v? + au? with u?, v? defined in (3.2) yields for any given value of θ
the following identities

r+?
L (θ) = r+?, r+?

R (θ) = r+? + θ(a+ σ)(uR − uL). (3.11)

But it is easily seen that r+? = f(uL) + auL = r+
L so that we have r+?

L (θ) = r+
L and

r+?
R (0) = r+? = r+

L while r+?
R (1) = f(uL) + auL + a(uR − uL) + (f(uR) − f(uL)) = r+

R .
Because (3.11) is linear in θ, we readily infer

r+?
R (θ) = (1− θ)r+?

R (0) + θr+?
R (1) = (1− θ)r+

L + θr+
R . (3.12)

The first linear combination in (3.9) follows similarly, noticing successively that r−?R (θ) =
r−? = r−R , r−?L (θ) = r−? + θ(a− σ)(uR − uL) with r−?L (0) = r−R and r−?L (1) = r−L .

As already claimed, relevant mappings θ(uL, uR) will be seen to keep values in the interval
[0, 1]. With this respect, the linear combinations stated in (3.9) are nothing but convex
decompositions of the left and right data expressed in terms of the characteristic variables
(3.7). Such convex decompositions will be crucial in the design of relevant mappings θ(uL, uR)
according to forthcoming consistency conditions with the entropy inequalities (2.2).

4 Design of non-linearly stable mappings θ(uL, uR)

This section studies the monitoring mapping θ(uL, uR) in (2.27) for general pairs of states
(uL, uR) so that the solution of the Riemann problem with defect measure correction (2.18)–
(2.19) obeys linear and non-linear stability properties.

4.1 Monotonicity preservation

The main result of this paragraph is

Proposition 4. For a general pair of states (uL, uR), define the velocity σ(uL, uR) accord-
ing to (2.23) and consider a mass m(uL, uR) under the form (2.27). Then under the sub-
characteristic condition (3.1), the u-component of the Riemann solution U(.;uL, uR) of the
problem (2.18)–(2.19) satisfies the following monotonicity preserving properties

TV (u(·;uL, uR)) = |uR − uL| (4.1)

if and only if
0 ≤ θ(uL, uR) ≤ 1. (4.2)

As a consequence and under (4.2), we have

min(uL, uR) ≤ u(·;uL, uR) ≤ max(uL, uR), (4.3)

furthermore :

|v(·, uL, uR)| ≤ amax(|uL|, |uR|), TV
(
v(·;uL, uR)

)
≤ a|uL − uR|. (4.4)
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Proof. We will consider the case uL < uR, the reverse situation follows similar steps. If
θ(uL, uR) is defined so that the following ordering is valid

uL ≤ u?L(θ;uL, uR) ≤ u?R(θ;uL, uR) ≤ uR, (4.5)

then the total variation estimate stated in (4.1) is guaranteed but is clearly violated otherwise.
The maximum principle in (4.1) is also valid provided that (4.5) holds. Using the definitions
of these intermediate values in (3.3)-(3.4) and u? given in (3.2), one gets

u?L(θ)− uL = (u? − uL)− θ(uL, uR)a−σ
2a

(uR − uL) =
(
1− θ(uL, uR)

)
a−σ
2a

(uR − uL),
u?R(θ)− u?L(θ) = θ(uL, uR)(uR − uL),
uR − u?R(θ) = (uR − u?)− θ(uL, uR)a+σ

2a
(uR − uL) =

(
1− θ(uL, uR)

)
a+σ
2a

(uR − uL),
(4.6)

so that under the sub-characteristic condition (2.20) inherited from (3.1), the proposed
ordering (4.5) holds true if and only if the weight θ(uL, uR) verifies (4.2). Regarding the
sup-norm estimate for the second component v(.;uL, uR), we notice that

sign(uR − uL)v?L(θ) = sgn(uR − uL)v? +
θ

2
(a− σ)|uR − uL|,

which is an increasing function of θ ∈ [0, 1] :

sign(uR − uL)v? ≤ sign(uR − uL)v?L(θ) ≤ sign(uR − uL)
(
v? + 1

2
(a− σ)(uR − uL)

)
,

= sign(uR − uL)f(uL).
(4.7)

Assuming without loss of generality f(0) = 0, we infer under the sub-characteristic condition
(3.1)

|v?L(θ)| ≤ max(|f(uL)|, |f(uR)|) ≤ amax(|uL|, |uR|). (4.8)

The same estimate holds true for |v?R(θ)|. At last, the total variation of v(.;uL, uR) reads

TV
(
v(·;uL, uR)

)
= |v?L(θ)− vL|+ |v?R(θ)− v?L(θ)|+ |vR − v?R(θ)|
=
(
(1− θ)a+ θ|σ|

)
|uR − uL|

≤ a|uR − uL|,

where we have used the definitions of the intermediate states (3.2)–(3.4) and the sub-
characteristic condition (2.20).

As is well-known, the solution u(.;uL, uR) of the Riemann problem (2.22)–(2.2) satisfies
the a priori estimates (4.1). It seems thus natural to require the u-component of U(.;uL, uR)
to satisfy the same estimates. This in turn equivalently asks θ(uL, uR) to satisfy the con-
dition (4.2). The corresponding mappings will be referred as to monotonicity preserving in
the sequel. Let us stress that the condition (4.2) actually implies a stronger property for
U(.;uL, uR). To clarify this issue, it is convenient to adopt a slightly broader standpoint.
After Chen-Levermore and Liu [5], Natalini [22], define the following two functions

h±(u) = f(u)± au, u ∈ buL, uRe, (4.9)
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and consider the compact intervals I− = h−(buL, uRe) and I+ = h+(buL, uRe). Under the
sub-characteristic condition (3.1), the inverse functions h−1

± : r ∈ I± → h−1
± (r) ∈ buL, uRe

are well-defined with the property that h−1
+ (respectively h−1

− ) is increasing (resp. decreasing)

d

dr
h−1

+ (r) =
1

a+ f ′(h−1
+ (r))

> 0,
d

dr
h−1
− (r) = − 1

a− f ′(h−1
− (r))

< 0. (4.10)

Equipped with these notations, let us built the following compact domain of R2 from the
interval buL, uRe

D(buL, uRe) ≡ {U = (u, v) ∈ R2; r−(U) = v − au ∈ I− and r+(U) = v + au ∈ I+}. (4.11)

Of central importance in the sequel, the domain (4.11) can be shown to stay invariant by the
Jin-Xin relaxation model under the sub-characteristic condition (3.1) (see [5], [22]). Namely
given a well-prepared initial data U0 = (u0, v0 = f(u0)) with u0(x) ∈ buL, uRe for a.e.
x ∈ R ,then for any given relaxation time ε > 0, the unique solution Uε of the relaxation
Cauchy problem stays in D(buL, uRe). In particular, the solution of Riemann problem of
the homogeneous system (2.18), i.e. with m(uL, uR) = 0, satisfies this invariance property.
The reported invariance property turns to be crucial in the dissipative convex lift of the
convex entropy pairs (U ,F) for (2.22). The following consequence of the condition (4.2)
shows that such a property extends to the corresponding solutions of the Riemann problem
of the system with defect measure correction.

Corollary 5. Given a pair of states (uL, uR), assume the sub-characteristic condition (3.1).
Then the solution U(., uL, uR) of (2.18)–(2.19) for a given θ(uL, uR) stays in D(buL, uRe)
(4.11) if and only if the monotonicity preserving condition (4.2) is satisfied.

Proof. This statement is a direct consequence of Corollary 3. Indeed and under the sub-
characteristic condition (3.1), r−L , r−R (respectively r+

L , r+
R) are nothing but the boundaries

of the interval I− (resp. I+) in view of the monotonicity properties (4.10). Keeping the
domain D(buL, uRe) invariant is thus equivalent to require that the characteristic vari-
ables r−?L (θ;uL, uR), r−?R (θ;uL, uR) are convex combinations of these two boundaries (resp.
r+?
L (θ;uL, uR), r+?

R (θ;uL, uR)). According to (3.9), such a property is met if and only if the
monotonicity preserving condition (4.2) holds true.

4.2 Entropy consistency requirements

In this section, we propose and analyze entropy-like conditions to further limit the graph
of monotonicity preserving mappings θ(uL, uR). The proposed limitation has to permit the
expected value θ(uL, uR) = 1 for pairs of states (uL, uR) that satisfy entropy inequalities
(2.8). As already underlined, the entropy consistency condition we promote will concern a
single entropy pair in the case of a genuinely non-linear flux function f(u), corresponding to
the choice

U(u) =
u2

2
, F(u) =

∫ u

0

vf ′(v)dv, (4.12)

while asking consistency with the Kruz̆kov family of entropy pairs in the case of a general
non-linear flux

Uk = |u− k|, Fk(u) = sign(u− k)
(
f(u)− f(k)

)
, k ∈ R. (4.13)
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Our entropy consistency requirement relies on the extension proposed in [5],[22] of entropy
pairs for the Jin-Xin relaxation system from convex entropy pairs of the scalar conserva-
tion law (2.22). Their design principle is of importance hereafter and we briefly revisit it.
Given any interval of the form buL, uRe, the proposed extension is performed over the com-
pact domain D(buL, uRe) defined in (4.11). In [5], [22], suitable properties for the proposed
lift actually follow from the invariance property of D(buL, uRe) under the sub-characteristic
condition (3.1). Such an invariance property indeed guarantees the monotonicity properties
(4.10) of the functions h± defined in (4.9) for states U in D(buL, uRe). Let us stress that
in the present setting, those properties are equivalently preserved under the monotonicity
preserving condition (4.2) as put forward in Corollary 5. Given an entropy pair (U ,F) for
the scalar law (2.22), one seeks for an entropy pair (Φ,Ψ) for the Jin-Xin relaxation equa-
tions which is well defined over D(buL, uRe) and which coincides with (U ,F) at equilibrium,
namely

Φ(u, f(u)) = U(u), Ψ(u, f(u)) = F(u), for all u ∈ buL, uRe. (4.14)

General entropy pairs for the (homogeneous) Jin-Xin relaxation equations write under the
form

Φ(U) = ϕ+(r+(U)) + ϕ−(r−(U)),

Ψ(U) = a
(
ϕ+(r+(U)

)
− ϕ−(r−(U))

)
,

(4.15)

with r±(U) = v ± au for arbitrary pairs of functions (ϕ−, ϕ+). The consistency requirement
(4.14) is therefore met if and only if

ϕ−(h−(u)) =
1

2

(
U(u)− 1

a
F(u)), ϕ+(h+(u)) =

1

2

(
U(u) +

1

a
F(u)

)
, for all u ∈ buL, uRe,

(4.16)
where h±(u) denote the two functions introduced in (4.9). Observe that as a consequence
the functions ϕ± : r ∈ I± → ϕ±(r) ∈ R under consideration satisfy

d

dr
ϕ+(r) =

1

2a
U ′(h−1

+ (r)),
d

dr
ϕ−(r) = − 1

2a
U ′(h−1

− (r)), (4.17)

where again h−1
± : r ∈ I± → h−1

± (r) ∈ buL, uRe are well-defined under the sub-characteristic
condition (3.1). Due to the convexity of U(u), the reported monotonicity properties (4.10)
of h−1

± then ensures the convexity of Φ(U) over the domain D(buL, uRe). Observe that the
proposed definitions (4.17) for ϕ± are meaningful in the case of the piecewise smooth Kruz̆kov
entropies (4.13).

Equipped with (4.15)–(4.17), one then investigates the dissipative properties of the pro-
posed convex extension (Φ,Ψ) with respect to the relaxation mechanisms involved in the
Jin-Xin’s model. It can be shown (see again [5], [22]) that provided the compact domain
D(buL, uRe) stays invariant for the relaxation equations, then

∂vΦ(u, v)(f(u)− v) ≤ 0, for any given U = (u, v) ∈ D(buL, uRe). (4.18)

As a direct consequence and for all relaxation time ε > 0, the solutions Uε of the Jin-Xin
relaxation model with well-prepared initial data U0 taking values in D(buL, uRe) obey in the
usual weak sense the entropy-like inequality

∂tΦ(Uε) + ∂xΨ(Uε) =
1

ε
∂vΦ(Uε)(f(uε)− vε) ≤ 0. (4.19)
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Indeed recall that Uε remains in the invariant region D(buL, uRe). With this in mind, let
us examine the behavior of the relaxation entropy pair (Φ,Ψ) for the self similar solution
U(.;uL, uR) of the Riemann problem (2.18)–(2.19). In view of Corollary 5, let us stress
that this makes sense for defect measure corrections built from mappings θ(uL, uR), i.e.
satisfying (4.2), since D(buL, uRe) is invariant for the self-similar solutions of (2.18). Recall
first that U(.;uL, uR) stays constant except across three discontinuities. Concerning the two
waves with speed −a and +a, their linear degeneracy ensures [26] that any given additional
entropy law is exactly preserved for weak solutions. Namely whatever the pair of states
(uL, uR) are and the definition of the mapping θ under (4.2) is, one has

+a
(
Φ(U?

