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We consider flow of a thin film on an incline with negatively buoyant particles. We derive a one-
dimensional lubrication model, including the effect of surface tension, that is a nontrivial extension
of a previous model (Murisic et. al [J. Fluid Mech. 2013]). We show that the surface tension, in the
form of high order derivatives, not only regularizes the previous model as a high order diffusion, but
also modifies the fluxes. As a result, it leads to a different stratification in the particle concentration
along the direction perpendicular to the motion of the fluid mixture. The resulting equations are
of mixed hyperbolic-parabolic type and different from the well-known lubrication theory for a clear
fluid or fluid with surfactant. Consequently, designing a stable numerical method is challenging
due to complexity of the system. We formulate a semi-implicit scheme that is able to preserve the
particle maximum packing fraction. We show extensive numerical results for this model including
a qualitative comparison with two-dimensional laboratory experiments.

I. INTRODUCTION

Recent development in thin-film flows involves studying the dynamics of films laden with particles flowing
down an inclined plane [7, 8, 18, 25, 27]. Understanding the underlying physics of these flows is important
to a number of industrial and geophysical applications such as food processing [17], coating flow technologies
[6], and landslides and debris flow [12]. These require efficient handling of solids in slurries and uniform
particle distributions. The first thin-film model of particle-laden flow with a free surface is attributed to
Zhou et al. [27], wherein both the effects of hindered settling and surface tension are included and rescaled
properly to account for their physical significance. This model captures the ‘ridged’ regime in which particles
accumulate at a single, particle-rich front. However, the model assumes a rapid vertical diffusion in the bulk
of the fluid, and thereby fails to capture a dominant flow pattern observed in experiments up to moderate
particle concentrations: the ‘settled’ regime in which particles settle towards the subtrate and a clear fluid
layer flows over them. In subsequent studies [7, 9], the mathematical model was improved through the
addition of shear-induced migration, which suggested a balance between hindered settling and shear-induced
migration as the dominant large scale physics for particle/liquid separation. The improved equilibrium
model was used by Murisic et. al. [18] to successfully predict the critical concentration where the suspension
transitions from the ‘settled’ to the ‘ridged’ regime, which depends on the inclination angle and relative
density of particles to fluid. At the critical concentration is an unstable equilibrium (the ‘mixed’ regime) for
which the particles remain uniformly mixed.

The most recent dynamic model based on lubrication theory was proposed by Murisic et. al. in [19].
The derivation follows an asymptotic analysis of the underlying governing equations in the lubrication limit,
incorporating the effects of hindered settling and shear-induced migration but omitting surface tension. The
resulting equations form a hyperbolic system of conservation laws for the film height and integrated particle
concentration. This system is extensively analyzed in the following studies [15, 23, 24]; typical solutions are
shown to be a pair of shocks (for separated fluid and particle wave fronts) in the settled regime and either a
double shock or a singular shock in the ridged regime. The presence of the singular shock is a novel feature
which suggests the accumulation of particles at the particle-rich ridge.

While previous models have been successful in capturing the dynamics of the bulk flow, they do not
provide a description of the detailed structure of the fluid front. Near the front, surface tension becomes
a dominant effect, leading to the growth of a capillary ridge and fingering instabilities [11]. In this paper,
we introduce a model for particle-laden flow with surface tension, extending the model of Murisic et al.
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As we will demonstrate, there are subtle issues in constructing the model, so we focus on the dimensional
case where the spanwise variation is neglected. Even in one dimension, the addition of surface tension and
the presence of particles will significantly change the type of the model due to the complicated non-linear
dependence of the fluid and particle fluxes on the pressure gradient. In the next section, we describe in detail
the derivation of the mathematical model by taking into account the surface tension effect. In Section III,
we derive the equations in the dilute limit (i.e. where the particle concentration is very small), for which
the equations have an explicit form. In Section IV, we propose a semi-implicit numerical scheme for the
new model, taking special care to consistently discretizing both the fluid and particle equations so that
the particle concentration does not exceed the maximum packing fraction. Some numerical simulations are
carried out in Section V, where we compare the solutions with and without surface tension and provide a
preliminary comparison with experimental data. Finally, the paper is concluded in Section VI, where we
discuss some open questions and directions for future research.

II. MATHEMATICAL MODEL

A. Evolution equations

In this section, we derive a lubrication model including the effect of surface tension. The derivation
follows that in [19] with significant changes to account for the dependence of the particle distribution and
fluid velocity on the surface tension. Consider a flow in a rectangular, rigid channel inclined at an angle α to
the horizontal in a two-dimensional coordinate system (x, z) where x and z represent the axial and normal
directions to the flow, respectively. Here we ignore the span-wise direction to more clearly illustrate this new
effect. The mixture is comprised of a fluid with density ρ` and particles with density ρp > ρ`. We model the
mixture as a single (quasi)-Newtonian fluid with a concentration-dependent density ρ(φ) and viscosity µ(φ).
The dynamics of this flow are governed by the incompressible Navier-Stokes equations{

ρ(φ)(ut + u · ∇u) = −∇p+∇ ·
(
µ(φ)

(
∇uT +∇u

))
+ ρ(φ)g, (1a)

∇ · u = 0. (1b)