L(θ;uL, uR))− Φ(UL)
)

+ Ψ(U?
L(θ;uL, uR))−Ψ(UL) = 0,

−a
(
Φ(UR)− Φ(U?

R(θ;uL, uR))
)

+ Ψ(UR)−Ψ(U?
R(θ;uL, uR)) = 0.

(4.20)

Here U?
L(θ;uL, uR) and U?

R(θ;uL, uR) denote the two intermediate states in (3.3)–(3.4) sep-
arated by the discontinuity propagating with speed σ(uL, uR). At this discontinuity, the
defect measure correction acts. The inequality (4.19) strongly suggests that the definition
of the mapping θ(uL, uR) should satisfy for any given pair of states (uL, uR) the entropy like
jump condition

E{U}(θ;uL, uR) := −σ(uL, uR)
(
Φ(U?

R(θ;uL, uR))− Φ(U?
L(θ;uL, uR))

)
+ Ψ(U?

R(θ;uL, uR))−Ψ(U?
L(θ;uL, uR))

≤ 0.
(4.21)

These observations motivate the following

Definition 6. Given any convex entropy pair (U ,F) (2.2) for the scalar conservation law
(2.22) and its relaxation extension (Φ,Ψ) (4.15)–(4.17). Then the monotonicity preserving
mapping θ in (2.27) is said to be consistent with (U ,F) if for all pair of states (uL, uR) the
relaxation entropy jump E{U}(θ;uL, uR) defined in (4.21) is non-positive.

Observe that choosing θ(uL, uR) = 1 for special pairs (uL, uR) verifying (2.8) is allowed by
the proposed condition. Indeed, Lemma 1 ensures that U?

L(1;uL, uR) = UL and U?
R(1;uL, uR) =

UR. The states UL, UR being well-prepared (2.19), the consistency property (4.14) relating
(Φ,Ψ) to (U ,F) readily gives

E{U}(1;uL, uR)
= −σ(uL, uR)

(
Φ(U?

R(1;uL, uR))− Φ(U?
L(1;uL, uR))

)
+ Ψ(U?

R(1;uL, uR))−Ψ(U?
L(1;uL, uR))

= −σ(uL, uR)
(
Φ(UR)− Φ(UL)

)
+ Ψ(UR)−Ψ(UL)

= −σ(uL, uR)
(
U(uR)− U(uL)

)
+ F(uR)−F(uL)

≤ 0,
(4.22)

Hence, the entropy criterion proposed in (4.21) is automatically satisfied by pairs of interest.
This grounds Definition 6 with respect to our main goal. For general pair of states (uL, uR),
the proposed Definition will be used in connection with the following Lemma which states
that the minimum in the v-variable of any strictly convex relaxation entropy Φ(u, v) lies on
the equilibrium manifold. It thus restores the equilibrium entropy U(u).
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Lemma 7. Assume the sub-characteristic condition (3.1), one has for any given u ∈ buL, uRe
the following Gibb’s principle:

f(u) = argminvΦ(u, v). (4.23)

Proof. Let u be given in buL, uRe, then by convexity of U(u) solving in v the equation

∂vΦ(u, v) =
1

2a

(
U ′(h−1

+ (v + au))− U ′(h−1
− (v − au))

)
= 0,

is equivalent to
h−1

+ (v + au)− h−1
− (v − au) = 0.

Under condition (3.1) and for all (u, v) ∈ D(buL, uRe), the function G(v) = h−1
+ (v + au) −

h−1
− (v− au) is strictly increasing in v thanks to (4.10), thus the unique solution of G(v) = 0

is given by v = f(u) since h−1
+ (f(u) + au) = h−1

− (f(u) − au) = u. Then the identity
U(u) = Φ(u, f(u)) gives the conclusion.

4.3 Entropy consistency for a genuinely non-linear flux function

The main result of this section is

Theorem 8. Consider the entropy pair (U(u),F(u)) (2.2) with U(u) = u2/2 and the as-
sociated relaxation entropy pair (Φ,Ψ) (4.15)-(4.16). Assume the sub-characteristic con-
dition (3.1). Then the monotonicity preserving condition (4.2) and the entropy condition
E{U}(θ;uL, uR) ≤ 0 stated in (4.21) are satisfied provided that θ(uL, uR) satisfies

0 ≤ θ(uL, uR) ≤ Θ(uL, uR) ≡ max(0,min(1, 1 + Γ(uL, uR)), (4.24)

where

Γ(uL, uR) =

 −2 γ(uL, uR)

(
− σ(U(uR)− U(uL)) + (F(uR)−F(uL))

)
|uR − uL|2

, uL 6= uR,

0, otherwise,
(4.25)

with

γ(uL, uR) =


a−max(|f ′(uL)|, |f ′(uR)|

)(
a2 − σ2(uL, uR)

) , uL 6= uR,

1/
(
a+ |f ′(uL)|

)
, otherwise.

(4.26)

Observe that for pairs with distinct states uL 6= uR, Γ(uL, uR) in (4.25) is clearly well
defined under the sub-characteristic condition (3.1). Notice that

γ(uL, uR) =
a− |f ′(uL)|
a2 − f ′2(uL)

+O(|uR − uL|) =
1

a+ |f ′(uL)|
+O(|uR − uL|), (4.27)

hence we recover (4.26) in the limit |uR − uL| → 0. Observe that for the pairs (uL, uR) of
interest, namely those verifying the entropy inequality (2.8), we get as expected Θ(uL, uR) =
1 so that the accuracy requirement put forward in Lemma 1 can be met. Besides and as
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it is well-known, general pairs of states come with a cubic entropy rate (see for instance
Godlewski-Raviart [9])

−σ(U(uR)− U(uL)) + (F(uR)−F(uL)) = O(|uR − uL|3). (4.28)

We deduce
Γ(uL, uR) = O(|uR − uL|). (4.29)

Therefore, Θ is expected to stay close to unity in the smooth zones of the discrete solutions
and to reach ultimately 1 as the mesh step ∆x goes to zero in those regions.

Expressing the relaxation entropy pair (Φ,Ψ) in terms of the convex pair (ϕ−, ϕ+) accord-
ing to (4.15), we first observe that the relaxation entropy jump E{U}(θ;uL, uR) in (4.21)
equivalently reads

E{U}(θ;uL, uR) = (a− σ(uL, uR))
[
ϕ+
]
(θ;uL, uR)− (a+ σ(uL, uR))

[
ϕ−
]
(θ;uL, uR) (4.30)

where we have set

[ϕ−](θ;uL, uR) = ϕ−
(
r−?R (θ)

)
− ϕ−

(
r−?L (θ)

)
, [ϕ+](θ;uL, uR) = ϕ+

(
r+?
R (θ)

)
− ϕ+

(
r+?
L (θ)

)
(4.31)

using the characteristic variables r±?L (θ) and r±?R (θ) defined in (3.8), Corollary 3. Next, the
identities (3.10) stated in the same Corollary imply that for all values of θ ∈ [0, 1] :

ϕ−
(
r−?R (θ)

)
= ϕ−

(
r−R
)
, ϕ−

(
r+?
L (θ)

)
= ϕ+

(
r+
L

)
. (4.32)

Hence E{U}(θ;uL, uR) actually becomes

E{U}(θ;uL, uR) = (a− σ(uL, uR))
(
ϕ+
(
r+?
R (θ)

)
− ϕ+

(
r+
L

) )
− (a+ σ(uL, uR))

(
ϕ−
(
r−R
)
− ϕ−

(
r−?L (θ)

) )
.

(4.33)

Further notice from the definition (4.17) of the derivatives {ϕ±}′(r) that the choice of the
quadratic entropy U(u) = u2/2 with U”(u) = 1 yields

{ϕ±}′′(r) =
1

2a
(
a± f ′(h−1

± (r))
) , (4.34)

but to shade light in the forthcoming developments, we mostly keep {ϕ±}”(r) unspecified
untill the end of this section. The proof of Theorem 8 relies on the following technical result
essentially motivated by (4.33) and the convex combination (3.9) for r−?L (θ) and r+?

R (θ),
stated in Corollary 3.

Lemma 9. For any given smooth function ϕ+ and any given real number θ, the following
identity holds of r+?

R (θ) defined in (3.8) :

ϕ+(r+?
R (θ)) =

{
θϕ+(r+

R) + (1− θ)ϕ+(r+
L )
}

−θ(1− θ)
∫ 1

0

{
(1− θ){ϕ+}′′(r+

R(s, θ)) + θ{ϕ+}′′(r+
L (s, θ))

}
(1− s)ds

(
r+
R − r

+
L

)2

,

(4.35)
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where we have set

r+
R(s, θ) = sr+

R + (1− s)r+?
R (θ), r+

L (s, θ) = sr+
L + (1− s)r+?

R (θ), s ∈ [0, 1]. (4.36)

The following identity is also valid for r−?L (θ) (3.8) for all θ and any given smooth function
ϕ−

ϕ−(r−?L (θ)) =
{

(1− θ)ϕ−(r−R) + θϕ−(r−L )
}

−θ(1− θ)
∫ 1

0

{
θ{ϕ−}′′(r−R(s, θ)) + (1− θ){ϕ−}′′(r−L (s, θ))

}
(1− s)ds

(
r−R − r

−
L

)2

.

(4.37)
where we have defined :

r−R(s, θ) = sr−R + (1− s)r−?L (θ), r−L (s, θ) = sr−L + (1− s)r−?L (θ), s ∈ [0, 1]. (4.38)

Proof. First observe the identity

ϕ+(r+
R)− ϕ+(r+?

R (θ)) = {ϕ+}′(r+?
R (θ))

(
r+
R − r

+?
R (θ)

)
+

∫ r+R

r+?
R (θ)

{ϕ+}′′(r)
(
r+
R − r

)
dr, (4.39)

together with

ϕ+(r+
L )− ϕ+(r+?

R (θ)) = {ϕ+}′(r+?
R (θ))

(
r+
L − r

+?
R (θ)

)
+

∫ r+L

r+?
R (θ)

{ϕ+}′′(r)
(
r+
L − r

)
dr, (4.40)

so as to infer from the definition of r+?
R (θ) in term of the convex decomposition (3.9) stated

in Corollary 3

ϕ+(r+?
R (θ))−

{
θϕ+(r+

R) + (1− θ)ϕ+(r+
L )
}

=

−θ
∫ r+R

r+?
R (θ)

{ϕ+}′′(r)
(
r+
R − r

)
dr − (1− θ)

∫ r+L

r+?
R (θ)

{ϕ+}′′(r)
(
r+
L − r

)
dr.

(4.41)

Introducing r+
R(s, θ) = sr+

R + (1 − s)r+?
R (θ) with s ∈ [0, 1], a convenient form of the first

integral in (4.41) reads∫ r+R

r+?
R (θ)

{ϕ+}′′(r)
(
r+
R − r

)
dr =

∫ 1

0

{ϕ+}′′(r+
R(s, θ))(1− s)ds

(
r+
R − r

+?
R (θ)

)2

= (1− θ)2

∫ 1

0

{ϕ+}′′(r+
R(s, θ))(1− s)ds

(
r+
R − r

+
L

)2

,

(4.42)
thanks again to the linear decomposition (3.9) of r+?

R (θ). Defining similarly r+
L (s, θ) =

sr+
L +(1−s)r+?

R (θ) with s ∈ [0, 1], the second integral in (4.41) can be equivalently rewritten
as ∫ r+L

r+?
R (θ)

{ϕ+}′′(r)
(
r+
L − r

)
dr = θ2

∫ 1

0

{ϕ+}′′(r+
L (s, θ))(1− s)ds

(
r+
R − r

+
L

)2

. (4.43)
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Hence, the representation formula (4.41) becomes

ϕ+(r+?
R (θ))−

{
θϕ+(r+

R) + (1− θ)ϕ+(r+
L )
}

=

−θ(1− θ)
∫ 1

0

{
(1− θ){ϕ+}′′(r+

R(s, θ)) + θ{ϕ+}′′(r+
L (s, θ))

}
(1− s)ds

(
r+
R − r

+
L

)2

.

(4.44)
This is nothing but the required identity (4.35). The companion formula (4.36) follows using
similar steps that are left to the reader.

We are in a position to prove Theorem 8.

Proof of Theorem 8. The representation formulas (4.35) and (4.37) that are at the core of the
proof, exhibit a rather intricate nonlinear dependance in θ through the mappings r±?L (θ, s)
and r±?R (θ, s) in (4.36)–(4.38). For the sake of simplicity, we aim at lowering such a depen-
dance to a quadratic one when introducing suitable lower-bounds of the integral remainder
in the Taylor like expansions (4.35)–(4.37). To that purpose, it clearly suffices to propose
a common positive lower-bound, say m+(uL, uR), for {ϕ+}′′(r+?

L (s, θ)) and {ϕ+}′′(r+?
R (s, θ))

valid for all the θ and s under consideration to get

θ(1− θ)
∫ 1

0

{
(1− θ){ϕ+}′′(r+

R(s, θ)) + θ{ϕ+}′′(r+
L (s, θ))

}
(1− s)ds ≥ 1

2
θ(1− θ)m+(uL, uR).

(4.45)
A similar estimate clearly holds true for (4.37) adopting the same procedure with some pos-
itive lower bound m−(uL, uR). Here again for simplicity we promote a common lower-bound
m(uL, uR) = m−(uL, uR) = m+(uL, uR). As already reported, Corollary 3 ensures that
monotonicity preserving mappings θ(uL, uR) make r+

L (s, θ), r+
R(s, θ) (respectively r−L (s, θ),

r−R(s, θ)) cover the range br+
L , r

+
Re (resp. br−L , r

−
Re) as s and θ jointly vary in [0, 1]. Conse-

quently, both h−1
+ (r) and h−1

− (r) keep their values in buL, uRe for all the r under consideration.
The lower-bound m we seek for, must therefore satisfy

min
u∈buL,uRe

( 1

2a(a+ f ′(u))
,

1

2a(a− f ′(u))

)
≥ m(uL, uR). (4.46)

But since the flux function f is assumed to be genuinely non-linear, the minimum in the left
hand-side is achieved for u = uL or u = uR and we can thus choose

m(uL, uR) =
1

2a
(
a−max(|f ′(uL)|, |f ′(uR)|)

) . (4.47)

Plugging the proposed estimate in the representation formulas (4.35) and (4.37) clearly gives :

ϕ+(r+?
R (θ)) ≤

{
θϕ+(r+

R) + (1− θ)ϕ+(r+
L )
}
− θ(1− θ)

2
m(uL, uR) |r+

R − r
+
L |

2,

ϕ−(r−?L (θ)) ≤
{

(1− θ)ϕ−(r−R) + θϕ−(r−L )
}
− θ(1− θ)

2
m(uL, uR) |r−R − r

−
L |

2,

(4.48)
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where |r−R−r
−
L | = (a−σ)|uR−uL| and |r+

R−r
+
L | = (a+σ)|uR−uL|. We can therefore bound

the relaxation entropy jump E{U}(θ, uL, uR) equivalently defined in (4.33) according to

E{U}(θ, uL, uR) = (a− σ)
(
ϕ+
(
r+?
R (θ)

)
− ϕ+

(
r+
L

) )
+ (a+ σ)

(
ϕ−
(
r−?L (θ)

)
− ϕ−

(
r−R
) )

≤ θ
{

(a− σ)
(
ϕ+(r+

R)− ϕ+(r+
L

))
+ (a+ σ)

(
ϕ−(r−R)− ϕ−(r−L

))}
−θ(1− θ)

2
m(uL, uR)

{
(a− σ)|r+

R − r
+
L |

2 + (a+ σ)|r−R − r
−
L |

2
}

= θ
{
− σ(U(uR)− U(uL)) + (F(uR)−F(uL)

}
−θ(1− θ)a(a2 − σ2)m(uL, uR)|uR − uL|2

(4.49)
since following exactly the same steps as those developed to get (4.22) gives

(a− σ)
(
ϕ+(r+

R)− ϕ+(r+
L

))
+ (a+ σ)

(
ϕ−(r−R)− ϕ−(r−L

))
= −σ(U(uR)− U(uL)) + (F(uR)−F(uL))
= E{U}(1, uL, uR).

Hence the estimate (4.49) gives

E{U}(θ, uL, uR) ≤ θ
(
E{U}(1, uL, uR)− (1− θ)A(uL, uR)

)
(4.50)

where we have set

A(uL, uR) = a(a2 − σ2(uL, uR))m(uL, uR)|uR − uL|2. (4.51)

Hence assuming uL 6= uR, (4.50) just reads :

E{U}(θ, uL, uR) ≤ A(uL, uR)
{
θ
(
θ − (1 + Γ(uL, uR))

)}
(4.52)

with Γ(uL, uR) defined in (4.25). Since A(uL, uR) > 0, it suffices to require θ
(
θ − (1 +

Γ(uL, uR))
)
≤ 0 to ensure the expected entropy inequality E{U}(θ, uL, uR) ≤ 0 for the pair

of states (uL, uR) under consideration. Enforcing as mandatory the monotonicity preserving
condition 0 ≤ θ(uL, uR) ≤ 1 thus yields the condition (4.24). This concludes the proof.

Let us underline that the upper-bound (4.50) is sharp with respect to our main motivation.
Indeed, it boils downs to the equality E{U}(θ = 1, uL, uR) = E{U}(1, uL, uR) and therefore it
exactly preserves all the pairs (uL, uR) of interest, i.e. those satisfying E{U}(1, uL, uR) ≤ 0.

4.4 Entropy consistency for a general flux function

To begin with, it is worth briefly recalling a few well-known facts about the Kruz̆kov entropy
criterion for selecting admissible pairs of states (uL, uR) that satisfy the Rankine-Hugoniot
relation

−σ(uL, uR)(uR − uL) + (f(uR)− f(uL)) = 0. (4.53)
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Kruz̆kov entropy inequalities read

−σ(uL, uR)
(
|uR−k|−|uL−k|

)
+
(
sign(uR−k)(f(uR)−f(k))−sign(uL−k)(f(uL)−f(k))

)
≤ 0,

(4.54)
for all k ∈ R. To discard empty intervals from the discussion, we tacitly assume that
the states in all the pairs under consideration are distinct, namely uL 6= uR. In (4.54),
values of the parameter k outside of the interval buL, uRe are easily seen to satisfy the
Rankine-Hugoniot jump relation (4.53), so that only the values of k in buL, uRe are entropy
diminishing

−σ(uL, uR)
(
uR + uL − 2k

)
+
(
f(uR) + f(uL)− 2f(k)

)
≤ 0. (4.55)

In view of (4.53), this requirement is equivalent to the so-called Oleinik inequalities :

K(k;uL, uR) := −σ(uL, uR)
(
uR − k

)
+
(
f(uR)− f(k)

)
= −σ(uL, uR)

(
uL − k

)
+
(
f(uL)− f(k)

)
≤ 0, k ∈ buL, uRe.

(4.56)

The main result of this section is

Theorem 10. Let us consider the Kruz̆kov entropy pairs (Uk(u),Fk(u)) (4.13) with k ∈
buL, uRe and the associated relaxation entropy pairs (Φk,Ψk) (4.15)-(4.16). Assume the
sub-characteristic condition (3.1) and consider monotonicity preserving mappings θ(uL, uR)
(4.2). Then the relaxation entropy jump E{Uk}(θ;uL, uR) in (4.21) stay non positive for all
k ∈ buL, uRe provided that θ(uL, uR) is chosen to satisfy

0 ≤ θ(uL, uR) ≤ Θ(uL, uR) = min
k∈buL,uRe

ΓK(k;uL, uR), (4.57)

where for the states u?(uL, uR) and v?(uL, uR) defined in (3.2)

ΓK(k;uL, uR) = 2γ(uL, uR)


−
(−σ(uL, uR)

(
u?(uL, uR)− k

)
+
(
v?(uL, uR)− f(k)

)
uR − uL

)
, if uL 6= uR,

a2 − σ2(uL, uR)

2a
=

1

2γ(uL, uR)
, otherwise,

(4.58)
with

γ(uL, uR) =
a

a2 − σ2(uL, uR)
. (4.59)

For any given pair of states (uL, uR), Θ(uL, uR) takes value in (0, 1) and there exists at least
one minimizer k(uL, uR) of ΓK(k;uL, uR) in buL, uRe with the property that

Θ(uL, uR) = 1 if K(k;uL, uR) ≤ 0 for all k ∈ buL, uRe, and 0 < Θ(uL, uR) < 1 otherwise.
(4.60)

Observe that the function ΓK(k;uL, uR) has close relationships with the functionK(k;uL, uR)
entering the Oleinik inequalities (4.56). With this respect, the optimal law Θ(uL, uR) (4.57)–
(4.58) is nothing but a natural extension of the corresponding formula (4.24)–(4.25) derived
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in the frame of a genuinely non-linear flux function. At this stage, it is interesting to give a
geometric interpretation of the extrema of ΓK(k;uL, uR) in terms of the function K(k;uL, uR).
All existing extrema of ΓK(k;uL, uR) that are achieved for values ke(uL, uR) in buL, uRe and
that are distinct from uL and uR must clearly satisfy the property

f ′(ke(uL, uR)) = σ(uL, uR). (4.61)

But since K(k = uL;uL, uR) = K(k = uR;uL, uR) = 0 from (4.53), the function k ∈
buL, uRe → K(k;uL, uR) also necessarily admits at least one extremum in the proposed
interval. In addition all the possible extrema when distinct from uL and uR must also verify
the condition (4.61) from the definition (4.56). Hence, both K(k;uL, uR) and ΓK(k;uL, uR)
achieve their extrema in the reported open interval at the same locations. Let us stress
that those observations actually give us a natural and simple algorithm for computing the
optimal bound Θ(uL, uR) in (4.57). At last observe that in the limit |uR − ul| → 0, we
get Θ(uL, uR) = 1. Anticipating the numerical application, this means that the method is
asymptotically close (in terms of the mesh step ∆x) to a Roe solver in the smooth parts of
the discrete solution.

In order to prove Theorem 10, we define the following two functions of the parameter k

R−(k) =
r−R − h−(k)

r−R − r
−
L

, R+(k) =
h+(k)− r+

L

r+
R − r

+
L

, k ∈ buL, uRe, (4.62)

based on the characteristic variables r± = v± au and the invertible mappings h± defined in
(4.9). Direct calculations that are left to the reader give from the definitions of h±(r), r±L
and r±R

a2 − σ2(uL, uR)

2a

(
uR − uL

)(
R−(k) +R+(k)

)
= (f(k)− σ(uL, uR)k)− (v?(uL, uR)− σ(uL, uR)u?(uL, uR)).

This formula clearly stays at the basis of the definition of ΓK(uL, uR, k) in (4.58). Equipped
with this identity, we claim the following statement equivalent to Theorem 10.