Here u = (u,w) represents the velocity field and g = (g sinα,−g cosα). The mixture density is ρ(φ) =
(1 − φ)ρl + φρp and we use the Krieger-Dougherty relation µ(φ) = (1 − φ/φm)−2 with φm the maximum
packing fraction (taken to be φm = 0.61). The particle concentration φ(x, z, t) satisfies a transport equation
which takes into account migration due to advection and flux gradients. It reads

∂tφ+ u · ∇φ+∇ · J = 0, (2)

where the flux J = (J1, J3) represents the total flux of particles due to gravity and shear-induced migration
arising from particle collisions. Solutions of the equations are subject to the no-slip boundary condition and
continuity of the velocity and stress:{

u(z = 0) = 0, µuz(z = h) = 0, (3a)

p(z = h) = P0 − γ0κ, (3b)

where P0 is the atmospheric pressure, κ is the curvature of the surface and γ0 is the surface tension, which
is considered constant in this work. The flux satisfies the no-flux boundary condition J · n = 0 at z = 0 and
z = h, which implies that the model does not allow for particles to adsorb at the interface.

To justify the assumption that surface tension is constant, we carried out a series of experiments to measure
the surface tension of a fixed volume of PDMS with various particle volume concentrations within the range
of 0 < φ < φm, where φm represents the maximum packing fraction. The experimental method used for the
determination of the surface tension of the slurry sample is known as the pendant drop test. A drop of the
slurry sample is suspended by a tube; the resulting shape of the drop is a consequence of increased pressure
produced inside the drop as a result of the interfacial tension. The pressure difference is proportional to the
changing radii in the pendant-shaped drop while the interfacial tension is the constant of proportionality.
We took measurements of surface tension as a function of particle volume concentration and the results are
collected in Fig. II A, which shows that the surface tension was found to be constant at about 20 mN/m,
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Figure 1: Surface tension γ0 measured for silicon oil with different concentrations of glass beads.

the same as the surface tension for the silicon oil without particles.

Proceeding with the formulation of our model, we introduce the following scalings to render the governing
equations dimensionless:

x̂ =
x

L
, ẑ =

z

H
, H = εL, û =

u

U
, ŵ =

w

εU
, t̂ =

tU

L
, p̂ =

p

P
, µ̂ =

µ

µl
,

where the quantities shown with a hat are dimensionless and ε � 1 represents the lubrication parameter.
The driving mechanism for the flow is gravitational and therefore, it follows from a balance between gravity
and viscosity terms that ρlg sinα = µlU/(ε

2L2), which leads to the velocity scale U = ρlg sinαH2/µl. For
highly viscous flows, it is appropriate to scale the pressure according to P/L = µlU/H

2.

We note that in this setting, the viscous terms are dominant compared to the inertial terms and hence the
Reynolds number, Re = ρlUL/µl � 1 which implies that inertial contributions can be ignored. Defining the
shear stress

σ̂ ≡ µ̂ûẑ (4)

it follows that Eq. (1a) in the x-direction, to leading order in ε, reads

−p̂x̂ + σ̂ẑ + ρ̂ = 0, (5)

where ρ̂ = ρ
ρl

= 1 +
ρp−ρl
ρl

φ = 1 + ρsφ. The analogous rescaling about the z-direction gives

−p̂ẑ = 0, (6)

which, together with boundary condition (3b) yields p̂(x̂, ŷ, ẑ) = p̂0 − γ0
P κ. As a consequence,

p̂x̂ = −γ0
P
κx̂. (7)

Since (7) and κ ≈ hxx to leading order in ε, we have (denoting ĥ = h/H)

p̂x̂ = −γ0
P
κx̂ = − γ0H

3

µlUL3

(
ĥx̂x̂

)
x̂

= − ε3

Ca
ĥx̂x̂x̂ = −βĥx̂x̂x̂ (8)
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where β ≡ ε3/Ca and Ca = µlU
γ0

is the capillary number which measures the relative importance between

viscous and surface tension forces.

Now we non-dimensionalize the particle equation (2). Following the approach in [19], we adopt the scalings

[J1] = ε[J3], [J3] =
d2U

H2
, (9)

where d is the diameter of the particles. The non-dimensionalized fluxes are then Ĵ1 = J1
[J1]

and Ĵ3 = J3
[J3]

.

To leading order, Equation (2) with the zero-flux boundary condition results in

Ĵ3 = 0 (10)

i.e. the particles are in equilibrium in the z-direction. According to the theory for shear-induced migration,
the flux Ĵ3 depends on the particle concentration φ, the shear rate γ̇ ≈ |uz| and their gradients ∇φ and ∇γ.
Then (10) and (5) form a pair of ODEs for σ̂ and φ that can be used to obtain the particle distribution
and velocity u at each point x. This allows us to integrate out the z-dependence in the model and greatly
simplify the equations. For now, we assume to have a function φ̃(s, φ0, p̂x̂) such that

φ(x, z, t) = φ̃(z/h, φ0(x, t), p̂x̂(x, t))

where φ0 is the z-averaged particle concentration

φ0(x, t) =
1

h

∫ h

0

φ(x, z′, t)dz′. (11)

This is enough to derive the final form of the evolution equations; we defer the details of the particle flux
and the equilibrium distribution φ̃ to Section II B.