Theorem 11. Under the assumptions of Theorem 10, the relaxation entropy jump E{Uk}(θ;uL, uR)
in (4.21) stay non positive for all k ∈ buL, uRe provided that θ(uL, uR) is chosen to satisfy

0 ≤ θ(uL, uR) ≤ Θ(uL, uR) = min
k∈buL,uRe

{
R−(k) +R+(k)

}
, (4.63)

where Θ(uL, uR) takes value in (0, 1). For any given pair of states (uL, uR), there exists at
least one minimizer k(uL, uR) of R−(k) +R+(k) in buL, uRe with the property that

Θ(uL, uR) = 1 if K(k;uL, uR) ≤ 0 for all k ∈ buL, uRe, and 0 < Θ(uL, uR) < 1 otherwise.
(4.64)

The proof of this statement is postponed to the end of the section. In order to comment
properties of the optimal choice Θ(uL, uR) in (4.63), let us observe the following easy prop-
erties for the functions R±(k). First, R−(k) and R+(k) keep values in [0, 1] as k varies in
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buL, uRe because h−(k) (respectively h+(k)) covers br−R , r
−
L e (resp. br+

L , r
+
Re). In addition, it

is easily seen from the definitions of h±(k) that

R−(uL) +R+(uL) = R−(uR) +R+(uR) = 1. (4.65)

Hence Θ(uL, uR) naturally keeps its values in the interval [0, 1] and is thus automatically
monotonicity preserving. Next and because of the identity (4.65), the mapping k ∈ buL, uRe →
R−(k) +R+(k) has clearly at least one extremum. As a consequence of a forthcoming rep-
resentation formula for the entropy jump E{U}k(θ;uL, uR), we prove hereafter that all the
existing extrema stay necessarily larger than 1 in the case the pair (uL, uR) under con-
sideration obeys the Kruzkov’s selection principle K(k;uL, uR) ≤ 0 for all k ∈ buL, uRe.
Hence we get from (4.65) the expected value Θ(uL, uR) = 1. For other pairs, it will be
seen that there exists necessarily one local minimizer km(uL, uR) with the property that
(R− +R+)(km(uL, uR)) < 1. Entropy limitation is active and we have 0 < Θ(uL, uR) < 1.
Provided that all the extrema of K(k;uL, uR) stay non-positive, namely the Kruzkov’s en-
tropy condition (4.56) is valid, then (R− +R+)(k) stays larger than one and achieves from
(4.65) the value 1 at the boundaries. If one minimum of K(k;uL, uR) turns positive then
entropy violation takes place for the pair (uL, uR) under consideration and there exists one
minimum of (R− +R+)(k) with a value less than one. The proof of Theorem 11 relies on
the following technical result.

Lemma 12. Given a smooth enough entropy pair (U ,F) (2.2) and the corresponding re-
laxation entropy pair (Φ,Ψ) (4.15)-(4.16). Consider monotonicity preserving mappings
θ(uL, uR) (4.2). Let us define from the pair of state (uL, uR) the following affine functions
of the Riemann invariants :

r−(z) = r−R + z(r−L − r
−
R), r+(z) = r+

L + z(r+
R − r

+
L ), z ∈ [0, 1]. (4.66)

Then the relaxation entropy jump E{U}(θ;uL, uR) in (4.21) equivalently reads

E{U}(θ;uL, uR) =
a2 − σ2(uL, uR)

2a

(
uR − uL

) ∫ θ

0

{
U ′
(
(h−1

+ (r+(z))
)
− U ′

(
(h−1
− (r−(z))

)}
dz.

(4.67)

Proof. Let us re-express the entropy jump E{U}(θ;uL, uR) for the pair (Φ,Ψ) in terms of
the underlying convex pair (ϕ−, ϕ+) in (4.15) :

E{U}(θ) = (a− σ)
(
ϕ+(r+?

R (θ))− ϕ+(r+?
L (θ))

)
− (a+ σ)

(
ϕ−(r−?R (θ))− ϕ−(r−?L (θ))

)
(4.68)

where by construction from Corollary 3, one has for all θ ∈ [0, 1] the following convex
decompositions

r−?L (θ) = r−R + θ(r−L − r
−
R), r−?R (θ) = r−R ,

r+?
L (θ) = r+

L , r+?
R (θ) = r+

L + θ(r+
R − r

+
L ).

(4.69)

We can thus rewrite (4.68) as follows

E{U}(θ) = (a− σ)
∫ 1

0
ϕ+′
(
r+
L + sθ(r+

R − r
+
L )
)
ds
{
θ(r+

R − r
+
L )
}

+(a+ σ)
∫ 1

0
ϕ−
′(
r−R + sθ(r−L − r

−
R)
)
ds
{
θ(r−L − r

−
R)
}
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where r+
R − r+

L = (a + σ)(uR − uL) and r−L − r−R = (a − σ)(uR − uL). By construction
ϕ±
′
(r) = ±U ′(h−1

± (r))/(2a), the above identity just reads

E{U}(θ) =
(a2 − σ2)

2a

(
uR − uL

){
θ

∫ 1

0

U ′
(
h−1

+ (r+(sθ))
))
ds− θ

∫ 1

0

U ′
(
h−1
− (r−(sθ))

)
ds
}
,

(4.70)
where r± denote the affine functions introduced in (4.66) but evaluated in z = sθ. A change
of variable gives the conclusion.

It is worth observing that (4.70) can be recast as

E{U}(θ) = θ
(a2 − σ2)

2a
G(θ), G(θ) =

(
uR−uL

){∫ 1

0

U ′
(
h−1

+ (r+(sθ))
)
−U ′

(
h−1
− (r−(sθ))

)
ds
}
,

(4.71)
where from (4.66) and the definitions of h−1

± (r) in (4.9), one has

G(0) =
(
uR−uL

){
U ′
(
h−1

+ (r+(0))
)
−U ′

(
h−1
− (r−(0))

)}
= −

(
uR−uL

){
U ′(uR)−U ′(uL)

}
< 0,

(4.72)
when assuming a strictly entropy U(u). We thus infer that for any given smooth enough
strictly convex entropy, the associated entropy jump in (4.71) can be made negative for small
enough positive values of θ. This observation strongly reflects the property stated in Theorem
11 that making varying k ∈ buL, uRe in the Kruz̆kov entropy pairs actually allows to define
a positive value Θ(uL, uR) for any given pair of states (uL, uR). To further shade light, let us
recall that under the subcharacteristic’s condition (3.1) the mapping h−1

+ (r) strictly increases
while h−1

− (r) strictly decreases, so that for any given smooth strictly convex entropy U(u)
easy calculations ensure G ′(θ) > 0 for all θ ∈ [0, 1] in view of

d

dθ
r−(sθ) = s(r−L − r

−
R) = s(a− σ)(uR − uL),

d

dθ
r−(sθ) = s(r+

R − r
+
L ) = s(a+ σ)(uR − uL).

(4.73)
For entropy violating pairs of states (uL, uR) and a prescribed entropy U , G(1) may achieve
a strictly positive value in contrast to G(0) < 0. But thanks to the strict monotonicity of the
mapping G(θ), there exists a unique value θ(U ;uL, uR) in (0, 1) depending on the entropy U
under consideration so that E{U}(θ) keeps negative values for all θ in (0, θ(U ;uL, uR)) and
positive values otherwise. The pair (uL, uR) being prescribed, the difficulty is then to derive
a sharp positive lower bound θ(uL, uR) of the values θ(U ;uL, uR) when making varying all the
(strictly convex) entropy pairs U for the sake of uniqueness. Theorem 11 precisely provides
one with the best lower bound, namely Θ(uL, uR) in (4.63), for the Kruz̆kov entropy pairs
with k ∈ buL, uRe.

Let us specialize the above result to the Kruz̆kov entropy family.

Lemma 13. Consider monotonicity preserving mappings θ(uL, uR) (4.2). Then the Kruz̆kov
entropy jump (4.54) for any given k ∈ buL, uRe writes

E{Uk}(θ;uL, uR) = −a
2 − σ2(uL, uR)

2a
|uR−uL|

{
R−(k)+R+(k)−|θ−R−(k)|−|θ−R+(k)|

}
.

(4.74)
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Proof. Lemma 12 ensures that the relaxation entropy jump coming with the Kruz̆kov entropy
pair (4.13) writes

E{Uk}(θ) =
a2 − σ2(uL, uR)

2a
|uR−uL|

∫ θ

0

sign(uR−uL)
{
U ′k
(
(h−1

+ (r+(z))
)
−U ′k

(
(h−1
− (r−(z))

)}
dz,

(4.75)
where

U ′k
(
h−1
− (r−(z))

)
=

{
−1, h−1

−
(
r−(z)

)
< k,

+1, h−1
−
(
r−(z)

)
> k,

, U ′k
(
h−1

+ (r+(z))
)

=

{
−1, h−1

+

(
r+(z)

)
< k,

+1, h−1
+

(
r+(z)

)
> k.

(4.76)
Recall that under the sub-characteristic condition (3.1), h−1

− (r) strictly decreases while h−1
+ (r)

strictly increases so that (4.76) read equivalently

U ′k
(
h−1
− (r−(z))

)
=

{
+1, r−(z) < h−(k),
−1, r−(z) > h−(k)

, U ′k
(
h−1

+ (r+(z))
)

=

{
−1, r+(z) < h+(k),
+1, r+(z) > h+(k).

(4.77)
Easy calculations left to the reader, based on the sign of (uR − uL) with r+

R − r
+
L = (a −

σ)(uR − uL) and r−L − r
−
R = (a+ σ)(uR − uL) then allow to recast (4.77) as follows

sign(uR − uL)U ′k
(
h−1
− (r−(z))

)
=

{
+1, z < R−(k),
−1, z > R−(k),

sign(uR − uL)U ′k
(
h−1

+ (r+(z))
)

=

{
−1, z < R+(k),
+1, z > R+(k),

(4.78)

with R±(k) defined in (4.62). The proposed formulas then yield∫ θ

0

sign(uR − uL)U ′k
(
(h−1
− (r−(z))

)
dz = (+1) min

(
θ,R−(k)

)
+ (−1)

(
θ −R−(k)

)
+
,

= R−(k)−
(
R−(k)− θ

)
+
−
(
θ −R−(k)

)
+

= R−(k)− |θ −R−(k)|,
(4.79)

where we have used the identity min(a, b) = b−
(
b− a

)
+

with
(
b− a

)
+

= max(0, b− a) for

any given pair of real numbers (a, b). Similarly, one can infer∫ θ

0

sign(uR − uL)U ′k
(
(h−1

+ (r+(z))
)
dz = −

(
R+(k)− |θ −R+(k)|

)
, (4.80)

so that the required identity (4.74) follows from (4.75).

As an immediate consequence, we infer the following important result

Corollary 14. Given any pair of states (uL, uR) obeying the Kruz̆kov entropy condition
K(k;uL, uR) ≤ 0 for all k ∈ buL, uRe in (4.56). Then

min
k∈buL,uRe

(R−(k) +R+(k)) = 1. (4.81)
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If there exists k? in buL, uRe with the property K(k?;uL, uR) > 0, namely the pair (uL, uR) is
entropy violating, then

min
k∈buL,uRe

(R−(k) +R+(k)) < 1. (4.82)

Proof. Assume an entropy satisfying pair (uL, uR). Then from Lemma 1, we have on the one
hand from (4.22)

E{Uk}(θ = 1) = K(k;uL, uR) ≤ 0, for all k under consideration, (4.83)

while on the other hand, the representation formula (4.74) asserts that

E{Uk}(θ = 1;uL, uR) = −a
2 − σ2(uL, uR)

2a
|uR−uL|

{
R−(k)+R+(k)−|1−R−(k)|−|1−R+(k)|

}
.

(4.84)
We thus infer that

R−(k) +R+(k) ≥ |1−R−(k)|+ |1−R+(k)|, (4.85)

but since both functions R±(k) keep their values in [0, 1], we get

2(R−(k) +R+(k)) ≥ 2, for all k under consideration. (4.86)

This gives nothing but the required estimate (4.81) since in view of (4.65), equality in the
above upper-bound is achieved for k = uL and k = uR. Next assume some k? in buL, uRe
with the property K(k?;uL, uR) > 0. Let us check that any given monotonicity preserving
mapping θ(uL, uR) cannot achieve the value 1 for the pair (uL, uR) under consideration.
Assuming there exists one such mapping then the above steps would apply to infer

R−(k?) +R+(k?) < |1−R−(k?)|+ |1−R+(k?)|, i.e. R−(k?) +R+(k?) < 1, (4.87)

and this would result in a contradiction with the condition 1 = θ(uL, uR) ≤ Θ(uL, uR) in
view of the definition (4.63) of Θ(uL, uR). As a consequence, no monotonicity preserving
mapping can reach the value 1 for the pair under consideration and we necessarily have
Θ(uL, uR) < 1.

We conclude this section proving Theorem 11.

Proof of Theorem 11 : we start assuming that the mappings θ(uL, uR) under consideration
are monotonicity preserving and we will prove that the resulting conditions actually imply
this property. Let us define

H(k, θ) ≡ R−(k) +R+(k)− |θ −R−(k)| − |θ −R+(k)| (4.88)

Limiting the values of θ such that E{Uk}(θ;uL, uR) ≤ 0 for all k ∈ buL, uRe is equivalently
to find θ with the property

H(k, θ) ≥ 0, for all k ∈ buL, uRe. (4.89)

The identity

H(k, θ) = min(R−(k),R+(k)) + max(R−(k),R+(k))
−|θ −min(R−(k),R+(k))| − |θ −max(R−(k),R+(k))| (4.90)
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then yields

H(k, θ) =


2θ, 0 ≤ θ ≤ min(R−(k),R+(k)),
2 min(R−(k),R+(k)), min(R−(k),R+(k)) ≤ θ ≤ max(R−(k),R+(k)),
2
(
R−(k) +R+(k)− θ

)
, max(R−(k),R+(k)) ≤ θ.

(4.91)
Since by assumption θ ≥ 0 while R−(k) and R+(k) are known to keep non-negative values
for all k ∈ buL, uRe, the condition (4.89) resumes to

θ ≤ R−(k) +R+(k), for all k ∈ buL, uRe such that max(R−(k),R+(k)) ≤ θ. (4.92)

As already discussed, a strengthened version, but essentially similar to our main motivation,
is

θ ≤ R−(k) +R+(k), for all k ∈ buL, uRe. (4.93)

To conclude, observe that fulfilling the condition (4.89) from the equivalent form (4.90) in
fact requires θ ≥ 0 since otherwise (recall that R±(k) keep non-negative values), one would
draw a contradiction with

H(k, θ) = 2θ ≥ 0. (4.94)

Then the condition (4.92) is again in order so that θ ≤ 1 in view of the identities (4.65): in-
deed one must simultaneously verify θ ≤ (R−+R+)(uL) = 1 and 1 = max(R−(uL),R+(uL)) ≤
θ. Requiring E{Uk}(θ;uL, uR) ≤ 0 for all k ∈ buL, uRe is thus equivalent to the monotonicity
preserving condition (4.2). This ends the proof.

5 The numerical approximation procedure

This section describes first order numerical methods for approximating the Kruz̆kov solutions
of a scalar conservation law, built from the Riemann solver with defect measure correction
we have derived in the first part of this paper. From now on, we tacitly assume that the
monitoring mapping θ(uL, uR) involved in the defect measures is monotonicity preserving
and consistent with the entropy requirement(s) we have put forward. Convergence of the
family of approximate solutions to the Kruz̆kov solution will be proved in the next section.

We propose hereafter two variants of finite volume methods built from Riemann problems
involving defect measure corrections. The first numerical method stays in the very spirit
of the Glimm’s approach and is directly built from a sequence of non-interacting Riemann
solutions whose values are sampled in each cell. The second method is more in the spirit
of Godunov’s method and relies before the sampling procedure on suitable local averagings
of two neighboring Riemann solutions that avoid any of the discontinuities with speed σ to
prevent them from smearing. Both strategies intend to restore at the discrete level the ex-
actness property highlighted in Lemma 1. To this aim, a relevant choice for the monotonicity
preserving and entropy satisfying mappings θ is given by Θ(uL, uR), namely either given by
(4.24)–(4.26) in the case of genuinely non-linear flux function or by (4.63) for a general flux.

Introduce the spatial grid points xj+ 1
2

with uniform mesh width ∆x = xj+ 1
2
− xj− 1

2
. The

discrete time level tn is also spaced uniformly with time step ∆t = tn+1 − tn and satisfy the
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strict CFL condition

a
∆t

∆x
<

1

2
, (5.1)

where the sub-characteristic condition is specified as follows

sup
|u|<‖u0‖L∞(R)

|f ′(u)| < a. (5.2)

The numerical approximate solution Uα(tn, x) is sought for as a piecewise constant function
whose components are denoted by

uα∆x(t
n, x) = unj , v

α
∆x(t

n, x) = vnj , xj− 1
2
< x < xj+ 1

2
, (5.3)

Here α refers to the random sequence used in the Glimm’s sampling procedure. The initial
data is discretized in a well prepared manner

u0
∆x(x) =

1

∆x

∫ x
j+1

2

x
j− 1

2

u0(x)dx, v0
∆x(x) = f(u0

∆x(x)), x ∈ (xj− 1
2
, xj+ 1

2
), j ∈ Z. (5.4)

5.1 The first algorithm

Assuming the piecewise constant approximate solution U(tn, x) to be known at time tn, we
propose to evolve it to the next time level tn+1 in three steps.

? Step 1: tn → tn+1,(1) ≡ (n + 1)∆t=, Riemann problems with defect measure correction.
Solve the Cauchy problem exactly in the slab (tn, tn + ∆t){

∂tu+ ∂xv = 0,
∂tv + a2∂xu =M(uα∆x(t

n, x), vα∆x(t
n, x)),

(5.5)

with initial data
u(0, x) = uα∆x(t

n, x), v(0, x) = vα∆x(t
n, x). (5.6)

HereM is a bounded Borel measure which collects all successive defect measure corrections,
i.e.,

M(uα∆x(t
n, x), vα∆x(t

n, x)) = Θ(unj , u
n
j+1)

(
a2 − σ2(unj , u

n
j+1)

)
(5.7)

(unj+1 − unj )δ(x−xj+1/2)−σ(unj ,u
n
j+1)(t−tn) (5.8)

for x ∈ (xj, xj+1) and t ∈ (tn, tn + ∆t). Under the CFL condition (5.1), the exact solution
of (5.5)-(5.6) is the gluing of a sequence of noninteracting self-similar solutions :

(Uα
∆x)

(1) (t, x) := U
(
x− xj+ 1

2

t− tn
;uj, uj+1

)
; x ∈ [xj, xj+1], tn < t < tn+1, (5.9)

as defined in Lemma 2. Thus the solution at the first “intermediate” time reads

(Uα
∆x)

(1)
(
tn+1, x

)
= U

(
x− xj+ 1

2

∆t
;unj , u

n
j+1

)
, x ∈ [xj, xj+1]. (5.10)
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? Step 2: tn+1,(1) → tn+1,(2) ≡ (n + 1)∆t−, Pointwise relaxation. From the solution of
Cauchy problem (5.5)-(5.6), define at the second step tn+1,(2) pointwisely for x ∈ (xj−1/2, xj+1/2)

uα∆x
(2)
(
tn+1, x

)
= uα∆x

(1)
(
tn+1, x

)
, (5.11)

vα∆x
(2)
(
tn+1, x

)
= f(uα∆x

(2)
(
tn+1, x

)
). (5.12)

? Step 3: tn+1,(2) → tn+1,(3) ≡ tn+1, Sampling. Draw a random number αn from an equi-
distributed sequence in (0, 1), we define in each cells a constant value Un+1

j following the
Glimm’s sampling strategy

uα∆x(t
n+1, x) = uα∆x

(2)
(
tn+1, xj− 1

2
+ αn∆x

)
, x ∈ [xj− 1

2
, xj+ 1

2
], (5.13)

vα∆x(t
n+1, x) = vα∆x

(2)
(
tn+1, xj− 1

2
+ αn∆x

)
= f(uα∆x(t

n+1, x)). (5.14)

This concludes the description of the method.

We summarize the first algorithm as follows. To shorten the notations, let us set

σn
j+ 1

2
= σ(unj , u

n
j+1). (5.15)

Being given the random number αn ∈ (0, 1), define in each cell (xj−1/2, xj+1/2)

• Update un+1
j from the {unj }j∈Z

un+1
j =



u?L(θ;unj−1, u
n
j ), αn < σn

j− 1
2

∆t
∆x
,

u?R(θ;unj−1, u
n
j ), σn

j− 1
2

∆t
∆x
≤ αn < anj−1/2

∆t
∆x
,

unj , an
j− 1

2

∆t
∆x
≤ αn < 1− an

j+ 1
2

∆t
∆x
,

u?L(θ;unj , u
n
j+1), 1− an

j+ 1
2

∆t
∆x
≤ αn < 1 + σn

j+ 1
2

∆t
∆x
,

u?R(θ;unj , u
n
j+1), 1 + σn

j+ 1
2

∆t
∆x
≤ αn,

(5.16)

where u?L, u?R are defined in (3.3)–(3.4),

• Update vn+1
j = f(un+1

j ).

5.2 The second algorithm

Given the piecewise constant approximate solution U(tn, x) at time tn, we propose to up-
date it to the next time level tn+1 in four steps from the intermediate times tn → tn+1,(1) to
tn+1,(3) → tn+1,(4) ≡ tn+1. Three of these steps are virtually kept unchanged from the first
numerical algorithm but are performed at (possibly) distinct intermediate times. We do not
repeat the details of those steps and we explicitly refer hereafter the reader to the formulas de-
scribed in the first algorithm while we clear up each of the corresponding intermediate times.
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Namely we first solve a sequence of non-interacting Riemann problems with defect measure
corrections (5.6) to define uα∆x

(1)(t, x), vα∆x
(1)(t, x) from U(tn, x). As a second step, we pro-

pose to perform local averaging of uα∆x
(1)(tn+1, x) to define uα∆x

(2)(tn+1, x). In contrast to the
usual Godunov’s approach, two neighboring Riemann solutions U((x− xj−1/2)/∆t, unj−1, u

n
j )

and U((x − xj+1/2)/∆t, unj , u
n
j+1) with x in (xj−1/2, xj+1/2) are not averaged within the cell

under consideration. Instead, local averagings of neighboring Riemann solutions are per-
formed over distinct intervals of the form (xn+1

j− 1
2

, xn+1
j+ 1

2

) with length ∆xn+1
j = xn+1

j+ 1
2

−xn+1
j− 1

2

and

boundaries defined by

xn+1
j+ 1

2

= xj+1/2 + σ(unj , u
n
j+1)∆t. (5.17)

Clearly xn+1
j+ 1

2

is nothing but the location of the intermediate discontinuity in U((x−xj+1/2)/∆t, unj , u
n
j+1)

propagating with speed σ(unj , u
n
j+1) and is thus located at time tn+1,(2) either in (xj−1/2, xj+1/2)

or in (xj+1/2, xj+3/2) depending on the sign of the velocity under consideration. The proposed
local averagings are thus given by

u
n+1,(2)
j =

1

xn+1
j+ 1

2

− xn+1
j− 1

2

∫ xn+1

j+1
2

xn+1

j− 1
2

uα∆x
(1)(tn+1, x)dx, j ∈ Z. (5.18)

This choice precisely avoids any of the intermediate waves in order to prevent them from
numerical smearing. In contrast to the first algorithm, the discrete solution uα∆x

(2)(tn+1, x)
entering the last step is no longer made of up to five constant states within (xj−1/2, xj+1/2)
but only up to three in the situation σ(unj−1, u

n
j ) > 0 and σ(unj , u

n
j+1) < 0. Observe that the

averaging (5.18) can be given the following form

u
n+1,(2)
j =

∆x

∆xn+1
j

unj −
∆t

∆xn+1
j

(
gnj+1/2 − gnj−1/2

)
, j ∈ Z, (5.19)

with gnj+1/2 = g(unj , u
n
j+1) given by the 2-point numerical flux function g : R×R→ R defined

by

g(uL, uR) = v?R(θ;uL, uR)− σ(uL, uR)u?R(θ;uL, uR), (uL, uR) ∈ R2. (5.20)

Observe that the proposed definition (5.20) indeed results in a conservative finite volume
scheme (5.19) in view of the identity inferred from the first jump condition in (2.21)

v?R(θ;uL, uR)− σ(uL, uR)u?R(θ;uL, uR) = v?L(θ;uL, uR)− σ(uL, uR)u?L(θ;uL, uR). (5.21)

In this second step and for technical simplicity, the v-component is conveniently locally
averaged, mimicking the u-component

v
n+1,(2)
j =

1

xn+1
j+ 1

2

− xn+1
j− 1

2

∫ xn+1

j+1
2

xn+1

j− 1
2

vα∆x
(1)(tn+1, x)dx, j ∈ Z. (5.22)

As a third step, we operate a pointwise relaxation (5.11) and get

vα∆x
(3)(tn+1, x) = f(uα∆x

(3)(tn+1, x)), with uα∆x
(3)(tn+1, x) = uα∆x

(2)(tn+1, x).
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Obviously and in practice, this third step makes useless the local averagings proposed for
the v-component in (5.22). But again, adopting the rather formal step (5.22) turns to be
convenient in the forthcoming analysis.

Within each cell (xj−1/2, xj+1/2), we derive the final update uα∆x(t
n+1, x) using a sampling

procedure (5.13) performed on the piecewise constant function uα∆x
(3)(tn+1, x). The pointwise

relaxation step ensures vα∆x(t
n+1, x) = f(uα∆x(t

n+1, x)). This concludes the description of the
method. We summarize the second algorithm as follows.