Proceeding with the derivation, incompressibility and the kinematic boundary condition yield the following

evolution equations for ĥ and φ0:

ĥt̂ +

(∫ ĥ

0

ûdẑ

)
x̂

= 0,
(
ĥφ0

)
t̂

+

(∫ ĥ

0

ûφdẑ

)
x̂

= 0. (12)

To further simplify the model, we factor out the ĥ dependence by rescaling

s =
ẑ

ĥ
, σ̃ =

σ̂

ĥ
, ũ =

û

ĥ2
,

The evolution equations now take the form

ĥt̂ +

(
ĥ3
∫ 1

0

ũds

)
x̂

= 0,
(
ĥφ0

)
t̂

+

(
ĥ3
∫ 1

0

ũφ̃ds

)
x̂

= 0. (13)

Our goal now is to write the integrals in terms of functions only of φ0 and the pressure gradient p̂x̂, thus
completely eliminating the explicit dependence on ẑ. Following a similar approach to the one discussed [19],

we do so by rewriting (13) in terms of integrals relating to the equilibrium distribution φ̃(s). In view of Eq.
(26) and the boundary condition σ̃(1) = 0, we have

σ̃(s) = (s− 1)p̂x̂ +

∫ 1

s

(1 + ρsφ̃) ds′, (14)

which combined with (4) gives

ũ(s) =

∫ s

0

σ

µ(φ̃)
ds′. (15)
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Now define functions I, I1 (omitting the implied dependence on φ0 and p̂x̂) by

I(s) ≡
∫ s

0

1

µ(φ̃)

∫ 1

s′
(1 + ρsφ̃) ds′′ ds′ (16)

I1(s) ≡
∫ s

0

(1− s′)
µ(φ̃)

ds′. (17)

Integrating (15) twice and using the boundary conditions (3), the fluxes in (13) become∫ 1

0

uds = p̂x̂f1 + f,

∫ 1

0

φuds = p̂x̂g1 + g (18)

where f, f1, g and g1 are given by

f ≡
∫ 1

0

I(s) ds, f1 ≡
∫ 1

0

I1(s) ds, (19)

g ≡
∫ 1

0

φ̃I(s) ds, g1 ≡
∫ 1

0

φ̃I1(s) ds. (20)

As a result, the equations in (13) become:

ĥt̂ +
{
ĥ3 [−f1p̂x̂ + f ]

}
x̂

= 0, (21)

(ĥφ0)t̂ +
{
ĥ3 [−g1p̂x̂ + g]

}
x̂

= 0, (22)

where p̂x̂ comes from (8). Because they are all integrals of the equilibrium distribution φ̃(s, φ0, p̂x̂), the
fluxes f, f1, g, g1 are functions of φ0 and p̂x̂ only. In addition, note that the fluxes are each non-negative.
This puts the system in a form suitable for analysis, analogous to the thin film equation without particles
or with surface particles (e.g. [10]), but with fluxes that depend in a non-linear fashion on p̂x̂. Now that the

governing equations have been determined, it remains only to obtain φ̃ from the equilibrium model.

B. Equilibrium solution

As in [19], we close the model by specifying the precise form of the particle flux due to settling and shear
induced migration as follows:

J3 = −d
2

4

[
Kcφ∂z (γ̇φ) +

Kvφ
2γ̇

µ(φ)

dµ(φ)

dφ
∂zφ

]
+
d2(ρp − ρl)(1− φ)

18µ(φ)
φg cosα,

where Kc = 0.41 and Kv = 0.62 are empirical constants. The dimensionless form in (10) then reads

Kcφ∂ẑ

(
ˆ̇γφ
)

+Kvφ
2 ˆ̇γ

2

φm − φ
∂ẑφ−

2ρs(1− φ)φ

9µ̂(φ)
cotα = 0, (23)

where we have made use of the dimensionless effective viscosity µ̂(φ) =
(

1− φ
φm

)−2
. The shear rate γ̇ is

γ̇ = 1
4 ‖ ∇u + ∇uT ‖F= |ûẑ| to leading order in ε. Equation 23 then becomes an equation for the shear

stress σ̂ = µ̂(φ)ûẑ given by

φ|σ̂|ẑ +

(
1 + C1

φ

φm − φ

)
|σ̂|φẑ + C2(1− φ) = 0, (24)
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where C1 = 2(Kv−Kc)
Kc

and C2 = 2ρs
9Kc

cotα. Then the dynamics in the z-direction [see Eqs. (5) and (24)] are
governed by the pair of ODEs

σ̂ẑ = p̂x̂ − ρ̂(φ), φẑ =
C2(φ− 1)− φ|σ̂|ẑ
|σ̂|
(

1 + C1
φ

φm−φ

) . (25)

In the rescaled variables, these equations become

σ̃s = p̂x̂ − (1 + ρsφ̃), (26)

φ̃s =
C2(φ̃− 1)− φ̃|σ̃|s
|σ̃|
(

1 + C1
φ̃

φm−φ̃

) , (27)

subject to the boundary conditions σ̃(1) = 0 and φ0 =
∫ 1

0
φ̃(s) ds. The solution of this system, and conse-

quently the fluxes in (12), are now parametrized by both the averaged volume fraction φ0 and the pressure
gradient p̂x̂. Note that Eqs. (26) and (27) represent a coupled system of ODEs which, as previously men-
tioned, may be solved to obtain profiles of u and φ in the normal direction. In turn, this gives the fluxes
needed in the evolution equations (21) and (22) at each point in the axial direction x.