Being given the random number αn ∈ (0, 1), define in each cell (xj−1/2, xj+1/2)

• Update un+1
j from the {un+1,(2)

j }j∈Z with u
n+1,(2)
j given in (5.19)

un+1
j =



u
n+1,(2)
j−1 , αn < σn

j− 1
2

∆t
∆x
,

u
n+1,(2)
j , σn

j− 1
2

∆t
∆x
≤ αn < 1 + σn

j+ 1
2

∆t
∆x
,

u
n+1,(2)
j+1 , 1 + σn

j+ 1
2

∆t
∆x
≤ αn,

(5.23)

• Update vn+1
j = f(un+1

j ).

6 Convergence to the Kruz̆kov entropy weak solution

In this section, we prove for both the finite volume methods (5.1) and (5.2) that the family
of discrete solutions {Uα

∆x}∆x>0 converges as ∆x goes to zero to U =
(
u, f(u)

)
where u is the

Kruz̆kov solution of the Cauchy problem for (2.1) with initial data u0 ∈ L∞(R) ∩ BV (R).
The main result is as follows.

Theorem 15. Given u0 ∈ L∞(R) ∩ BV (R). Assume the sub-characteristic condition (5.2)
and the CFL condition (5.1). Assume that the mapping θ(uL, uR) is monotonicity preserving
(4.2) and consistent with the entropy condition (4.21), namely with the quadratic entropy
pair in the case of a genuinely non-linear flux and with the whole Kruz̆kov family in the
case of a general non-linear flux function. Then for almost any given sampling sequence
α = (α1, α2, ...) ∈ (0, 1)N, the family of approximate solutions {uα∆x}∆x>0 given either by
(5.1) or (5.2) converges in L∞

(
(0, T ), L1

loc(R)
)

for all T > 0 and a.e. as ∆x → 0 with ∆t
∆x

kept fixed, to the Kruz̆kov solution of the corresponding Cauchy problem (2.1).

By almost any given sampling sequences, it is meant, as identified by T.P. Liu ,that relevant
sequences have to be equi-distributed (see [26] for instance). The proof of this statement
relies on the following first result.

Proposition 16. Assume the sub-characteristic condition (5.2) and the CFL condition (5.1).
Assume that the mapping θ(uL, uR) is monotonicity preserving. Given any sampling sequence
α = (α1, α2, ...) ∈ (0, 1)N, the sequence of discrete solutions (uα∆x(t, x), vα∆x(t, x))∆t>0 given
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either by (5.1) or (5.2) satisfies the following uniform in ∆x a priori estimates for all time
t > 0.

(i) ‖uα∆x(t, ·)‖L∞(R)≤‖u0 ‖L∞(R), ‖vα∆x(t, ·)‖L∞(R)≤ a ‖u0 ‖L∞(R), (6.1)

(ii) TV(uα∆x(t, .)) ≤ TV(u0), TV(vα∆x(t, .)) ≤ aTV(u0), (6.2)

(iii)

∫
R

∣∣∣uα∆x(1)(t, x)− uα∆x(tn, x)
∣∣∣ dx ≤ aTV(u0)(t− tn), tn ≤ t ≤ tn+1, (6.3)

(iv)

∫
R

∣∣∣vα∆x(1)(t, x)− f(uα∆x(t
n, x))

∣∣∣ dx ≤ 2a2TV(u0)(t− tn), tn ≤ t ≤ tn+1. (6.4)

Proof. The proposed estimates are established within the frame of the second algorithm (5.2).
Their derivation concerning the simpler first method (5.1) follows from virtually identical
steps. Details are left to the reader.

(i) The sup-norm estimate in (6.1) follows from the corresponding local maximum principle
stated in (4.1), Theorem 4, which is valid in the first step:

sup
xj≤x≤xj+1

|uα∆x
(1)(t, x)| = sup

xj≤x≤xj+1

∣∣∣∣u(x− xj+ 1
2

t− tn
;unj , u

n
j+1

)∣∣∣∣ ≤ max(|unj |, |unj+1|), (6.5)

for all j ∈ Z and t ∈ (tn, tn+1), and as a consequence

‖uα∆x
(1)
(
tn+1, ·

)
‖L∞(R) ≤ ‖uα∆x(tn, ·)‖L∞(R) . (6.6)

As is well-known, the local averagings involved in the second step diminishes the sup-norm

‖uα∆x
(2)
(
tn+1, ·

)
‖L∞(R) ≤ ‖uα∆x

(1)
(
tn+1, ·

)
‖L∞(R) . (6.7)

The third step devoted to pointwise relaxation does not change the u-component of the
discrete solution, and the sampling procedure in the last step decreases the sup-norm, so
that

‖uα∆x
(
tn+1, ·

)
‖L∞(R)≤‖uα∆x

(3)
(
tn+1, ·

)
‖L∞(R) ≤ ‖uα∆x

(2)
(
tn+1, ·

)
‖L∞(R) ≤ ‖uα∆x (tn, ·)‖L∞(R) .

(6.8)
This immediately implies the expected uniform sup-norm estimate in view of the definition
(5.4) of the discrete initial data. The derivation of the companion sup-norm estimate for
vα∆x (t, ·) starts from the local estimate (4.4)

sup
xj≤x≤xj+1

|vα∆x
(1)(t, x)| = sup

xj≤x≤xj+1

∣∣∣∣v(x− xj+ 1
2

t− tn
;unj , u

n
j+1

)∣∣∣∣ ≤ amax(|unj |, |unj+1|), (6.9)

for all j ∈ Z and t ∈ (tn, tn+1), so that

‖vα∆x
(1)
(
tn+1, ·

)
‖L∞(R) ≤ a ‖uα∆x(tn, ·)‖L∞(R) . (6.10)

Then in the third step, vα∆x is set at equilibrium pointwisely in x, and we get from estimate
(6.6)

‖vα∆x
(3)
(
tn+1, ·

)
‖L∞(R) =‖f(uα∆x

(2)
(
tn+1, ·

)
)‖L∞(R) ≤ a ‖uα∆x (tn, ·))‖L∞(R) . (6.11)
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At last the sampling procedure does not increase the sup-norm of vα∆x so that

‖vα∆x
(
tn+1, ·

)
‖L∞(R) ≤ a ‖uα∆x (tn, ·))‖L∞(R) ≤ a ‖u0 ‖L∞(R) . (6.12)

(ii) In view of the local total variation estimate stated in (4.1), the first step gives

TV]xj ,xj+1[

(
uα∆x

(1)(t, ·)
)

= TV
(
u(·;unj , unj+1)

)
≤ |unj+1 − unj |, tn ≤ t ≤ tn+1. (6.13)

Under the CFL condition (5.1), the discrete solution uα∆x(t, x) stays continuous at x = xj
keeping the constant value unj for all t ∈ (tn, tn+1,(1)), we infer

TV
(
uα∆x

(1)(t, ·)
)

=
∑
j∈Z

TV]xj ,xj+1[

(
uα∆x

(1)(t, ·)
)
≤
∑
j∈Z

∣∣unj+1 − unj
∣∣ = TV (uα∆x(t

n, ·)) .

(6.14)
In the second step, uα∆x is locally averaged and its total variation decreases :

TV
(
uα∆x

(2)(tn+1, ·)
)
≤ TV

(
uα∆x

(1)(tn+1, ·)
)
≤ TV (uα∆x(t

n, ·)) . (6.15)

In the third step, uα∆x is kept unchanged and at last, the sampling procedure clearly dimin-
ishes the total variation, an immediate recursion gives the required uniform total variation
estimate again from the definition (5.4) of the discrete initial data

TV(uα∆x(t
n+1, ·)) ≤ TV (uα∆x(t

n, ·)) ≤ TV(u0
∆x) ≤ TV(u0). (6.16)

The estimate for vα∆x(t, ·) is derived similarly starting from the local estimate (4.4) for each
self-similar solution to infer

TV]xj ,xj+1[

(
vα∆x

(1)(t, ·)
)
≤ aTV

(
u(·;unj , unj+1)

)
, tn ≤ t ≤ tn+1, (6.17)

so that
TV

(
vα∆x

(1)(t, ·)
)
≤ aTV (uα∆x(t

n, ·)) , tn ≤ t ≤ tn+1. (6.18)

In the second step, vα∆x is locally averaged according to (5.22) hence

TV
(
vα∆x

(2)(t, ·)
)
≤ aTV (uα∆x(t

n, ·)) , tn ≤ t ≤ tn+1, (6.19)

and is then set at equilibrium in the third step

TV
(
vα∆x

(3)(tn+1, ·)
)

= TV
(
f(uα∆x

(2)(tn+1, ·))
)
≤ aTV (uα∆x(t

n, ·)) . (6.20)

At last, the sampling procedure diminishes the total variation

TV(vα∆x(t
n+1, ·)) ≤ aTV (uα∆x(t

n, ·)) ≤ aTV(u0). (6.21)

(iii) Observe from the first step in the method the following identity which holds in the sense
of the Radon measures

∂tu
α
∆x

(1)(t, x) = −∂xvα∆x
(1)(t, x), t ∈ (tn, tn+1). (6.22)
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Under the CFL condition (5.1), the total variation of the Radon measure ∂tu
α
∆x can be

bounded from above by

|∂tuα∆x
(1)(t, x)|(Rx) = TV(vα∆x

(1)(t, .)) ≤ aTV(u0) (6.23)

so that, one can infer for t ∈ (tn, tn+1)∫
Rx

∣∣∣uα∆x(1)(t, x)− uα∆x(tn, x)
∣∣∣ dx =

∫ t

tn
|∂tuα∆x

(1)(s, x)|(Rx)ds (6.24)

≤ aTV (u0)(t− tn). (6.25)

(iv) The equation involving the defect measure correction reads for t ∈ (tn, tn+1) and x ∈
(xj, xj+1)

∂tv
α
∆x

(1) = −a2∂xu
α
∆x

(1) +m(unj , u
n
j+1)δx−xj+1/2−σ(unj ,u

n
j+1)(t−tn), (6.26)

and the quantities involved in the above identity are again regarded as Radon measures.
The total variation of the Radon measure ∂tv

α
∆x can be bounded by

|∂tvα∆x
(1)(t, x)|(xj, xj+1) ≤ a2|∂xuα∆x

(1)|(xj, xj+1) + |m(unj , u
n
j+1)|

≤ a2|unj+1 − unj |+ (a2 − σ2)
∣∣unj+1 − unj

∣∣ ≤ 2a2
∣∣unj+1 − unj

∣∣ . (6.27)

Therefore by summation, (6.27) becomes, under the CFL condition (5.1)

|∂tvα∆x
(1)(t, x)|(Rx) ≤ 2a2TV

(
uα∆x

(1)(tn, ·)
)
≤ 2a2TV(u0). (6.28)

We deduce that for tn ≤ t ≤ tn+1∫
Rx

∣∣∣vα∆x(1)(t, x)− vα∆x(tn, x)
∣∣∣ dx =

∫ t

tn
|∂tvα∆x

(1)(s, x)|(Rx)ds ≤ 2a2TV(u0)(t− tn), (6.29)

where by construction vα∆x(t
n, x) = f(uα∆x(t

n, x)). This concludes the proof.

This proposition immediately implies the following convergence result.

Corollary 17. Given u0 ∈ L∞ ∩ BV(R), any T > 0, then under the assumptions of Propo-
sition 16, there exists an extracted subsequence still denoted by {uα∆x}∆x>0 which converges,
as ∆x→ 0 with ∆t/∆x kept constant, to a limit uα in L∞

(
(0, T ), L1

loc(R)
)
. In addition, the

limit uα belongs to L∞(R+, L
∞ ∩ BV(R)).

Proof. This proof is rather classical from the uniform estimates stated in Proposition 16,
and one can refer for instance to [9] (Theorems 3.3 and 3.4, Chapter 3).

The above corollary guarantees the existence of a limit. We now characterize this limit,
showing that it is indeed the unique entropy weak solution of the original Cauchy problem
(2.1). The proof mainly relies on the relaxation entropy inequalities inherited from the first
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step shared by both methods (5.1) and (5.2). Those are conveniently localized within each
of the following time-space domains :

Dnj =
{

(t, x) ∈ R+ × R/ t ∈ (tn, tn+1), xnj−1/2(t) < x < xnj+1/2(t),

xnj+1/2(t) = xj+1/2 + σnj+1/2(t− tn)
}
.