In Fig. 2, we show the relationship of φ, σ and u with the rescaled normal variable s for different values
of px, parametrized by φ0. As px and φ0 are varied, the shear rate varies which results in changes in the
velocity profile and, consequently, the particle fluid flow dynamics. We show here five types of distinct
behavior observed with varying px and φ0, summarized in the phase plane of Fig. 3. As in the absence of
surface tension [19], there exists a critical value φc(px) below which particles settle to the substrate while
clear fluid runs over them and above which the particles instead accumulate at the surface. For px ≤ 1
solutions are monotonic and the shear stress and velocity profiles are positive (R,S in the phase plane, row 1
in Fig. 2) and for px ≥ 1+ρsφ0 they are instead negative (row 5 in Fig. 2). For |px−1−ρsφm| ≤ c2(1−1/φm)
the critical value φc lies above φm, in which cases solutions are always settled (row 4 in Fig. 2) with negative
velocity.

The behavior in the region 1 ≤ px ≤ 1 + ρsφ0 is more complicated. Unlike in the case of no surface
tension, the shear changes sign from positive to negative in 0 < s < 1 for settled solutions (S∗ in the phase
plane; shown in row 2 of Fig. 2). This is similar to what happens in the so-called return flows [22]. Particles
accumulate to φm at the point where σ = 0, now in the interior of the domain, rather than at the surface.
For φ0 > φc solutions are ridged and monotonic (row 3 of Fig. 2). For numerical convenience (as done in

[20]), we introduce a small regularization to the shear stress, |σ| →
√
σ2 + ε2 in Eq. (27); this has the effect

of preventing φ from reaching φm exactly (which is potentially unphysical) but does not affect the results
that follow. The additional ε can be interpreted as a correction to the stress accounting for finite particle
size. We note that the particle profiles vary discontinuously across the critical concentration (dashed part
of the line in Fig. 3) as they transition from ‘settled’ to ‘ridged’. This is likely an artifact of the equilibrium
assumption, which effectively assumes particles to equilibrate instantaneously. The discontinuity, however,
only occurs in a small range of px and does not appear to be significant.

III. DILUTE APPROXIMATION

In this section, we consider a special case—the dilute approximation, where the fluxes have a closed form.
Herafter, we work only with the non-dimensionalized system and drop hats for brevity. As shown in the end
of this section, the equation for the fluid flow is exactly the same as clear fluid, whereas the equation for
particle transport depends on the flow free surface in a nonlinear fashion. This simpler case will allow us to
better understand how the surface tension modifies the system.

Consider an asymptotic expansion of φ: φ = 0 + δφ1 + δ2φ2 + ... with δ � 1. Then the leading order terms
of the z-component of the Stokes equations (25) in δ are

dσ

dz
= px − 1, (28)
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Figure 2: Variation of particle concentration φ, shear stress σ, and velocity u in the normal z-direction with α = 50 deg
for fixed p̂x̂ and varying φ0. First row: p̂x̂ = 0.5. Second and third rows: p̂x̂ = 1.1 with φ0 < φc and φ0 > φc. Fourth
row: p̂x̂ = 2. Fifth row: p̂x̂ = 4.
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recalling px = −βhxxx from (8). Equation (28) is integrated with respect to z, yielding

σ(z) = (px − 1)(z − h), (29)

where we have used σ(h) = 0. Linearization of the particle transport equation in (25) yields,

|σ|dφ
dz

= −B, (30)

where B = 2ρs cotα/(9Kc). Using Eq. (29) in (30) and, upon integration with respect to z,

φ(z) =

{
B(T−z)
|1−px|h 0 < z < T,

0 T < z < h,
(31)

where 0 < z < T defines the region with particles.Therefore, the z-averaged particle volume fraction is
obtained as,

φ0 =
1

h

∫ h

0

φ(z)dz =
BT 2

2|1− px|h2
. (32)

Since the linearization of µ about φ = 0 gives µ = 1, the velocity profile via (4) satisfies

du

dz
= (px − 1)(z − h). (33)

which, upon integration and application of the no-slip condition at z = 0, gives:

u(z) = (px − 1)

(
z2

2
− hz

)
. (34)

The spatiotemporal evolution equations (12) form a 2× 2 system, defined as,

ht + Fx = 0, (hφ0)t +Gx = 0. (35)
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The fluxes, F and G are defined as:

F =

∫ h

0

u(z) dz, G =

∫ T

0

φ(z)u(z) dz. (36)

It is simple enough to see that F =
1

3
(1− px)h3. Now, for G, integrating across the film, gives

G = B

(
T 3

6
− T 4

24h

)
1− px
|1− px|

. (37)

By making use of Eq. (32) and ignoring terms of O(φ20), we obtain the following relationship for G:

G =

√
2

9B
φ
3/2
0 |1− px|3/2h3

1− px
|1− px|

. (38)

Substituting the full form of the fluxes in Eqs. (35), we get

ht +

(
h3

3
+ βh3hxxx

)
x

= 0, (39)

(hφ0)t +

√
2

9B

(
φ
3/2
0 |1− px|1/2(1− px)h3

)
x

= 0; (40)

where we have made use of px = −βhxxx. We observe from Eqs. (39) and (40) that the particle dynamics
decouple from the fluid motion. Note that Eq. (39) describes the dynamics of the clear, thin-film fluid.
Setting β = 0 recovers the simple model [19] which ignores effects due to surface tension. We note that in
the absence of surface tension effects, the system of Eqs. (39), (40) may be solved exactly. In the presence
of surface tension (β 6= 0) with positive initial conditions, (39) is expected to have a smooth solution (see
[3]) and (40) becomes a scalar conservation law that can be solved exactly.

IV. NUMERICAL SCHEME

In this section, we explain in detail the numerical scheme for solving the system (21) (22). Recalling the
definition of px in (8), the system reads (omitting hats)

ht +
(
h3f

)
x

= −β
(
h3f1hxxx

)
x
, (41)

(hφ0)t +
(
h3g
)
x

= −β
(
h3g1hxxx

)
x
. (42)

Note that fluxes f(φ0, px) and g(φ0, px) depend on px, thus the left hand side of (41) (42) is no longer a
simple hyperbolic system, which makes its discretization ambiguous. To overcome this difficulty, we rewrite
the system (41) and (42) as

ht + (h3f(φ0, 0))x = β
(
h3f̃1hxxx

)
x

(43)

(hφ0)t + (h3g(φ0, 0))x = β
(
h3g̃1hxxx

)
x

(44)

where

f̃1 = f1 +
f(φ0, 0)− f(φ0, px)

px
, g̃1 = g1 +

g(φ0, 0)− g(φ0, px)

px
. (45)

Then the left hand side of (43) (44) reduces to the original model without surface tension, which has been

shown to be hyperbolic [23]. The modified fluxes f̃1 and g̃1 are well-defined and bounded as px → 0 due to the
linear dependence of the equilibrium equation (26) on px. In addition, these fluxes remain non-negative. The
main difficulty comes from the explicit treatment of the fourth order diffusion, which may pose a constraint
on time step ∆t ∼ ∆x4, whereas implicit treatment needs a large effort in inverting a nonlinear system. We
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propose here a semi-implicit discretization with an explicit discretization of the nonlinear part and implicit
for the linear fourth order diffusion. This idea has been employed in the lubrication type equations [2, 4, 14],
but with the addition of particle volume evolution (42) new difficulties arise, as we will explain below.

Let ∆x be the mesh size and ∆tk be the adpative time step at kth step. Denote hkj = h(xj , t
k), (fi)

k
j =

fi(xj , t
k), and (φ0)kj = φ0(xj , t

k), where xj = j∆x and tk =
∑k−1
l=0 ∆tk. First, we discretize the fluid flow

(43) as

hk+1
j − hkj

∆tk
+

(h3f(φ0, 0))kj − (h3f(φ0, 0))kj−1
∆x

= − β

∆x4

{
(h3f̃1)kj + (h3f̃1)kj+1

2

(
hk+1
j+2 − 3hk+1

j+1 + 3hk+1
j − hk+1

j−1
)

−
(h3f̃1)kj + (h3f̃1)kj−1

2

(
hk+1
j+1 − 3hk+1

j + 3hk+1
j−1 − h

k+1
j−2
)}

. (46)

and we use upwind difference for the transport part as the direction of the flow is downward. The fluxes fi

depend on (φ0)kj =
nk
j

hk
j

and

(px)kj = −β(hxxx)kj = −β
hkj+2 − 2hkj+1 + 2hkj−1 − hkj−2

2∆x3
.

∆x is the spatial grid and we choose it uniformly for simplicity; it can be directly generalized to nonuniform
mesh if we want to refine the resolution at the wave front. The time step ∆t is chosen adaptively according
to some stability condition.

Next, for the particle transport (44), although the fourth order diffusion is in h not in n, it cannot be
considered as part of the flux or the source as it may render the scheme unstable. Instead, we should

discretize β
(
h3g̃1hxxx

)
x

in the same way as β
(
h3f̃1hxxx

)
x

in (43). More precisely, the scheme for (42)

reads

nk+1
j − nkj

∆tk
+

(h3g(φ0, 0))kj − (h3g(φ0, 0))kj−1
∆x

= − β

∆x4

{
(h3g̃1)kj + (h3g̃1)kj+1

2

(
hk+1
j+2 − 3hk+1

j+1 + 3hk+1
j − hk+1

j−1
)

−
(h3g̃1)kj + (h3g̃1)kj−1

2

(
hk+1
j+1 − 3hk+1

j + 3hk+1
j−1 − h

k+1
j−2
)}

. (47)

As noticed in [23], one of the most important properties of the solution to the original hyperbolic system

(the one without surface tension) is that φ0(t, x) = n(t,x)
h(t,x) stays in the interval [0, φm] , even in the case

of a singular shock. In what follows, we will show the reason for it and then explains how it inspires the
discretization (47). First we have the following lemma.