(6.30)

Observe that xnj+1/2(tn+1) coincides with xn+1
j+1/2 defined in (5.17). We state :

Lemma 18. Under the assumptions of Proposition 16, the approximate solutions given in
the first step either by (5.1) or (5.2) satisfy the following relaxation entropy equalities in the
sense of the distributions

∂tΦ(uα∆x
(1), vα∆x

(1)) + ∂xΨ(uα∆x
(1), vα∆x

(1)) = 0, (t, x) ∈ Dnj , n ≥ 0, j ∈ Z. (6.31)

Assume in addition that the mapping θ(uL, uR) is consistent with the entropy condition
(4.21), namely with the quadratic entropy pair in the case of a genuinely non-linear flux
and with the whole Kruz̆kov entropy family in the case of a general non-linear flux function.
Then the discrete solutions given either by (5.1) or (5.2) satisfy the corresponding entropy
jump(s) at each boundary xnj+1/2(t) :

−σnj+1/2

(
Φ(uα∆x

(1), vα∆x
(1))(t, xnj+1/2(t)+)− Φ(uα∆x

(1), vα∆x
(1))(t, xnj+1/2(t)−)

)
+
(

Ψ(uα∆x
(1), vα∆x

(1))(t, xnj+1/2(t)+)−Ψ(uα∆x
(1), vα∆x

(1))(t, xnj+1/2(t)−)
)
≤ 0, t ∈ (tn, tn+1).

(6.32)

Proof. Under the strict CFL condition (5.1), two neighboring Riemann solutions do not
interact. We thus observe from the definition of each of the domain Dnj that the solution
(uα∆x, v

α
∆x) is locally made of three constant states separated by the discontinuity lines xj−1/2+

a(t− tn) and xj+1/2−a(t− tn). The property that the relaxation entropy is preserved across
these two discontinuities (see indeed (4.20)) yields the expected equality (6.31). Next and for
the mapping θ(uL, uR) under consideration, the jump inequality across each of the boundary
xnj+1/2(t) reads nothing but our entropy consistency requirement (4.21) stated in Definition
6.

As a consequence, we get :

Proposition 19. Assume the sub-characteristic condition (5.2) and the CFL condition (5.1).
Given an entropy pair (U ,F) (2.2) with U convex and its corresponding relaxation entropy
pair (Φ,Ψ) (4.15)–(4.16). Assume that the mapping θ(uL, uR) is consistent with the entropy
requirement (4.21) for all the pairs (uL, uR) under consideration. Then for any non-negative
test function ζ ∈ C1

0((0,∞)×Rx), the approximate solutions (uα∆x, v
α
∆x) given either by (5.1)

or (5.2) satisfy∫ xn+1
j+1/2

xn+1
j−1/2

U
(
uα∆x(t

n+1, x)
)
ζ(tn+1, x)dx−

∫ x
j+1

2

x
j− 1

2

U (uα∆x(t
n, x)) ζ(tn, x)dx+ Gnj+1/2 − Gnj−1/2

−
∫∫
Dn

j

Φ(uα∆x, v
α
∆x)∂tζ + Ψ(uα∆x, v

α
∆x)∂xζdtdx

≤ (EA)nj (∆x, α, ζ) + (ES)nj (∆x, α, ζ), n ≥ 0, j ∈ Z. (6.33)
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Here, Gnj+1/2 stands for the time average of the right trace of the entropy flux along the

boundary xnj+1/2(t) and reads for both methods :

Gnj+1/2 :=

∫ tn+1

tn

{
Ψ(uα∆x

(1), vα∆x
(1))− σnj+1/2Φ(uα∆x

(1), vα∆x(1))
}

(t, xn
j+ 1

2
(t)+)ζ(t, xn

j+ 1
2
(t))dt.

(6.34)
Concerning the method (5.1), the error term (EA) due to local averagings is identically zero
while the error term (ES) due to the sampling procedure is given by

(ES)nj (∆x, α, ζ) :=

∫ xn+1
j+1/2

xn+1
j−1/2

(
U
(
uα∆x(t

n+1, x)
)
− U

(
uα∆x

(2)(tn+1, x)
))

ζ(tn+1, x)dx. (6.35)

For the method (5.2), the error terms (EA) and (ES) respectively read

(EA)nj (∆x, α, ζ) :=

∫ xn+1
j+1/2

xn+1
j−1/2

(
Φ
(
uα∆x

(2), vα∆x
(2))(tn+1, x)

)
−Φ

(
uα∆x

(1), vα∆x
(1))(tn+1, x)

))
ζ(tn+1, x)dx,

(6.36)
and

(ES)nj (∆x, α, ζ) :=

∫ xn+1
j+1/2

xn+1
j−1/2

(
U
(
uα∆x(t

n+1, x)
)
− U

(
uα∆x

(3)(tn+1, x)
))

ζ(tn+1, x)dx. (6.37)

Remark 20. In (6.33), the subscript (1) has been omitted in the notation of the (volume)
integral over Dnj since time discontinuities in the subsequent steps tn+1,(1), tn+1,(2), tn+1,(3)

form a negligible set in the proposed Lebesgue integral.

Proof. The proposed inequality is proved for the second algorithm (5.2). Its derivation for
the method (5.1) follows the same lines. Since again (uα∆x, v

α
∆x) is nothing but a piecewise

constant solution of the entropy conservation law (6.31) over the domain Dnj , multiplying
(6.31) by any given non-negative test function ζ ∈ C1

0(R+
t ×R) and integrating over (t, x) ∈

Dnj yield∫ xn+1
j+1/2

xn+1
j−1/2

Φ(uα∆x
(1), vα∆x

(1))
(
tn+1, x

)
ζ(tn+1, x)dx−

∫ x
j+1

2

x
j− 1

2

Φ(uα∆x, v
α
∆x)(t

n, x)ζ(tn, x)dx

+

∫ tn+1

tn

{
Ψ(uα∆x

(1), vα∆x
(1))− σnj+1/2Φ(uα∆x

(1), vα∆x
(1))
}

(t, xnj+1/2(t)−)ζ(t, xnj+1/2(t))dt

−
∫ tn+1

tn

{
Ψ(uα∆x

(1), vα∆x
(1))− σnj−1/2Φ(uα∆x

(1), vα∆x
(1))
}
ζ(t, xnj−1/2(t)+)ζ(t, xnj−1/2(t))dt

−
∫∫
Dn

j

Φ(uα∆x, v
α
∆x)∂tζ + Ψ(uα∆x, v

α
∆x)∂xζdtdx = 0, (6.38)

where the left and right traces at any given interface xnj+1/2(t) are well defined since both

uα∆x(t, .) and vα∆x(t, .) have uniformly bounded total variation in space. Using the definition
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(6.34) of Gnj+1/2 evaluated on the right trace, inequality (6.38) can clearly be recast as∫ xn+1
j+1/2

xn+1
j−1/2

Φ(uα∆x
(1), vα∆x

(1))
(
tn+1, x

)
ζ(tn+1, x)dx−

∫ x
j+1

2

x
j− 1

2

Φ(uα∆x, v
α
∆x)(t

n, x)ζ(tn, x)dx

+Gnj+1/2 − Gnj−1/2 −
∫∫
Dn

j

Φ(uα∆x, v
α
∆x)∂tζ + Ψ(uα∆x, v

α
∆x)∂xζdtdx = Snj , (6.39)

where in view of the jump inequality (6.32) established in Lemma 18, the right hand side is
non-positive :

Snj :=

∫ tn+1

tn

{
− σnj+1/2

(
Φ(uα∆x

(1), vα∆x
(1))(t, xnj+1/2(t)+)− Φ(uα∆x

(1), vα∆x
(1))(t, xnj+1/2(t)−)

)
+
(

Ψ(uα∆x
(1), vα∆x

(1))(t, xnj+1/2(t)+)−Ψ(uα∆x
(1), vα∆x

(1))(t, xnj+1/2(t)−)
)}
ζ(t, xn

j+ 1
2

(t))dt

≤ 0.
(6.40)

Then by construction vα∆x(t
n, x) = f(uα∆x(t

n, x)) for all x in (xj− 1
2
, xj+ 1

2
) so that the consis-

tency condition (4.14) which links the entropy U to its relaxation lift Φ gives

Φ(uα∆x, v
α
∆x)(t

n, x) = U(uα∆x(t
n, x)), x ∈ (xj− 1

2
, xj+ 1

2
), j ∈ Z. (6.41)

Hence in view of (6.39)–(6.40), we infer∫ xn+1
j+1/2

xn+1
j−1/2

Φ(uα∆x
(1), vα∆x

(1))
(
tn+1, x

)
ζ(tn+1, x)dx−

∫ x
j+1

2

x
j− 1

2

U(uα∆x(t
n, x))ζ(tn, x)dx

+Gnj+1/2 − Gnj−1/2 −
∫∫
Dn

j

Φ(uα∆x, v
α
∆x)∂tζ + Ψ(uα∆x, v

α
∆x)∂xζdtdx ≤ 0. (6.42)

After the second step devoted to the local averagings (5.18)–(5.22), we thus deduce from
(6.42) the following inequality∫ xn+1

j+1/2

xn+1
j−1/2

Φ(uα∆x
(2), vα∆x

(2))(tn+1, x))ζ(tn+1, x)dx−
∫ x

j+1
2

x
j− 1

2

U(uα∆x(t
n, x))ζ(tn, x)dx

+Gnj+1/2 − Gnj+1/2 −
∫∫
Dn

j

Φ(uα∆x, v
α
∆x)∂tζ + Ψ(uα∆x, v

α
∆x)∂xζdtdx (6.43)

≤ (EA)nj (∆x, α, ζ), (6.44)

where (EA)nj (∆x, α, ζ) denotes the local averaging error term defined in (6.36). Under the
sub-characteristic condition (5.2), the Gibbs principle (4.23) established in Lemma 7 ensures
that in the third step, the following inequality holds pointwisely in x

U(uα∆x
(3))
(
tn+1, x

)
= Φ

(
uα∆x

(3), f(uα∆x
(3))
) (
tn+1, x

)
≤ Φ(uα∆x

(2), vα∆x
(2))
(
tn+1, x

)
, (6.45)

where by construction uα∆x
(3)(tn+1, x) = uα∆x

(2)(tn+1, x). The expected inequality (6.33)
clearly holds true at the end of the last step devoted to the sampling procedure, with an
additional error term given by (6.37). This concludes the proof.
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We are in a position to prove the convergence of the family of discrete solutions given
either by (5.1) or (5.2) to the unique Kruz̆kov solution of (2.1).