Lemma 1. The flux pairs (f1(φ0), g1(φ0)) and (f(φ0), g(φ0)) are non-negative and satisfy g(φ0) ≤ φmf(φ0).

Proof. Since we always choose the physical solution to the equilibrium system (26)(27) such that 0 ≤ φ ≤ φm,
the averaged value φ0 also falls into the range [0, φm]. Since I(s) in (16) is non-negative, from the definition
of the fluxes in (19) and (20) we have

g(φ0) =

∫ 1

0

φ(s)I(s)ds ≤ φm
∫ 1

0

I(s)ds = φmf(φ0).

Similarly, I1(s) in (17) is non-negative and so g1(φ0) ≤ φmf1(φ0).

To proceed, we consider a special case when β = 0, then px ≡ 0, and the fluxes f(φ0) and g(φ0) reduce
to the original flux in [19] without surface tension, and the system (41)(42) reduces to the conservation laws
where a simple upwind difference scheme suffices to give the correct solution. For such a system, we have
the following property.
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Theorem 2. If the time step ∆tk satisfies the CFL condition

∆tk

∆x
≤ min

j

{
1

h2f(φ0)
,

φ0
h2g(φ0)

,
φm − φ0

(φmf(φ0)− g(φ0))h2

}k
j

, (48)

the the solution to the evolution system (46) (47) with px ≡ 0 satisfies 0 ≤ φ0kj =
nk
j

hk
j

≤ φm.

Proof. Rewrite the upwind scheme in (46) and (47) as

nk+1
j = nkj −

∆tk

∆x

[
(h3g)kj − (h3g)kj−1

]
, hk+1

j = fkj −
∆tk

∆x

[
(h3f)kj − (h3f)kj−1

]
.

Then positivity of hk+1
j and nk+1

j is guaranteed if ∆tk satisfies the CFL condition (48), so it is with φ0
k+1
j .

Now let us consider the quantity φmh
k+1
j − nk+1

j . Notice that

(φmh− n)k+1
j = (φmh− n)kj −

∆tk

∆x

[
(h3φmf − h3g)kj − (h3φmf − g)kj−1

]
,

thus it is easy to check that if (φmh− n)kJ = 0 at one position xJ and a specific time tk, (φmh− n)k+1
J = 0

thanks to Lemma 1 and the fact f(φm) = g(φm) = 0. Now it is left to check that if (φmh− n)kJ > 0 for any

xJ and tk, we have (φmh− n)k+1
J ≥ 0. This is readily followed by the third algebraic expression in the CFL

constraint (48).

Remark 3. The first two constraints in the CFL condition (48) are the common conditions to guarantee
the positivity of the upwind solution, whereas the third one is an extra requirement to preserve the upper
bound of φ0. However, this extra requirement is not restrictive at all. Indeed, we can check the ratio

φm − φ0
φmf(φ0)− g(φ0)

/ 1

f(φ0)
=

(φm − φ0)f(φ0)

φmf(φ0)− g(φ0)
, (49)

which is uniformly bounded with an O(1) upper bound (please see the appendix).

Remark 4. Analytically, for the hyperbolic system without surface tension (β = 0 in (41) (42)) if initially
h(x, 0) < φmn(x, 0) and we assume the solution is sufficiently smooth, then φ0(t, x) < φm still holds. This
can be seen following the characteristics of the system

ht + (h3f(φ0))x = 0, ξt + (h3φmf(φ0)− h3g(φ0))x = 0,

where ξ = φmh − n and φ0 is recovered via φ0 = φmh−ξ
h . However, once the shock or rarefaction forms, we

need to resort to the Hugoniot locus or integral curve [15, 23] to study the behavior of the solution. Indeed,
in the interesting case when there is a singular shock, both h and n increase unboundedly at the wave front
of the shock, but φ0 = n

h is always bounded by φm, which is seen from the fact that the Hugoniot locus in
the (h, φ0)−plane always stay below φ0 = φm (see Fig. 4.1 and Theorem 4.1 in [23]). Therefore, in the case
of double/singular shock, the volume concentration φ0(t, x) is still bounded above by φm.

Therefore, in the absence of surface tension, the upper bound of φ0 is preserved both analytically and
numerically. Inspired by the above argument, we notice that, in the presence of surface tension, a good choice
of discretization of the term βh3g1hxxx in (42) is that it is discretized in the same manner as βh3f1hxxx in
(41). However, since the theory of the uniform boundedness in φ0 is still lacking for (42) (41), the rigorous
estimate of numerical solution (46) (47) sharing the same property is beyond the scope of this paper, and
we leave it to future work.
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V. NUMERICAL SIMULATION

In this section, we conduct several numerical simulations to show how the model performs in the presence of
surface tension. We first present the results starting from Riemann initial data representing a ‘constant flux’
setting. Motivated by physical experiments carried out on the experimental set-up housed in the Applied
Mathematics Department at UCLA, we then investigate the numerical solutions for the ‘constant volume’
case and show some experimental results. All the simulations are carried out at 30 deg angle without special
announcement.

A. Riemann initial data

Consider Riemann initial data

h(0, x) = hR +
1

2
(hL − hR) (1− tanh(10x)) , (50)

and n(0, x) = φIh(0, x) where φI is the initial concentration, hL and hR are the height in the reservoir
and precursor, respectively. Eq. (50) describes a step-like profile for the interfacial height, consistent with
investigating slow flows down rectangular planes.

Dilute case

We first give one example for the dilute approximation (39) (40) with β = 1, the solution of which is
compared with the one without surface tension, i.e., β = 0. Here since the h evolution is decoupled from n
evolution, we use a semi-implicit scheme (similar to (46)) for (39) and use a local Lax-Friedrichs scheme for
(40). The result is shown in Fig. 4; we observe that the position of the front of the wave is the same in both
models with and without surface tension. In the presence of surface tension, it shows that the flow develops
a capillary ridge in h, representing a travelling-wave solution which moves with a constant velocity. Such a
capillary ridge is subject to spanwise instabilities that give rise to fingering patterns [1, 11, 13], which is an
interesting problem for further study.
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Figure 4: Comparison of dilute model with and without surface tension (ST) at time t = 40. In the case with surface
tension, β = 1. The rest of the parameters are chosen as: hL = 1, hR = 0.1 and φI = 0.1.

Settled case

We now move away from the dilute limit and turn our attention to the full model described by Eqs. (21)
and (22). First, we focus on a case where the concentration is low giving rise to the settled flow pattern,
which corresponds to a double-shock solution when surface tension is neglected. We consider the following
parameters hL = 1, hR = 0.1 and φI = 0.2 in all simulations and investigate the effect of surface tension
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by varying the value of the parameter β. We compare the numerical solutions with β = 0, 10−3, 10−2 at
t = 15 in Fig. 5, where stronger surface tension effect results in more pronounced capillary ridge in both
shocks. Here, we choose ∆x = 0.025, ∆t = 0.01. We observe that the previous, hyperbolic model captures
the location of the front of the flow while surface tension leads to the development of two ridges: a trailing
one, representing the particle-concentrated region and a leading ridge, representing the particle-free region.
The leading wave forms at the contact line which we expect to be unstable to fingering. From experimental
observations, the fingering is more visible at the front of the flow while, at the particle-fluid separation, the
fingering appears to be more suppressed. In Fig. 6, we choose β = 0.1 corresponding to more distinct surface
tension effects, and plot the profiles of h and n at different times, indicating that the solution is composed
of two traveling waves. Again, ∆x = 0.025, ∆t = 0.01.
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Figure 5: Computation of the full model given by Eqs. (21) and (22) with surface tension for different β = 0, 1e −
5, 1e− 3, 1e− 2 at time t = 15. The left panel shows the film height solution and the right panel shows the solution
of the product of the height and particle volume concentration. Here, hL = 1, hR = 0.1 and φI = 0.2.
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Figure 6: Computation of the full model given by Eqs. (21) and (22) with surface tension for β = 1 at different times.
Here hL = 1, hR = 0.1 and φI = 0.2.

Ridged case

We now explore the double-shock formation in the ridged regime. Consider the initial data (50) but with
hL = 1 and hR = 0.2. φI = 0.5. As shown in [23], this initial data will produce a double shock with
intermediate height and concentration larger than the left and right states. Here we compare our results
with β = 0.1 and without surface tension, i.e., β = 0. Here, we choose ∆x = 0.05, ∆t = 0.01. The results
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are gathered in Fig. 7 where the capillary ridge emerges in the second shock near the moving contact line
in the presence of surface tension, as one would expect from experimental results.
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Figure 7: Comparsion of β = 0 and β = 0.1 for different times t = 2000, 2500, 3000, 3500, and 4000. Blue dashed
curve: β = 0. Black solid curve: β = 0.1. Here we used a moving mesh with speed s = 0.0275 computed from the
initial data and reform the results according to the distance it should advance at the above times.

Next, we investigate the singular shock. If we choose hL = 1, hR = 0.02 and φI = 0.5, the solution to
the original hyperbolic system is a singular shock. Here we first show a comparison of the solution with and
without surface tension. The results are collected in Fig. 8 where we display the solutions at different times
t = 400, 800, 1200, 1600, and 2000. Here the black solid curve is without surface tension, whose solution in
H produces a singularity, while the blue dashed is for β = 0.05 where the profile in h has been regularized.
To further see this, we compare the maximum height of the fluid (h) for model (21) (22) by decreasing the
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Figure 8: Comparsion of no surface tension (i.e., β = 0, black solid curve) and β = 0.05 (blue dashed curve) for
different times t = 400, 800, 1200, 1600, 2000. ∆x = 0.05, ∆t = 0.0025.

mesh size, with β = 0.1 and β = 0, respectively. It is observed from Fig. 9 that surface tension (β = 0.1)
successfully suppresses the singular shock, resulting in a particle-rich ridge with uniformly bounded height
for finite time. On the other hand, without surface tension the height does not have a uniform growth when
we refine the mesh, indicating the presence of singularity.
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Figure 9: maxx h(t, x) versus t for different mesh grids for model (21) (22) with initial condition hL = 1, hR = 0.02
and φI = 0.5. Left: β = 0.1, with surface tension. Right: β = 0, without surface tension.