Proof of Theorem 15. For any given non-negative test function ζ ∈ C1
0 ((0,∞)× Rx), let us

sum up the inequalities (6.33) for j ∈ Z to get∫
R
U(uα∆x)

(
tn+1, x

)
ζ(tn+1, x)dx−

∫
R
U(uα∆x)(t

n, x)ζ(tn, x)dx

−
∫ tn+1

tn

∫
R

Φ(uα∆x, v
α
∆x)∂tζ + Ψ(uα∆x, v

α
∆x)∂xζdtdx ≤ (6.46)∑

j∈Z

(
(EA)nj (∆x, α, ζ) + (ES)nj (∆x, α, ζ)

)
, n ≥ 0. (6.47)

Summing with respect to n ∈ N then yields

−
∑
n≥0

∫ tn+1

tn

∫
R

Φ(uα∆x, v
α
∆x)∂tζ + Ψ(uα∆x, v

α
∆x)∂xζdtdx−

∫
R
U(uα∆x)(0, x)ζ(0, x)dx ≤ EA + ES

(6.48)
where we have set

EA =
∑
n≥0

∫
R

(
Φ(Uα

∆x
(2)(tn+1, x))− Φ(Uα

∆x
(1)(tn+1, x))

)
ζ(tn+1, x)dx, (6.49)

ES =
∑
n≥0

∫
R

(
U(uα∆x(t

n+1, x))− U(uα∆x
(3)(tn+1, x))

)
ζ(tn+1, x)dx. (6.50)

First, the dominated convergence theorem readily ensures from the definition of the discrete
initial data ∫

Rx

U(u0
∆x(x))ζ(0, x)dx→

∫
Rx

U(u0(x))ζ(0, x)dx as ∆x→ 0. (6.51)

Let us now prove that in the limit ∆x→ 0 with ∆t/∆x kept constant∑
n≥0

∫ tn+1

tn

∫
Rx

Φ(uα∆x, v
α
∆x)(t, x)∂tζdtdx→

∫
R+
t ×Rx

U(uα)(t, x)∂tζdtdx. (6.52)

In that aim, we make use of the following triangle inequality∣∣∣∣∣∑
n≥0

∫ tn+1

tn

∫
Rx

(
Φ(uα∆x, v

α
∆x)(t, x)− U(uα)(t, x)

)
∂tζdtdx

∣∣∣∣∣
≤

∑
n≥0

∫ tn+1

tn

∫
Rx

∣∣Φ(uα∆x(t, x), vα∆x(t, x))− Φ
(
uα∆x(t, x), f(uα∆x(t

n, x))
)∣∣|∂tζ|dtdx

+
∑
n≥0

∫ tn+1

tn

∫
Rx

∣∣Φ(uα∆x(t, x), f(uα∆x(t
n, x))

)
− Φ

(
uα∆x(t, x), f(uα∆x(t, x))

)∣∣|∂tζ|dtdx
+
∑
n≥0

∫ tn+1

tn

∫
Rx

∣∣Φ(uα∆x(t, x), f(uα∆x(t, x))
)
− U(uα)(t, x)

∣∣|∂tζ|dtdx
:= I1 + I2 + I3. (6.53)
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Inequality (6.4) together with the sup norm estimate (6.1) yield∫ tn+1

tn

∫
Rx

∣∣Φ(uα∆x, v
α
∆x)(t, x) −Φ

(
uα∆x(t, x), f(uα∆x(t

n, x))
)∣∣∣∣∂tζdt∣∣dx

≤ C ‖ ∂tζ ‖L∞(R+
t ×Rx)

∫ tn+1

tn

∫
supp(ζ(t,.))

|vα∆x(t, x)− f(uα∆x(t
n, x))|dxdt

≤ C

∫ tn+1

tn
(s− tn)ds1Isupp(ζ(t,.))

≤ C∆t21Isupp(ζ(t,.)),
(6.54)

where 1Isupp(ζ(t,.)) denotes the characteristic function of the test function ζ(t, .) at time t.
Hence ∆t/∆x being kept constant, we infer

I1 ≤ C∆x, (6.55)

where C is independent of ∆x. Similarly we use (6.3) and (6.1) to get

I2 ≤ C∆x. (6.56)

Concerning I3, since the extracted subsequence {uα∆x}∆x>0 is uniformly bounded in sup norm
and converges to uα in L∞

(
(0, T ), L1

loc(R)
)

for all T > 0 and a.e., the dominated convergence
theorem applies to prove

∑
n≥0

∫ tn+1

tn

∫
Rx

Φ (uα∆x, f(uα∆x)) (t, x)∂tζdtdx =

∫
R+
t ×Rx

U(uα∆x)(x, t)∂tζdtdx→
∫
R+
t ×Rx

U(uα)(t, x)∂tζdtdx(6.57)

as ∆x→ 0, so that I3 vanishes in the reported limit. Exactly the same steps apply to show
that

∑
n≥0

∫ tn+1

tn

∫
Rx

Ψ (uα∆x, f(uα∆x)) (t, x)∂xζdtdx→
∫
R+
t ×Rx

F(uα)∂xζdtdx, as ∆x→ 0. (6.58)

Next, let us rewrite the averaging error term as follows

EA =
∑
n≥0

∑
j∈Z

(EA)nj , (EA)nj =

∫ xn+1
j+1/2

xn+1
j−1/2

(
Φ
(
Uα

∆x
(2)(tn+1, x)

)
−Φ

(
Uα

∆x
(1)(tn+1, x)

))
ζ(tn+1, x)dx.

(6.59)
Introducing the averaged quantity

ζn+1
j =

1

xn+1
j+1/2 − x

n+1
j−1/2

∫ xn+1
j+1/2

xn+1
j−1/2

ζ(tn+1, x)dx, (6.60)

with

||ζ(tn+1, .)− ζn+1
j ||L∞((xn+1

j−1/2
,xn+1

j+1/2
)) ≤ C∆x1Isupp(ζ), (6.61)
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the following identity holds

(EA)nj =

∫ xn+1
j+1/2

xn+1
j−1/2

(
Φ
(
Uα

∆x
(2)(tn+1, x)

)
− Φ

(
Uα

∆x
(1)(tn+1, x)

))
(ζ(tn+1, x)− ζn+1

j )dx(6.62)

+

∫ xn+1
j+1/2

xn+1
j−1/2

(
Φ
(
Uα

∆x
(2)(tn+1, x)

)
− Φ

(
Uα

∆x
(1)(tn+1, x)

)
dx ζn+1

j (6.63)

:= (I4)n+1
j + (I5)n+1

j . (6.64)

The convexity property of the entropy Φ ensures the following pointwise inequality

Φ
(
Uα

∆x
(1)(tn+1, x)

)
− Φ

(
Uα

∆x
(2)(tn+1, x)

)
−∇Φ

(
Uα

∆x
(2)(tn+1, x)

)
·
(
Uα

∆x
(1)(tn+1, x)− Uα

∆x
(2)(tn+1, x)

)
≥ 0.

(6.65)

Here we make use of the local averaging procedure (5.18) together with the convenient
definition (5.22) proposed in the second step, to get the identity

Uα
∆x

(2)(tn+1, x) := Un+1,(2)
j =

1

xn+1
j+ 1

2

− xn+1
j− 1

2

∫ xn+1

j+1
2

xn+1

j− 1
2

Uα
∆x

(1)(tn+1, x)dx, x ∈ (xn+1
j− 1

2

, xn+1
j+ 1

2

).

(6.66)
We thus infer from (6.65) and then (6.66) the following bound

(I5)n+1
j ≤ ζn+1

j ∇Φ(Un+1,(2)
j ) ·

∫ xn+1
j+1/2

xn+1
j−1/2

(
Un+1,(2)
j − Uα

∆x
(1)(tn+1, x)

)
dx = 0, (6.67)

so that in view of the local error sup norm estimate stated in (6.61), we deduce

(EA)nj ≤ C∆x

∫ xn+1
j+1/2

xn+1
j−1/2

|Uα
∆x

(2)(tn+1, x)− Uα
∆x

(1)(tn+1, x)|dx1Isupp(ζ) (6.68)

Invoking the identity (6.66), we get from the uniform BV bounds (6.2) :

(EA)nj ≤
C∆x1Isupp(ζ)

xn+1
j+1/2 − x

n+1
j−1/2

∫ xn+1
j+1/2

xn+1
j−1/2

∫ xn+1
j+1/2

xn+1
j−1/2

|Uα
∆x

(1)(tn+1, x)− Uα
∆x

(1)(tn+1, y)|dxdy(6.69)

≤ TVR(Uα
∆x(t

n+1, .))
C∆x

xn+1
j+1/2 − x

n+1
j−1/2

∫ xn+1
j+1/2

xn+1
j−1/2

∫ xn+1
j+1/2

xn+1
j−1/2

|x− y|dxdy1Isupp(ζ) (6.70)

≤ C∆x31Isupp(ζ), (6.71)

so that with ∆t/∆x kept constant, we deduce that the averaging error term is non-positive
as ∆x goes to zero

(EA) ≤ C∆x
∑
n≥0

∑
j∈Z

1Isupp(ζ)∆x∆t ≤ C∆x. (6.72)
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To conclude, the overall sampling error ES(∆x, α, ζ) can be shown to go to zero with ∆x
for almost any given sequence α ∈ A = (0, 1)N, using exactly the same arguments as those
developed by Glimm [10] in the convergence analysis of his scheme (see also Serre [26]).
With Serre’s notations, consider dν(α) the measure defined on the Borel sets of the space of
sequences A = (0, 1)N, then the following estimate follows∫

A
|ES(∆x, α, ζ)|2 dν(α) ≤ C sup

t≥0
TV (uα∆x(t, ·)) ∆x ≤ C∆x (6.73)

invoking the property that uα∆x(t, x) has uniformly bounded total variation for all α ∈ A =
(0, 1)N. We refer the reader to [26] (Lemma 5.4.2, Chapter 5) for a proof. The proposed
estimate actually ensures that for any given test function ζ ∈ C1

0(R+
t × Rx), there exists a

negligeable set Nζ ⊂ A such that for all sequences in A/ Nζ , the sampling error E(∆x, α, ζ)
goes to zero with ∆x. We can therefore conclude that the limit function uα verifies for almost
any given sampling sequence α ∈ A∫

R+
t ×Rx

(
U(uα)∂tζ + F(uα)∂xζ

)
dtdx+

∫
Rx

U(u0)ζ(0, x)dx ≥ 0, (6.74)

for any non-negative test function ζ ∈ C1
c ((0,∞)× Rx). Again and in the case of a genuinely

non-linear flux function, the proposed inequality holds for a single strictly convex entropy
pair but after Panov [24], it suffices to observe that in addition uα verifies by construction∫

R+
t ×Rx

(
uα∂tζ + f(uα)∂xζ

)
dtdx+

∫
Rx

u0ζ(0, x)dx = 0, (6.75)

namely uα is a weak solution which satisfies one entropy inequality (6.74): it necessarily
coincides with the Kruz̆kov solution. In the situation of a general non-linear flux function,
the inequality (6.74) holds true for the whole Kruz̆kov family which readily implies that uα

is nothing but the Kruz̆kov solution of the Cauchy problem under consideration.

7 Numerical examples

In this section we present numerical results to highlight the importance of handling infinitely
many entropy pairs in the design of the anti-diffusive law Θ(uL, uR) for a flux function without
genuine non-linearity. In that aim, we approximate the Kruz̆kov solution of the initial value
problem

∂tu+ ∂x

(
u3

3

)
= 0, t > 0, x ∈ (0, 1),

u(0, x) = u0(x) =

{
uL = −1, x < 0.5,
uR = +1, x > 0.5,

(7.1)

with Neumann Boundary conditions. The exact solution of this Riemann problem is a
compound wave made of a shock attached to a rarefaction wave, as depicted in the Figures
displayed hereafter. The initial data in (7.1) is chosen so that the entropy jump for the
quadratic entropy pair is zero

−σ(uL, uR)(
u2
R

2
− u2

L

2
) + (

u4
R

4
− u4

L

4
) = 0, σ(uL, uR) =

1

3
. (7.2)
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(7.3)

Hence choosing the anti-diffusive law (4.24) designed for genuinely non-linear flux functions
comes with Γ(uL, uR) = 0 in (4.25) so that the optimal value Θ(uL, uR) in (4.24) boils down
to 1. With such a law any of the two methods (5.1) and (5.2) capture a weak solution made of
a single discontinuity propagating with speed σ(uL, uR) = 1/3. This weak solution is entropy
violating. It is therefore of central importance to promote the anti-diffusive law (4.63) to
enforce for validity all the Kruz̆kov entropy inequalities. Numerical results displayed below
assess these issues.

The solution of the IBVP (7.1) is approximated using the Jin-Xin method with and without
defect measure corrections to illustrate their relative performance. The method (5.2) based
on local space averagings is promoted. The anti-diffusive law is first set to the optimal law
(4.63) especially designed for general non-linear flux function. It is then set to (4.24) for our
numerical purposes. In the calculations, we use the low variance Van der Corput sequence
α ≡ {αn}n≥0 (see [13] for instance) defined by

αn =
m∑
k=0

ik2
−(k+1), with n =

m∑
k=0

ik2
k, (7.4)

where the ik represents the binary expansion of the integer n = 1, 2, .... The first few elements
of this sequence are

a1 = 0.5, a2 = 0.25, a3 = 0.75, a4 = 0.125,
a5 = 0.625, a6 = 0.375, a7 = 0.875, a8 = 0.0625.

(7.5)

The number of points in space is taken to be 250 and the CFL condition is set at the value
0.45. Exact and discrete solutions for the Xin-Jin method without defect measure corrections
are compared in Figure 1. Corresponding results for the Xin-Jin method with defect measure
corrections based on the optimal law (4.63) are displayed in Figure 7. Observe the fairly good
agreement achieved with the exact solution. Results obtained for the optimal law (4.24) are
plotted in Figure 3. As expected, the method captures a wrong weak solution.
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