B. Conserved volume initial data

In this section, we further demonstrate that the presence of surface tension will not affect the large-scale
dynamics but only modify the wave front by using the laboratory parameters from recent experiments [5]. In
the experimental data obtained in [5], height profiles for the suspension in the incline problem were obtained
by use of a laser sheet, capturing the evolution of the capillary ridge. The suspension used was a viscous oil
(PDMS with kinematic viscosity ν = 1000 cSt and surface tension γ = 0.02 N/m) with 0.2 mm particles and
densities ρ` = 971 kg/m3 and ρp = 3800 kg/m3, similar to previous experiments [19].

With these parameters, β = ε3

Ca = γH
L3ρlg sinα

= 0.042. Initial data takes the following form:

h(0, x) =


110∗0.75
10∗14 , for − 10 ≤ x ≤ 0

0.02 ∗ 110∗0.75
10∗14 , elsewhere

, φ0(0, x) = φI , n(0, x) = φIh(0, x). (51)

Figure 10 displays the comparison of solutions to model (21)–(22) with (β = 0.042, solid curve) and without
surface tension (β = 0, dashed curve).
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Figure 10: Comparsion of no surface tension (i.e., β = 0, dashed curve) and β = 0.042 (solid curve) for models with
initial data (51). Left: settled case with φ0 = 0.2. Right: ridged case with φ0 = 0.5.

In Figure 11, we show two typical examples of measured height profiles. Varying the total volume effectively
changes the left and right states (as in (51)), thereby allowing for the possibility of detecting the transition
between singular and double shocks. In the parameter regime tested, which is restricted by the equilibrium
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assumption, only a single, sharp ridge evolves (see Figure 11). The height of the ridge increases with angle;
for moderate angles, the effect of spreading due to the normal component of gravity (neglected in the model
here) is significant (compare the ridges for angles α = 45 deg and α = 55 deg in Figure 11). Even at large
angles, this diffusion dampens the growth of the ridge somewhat but the effect is small for α = 55 deg.
It is difficult to determine whether the observed ridge corresponds to the singular shock solution (as the
model would predict) or a double shock, as the double shock evolves over much longer time period than the
current experiments allow. Further experiments may better illuminate the behavior of the fronts (as singular
shocks or otherwise) and the particle distribution therein. In addition, in the high concentration regime,
non-Newtonian effects (particularly at the front) may be important; this is evident, e.g. as the typical
fingering instability evolves and the high-concentration ’fingers’ will tend to solidify and/or break. The
fingering instability also has an effect on the formation of the ridge, which makes quantitative comparison
to the one-dimensional model of limited use. Fully studying the physical model therefore requires extending
the model to two dimensions, which is beyond the scope of this work.
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Figure 11: Left/center: An experimental picture and height profile near the front for φ0 = 0.5 and α = 55 deg (the
vertical line in the figure is the laser line from which the height profiles are measured). Right; experimental height
profile for α = 45 deg (right) with an initial volume of 110 ml.

VI. CONCLUDING REMARKS

In this paper, we derive a model for the evolution of a gravity-driven thin film laden with particles in
the presence of surface tension effects. This model takes the form of conservation law with a fourth order
nonlinear diffusion, the latter arises from capillarity due to the addition of surface tension. We propose
a semi-implicit scheme that is able to effectively solve the models without a severe stability constraint.
We carry out numerical simulations with system parameters corresponding to three distinct flow regimes
observed in experiments. We observe that in the settled case where there exists separation between the
particle-rich and particle-free regions the numerical solution is described by two capillary shocks for each
region. In the ridged case where the particles accumulate at the front of the flow, in the absence of surface
tension effects, the solution is described by a singular shock which is physically unrealistic. The addition of
surface tension acts to regularize the thin film height solution thus suppressing the singular shock.

Similar equations have been studied in modeling of surfactant spreading [10]. These equations are also
a fourth-order parabolic equation for the film height coupled to a particle transport equation which can
be solved using semi-implicit methods. Mathematically, the model proposed here has some key differences
which complicate the problem. The conserved form of the system is for the film height h and integrated
concentration hφ, while the fluxes still depend on the concentration φ. As a consequence, a numerical scheme
in conserved form must be discretized carefully to ensure that the approximation for φ remains appropriately
bounded. In addition, the fluxes f, g that drive the bulk fluid motion, which are first-order in the absence
of surface tension, gain a complicated non-linear dependence on hxxx.

This work brings many challenging questions for future study. On the modeling and numerics side,
extending the model to two dimensions is necessary in understanding the fingering instability. The simplest
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generalization to two dimensions is to assume the shear-induced migration flux depends only on the total
shear rate γ̇ =

√
|µuz|2 + |µvz|2 where v is the y-velocity (see e.g. [26]). One then obtains a similar

equilibrium ODE and fluxes that now depend on both components of the pressure gradient (∇p = −β∇∆h).
The resulting equation is again similar to the thin film equation in two dimensions. However, the typical
fingering instabilities that arise and dependence on py further exacerbate the numerical difficulties we have
discussed in one dimension. In addition, from a physical perspective, it is not clear that the use of the
total shear rate is a good approximation, as the behavior of shear-induced migration in more complicated
geometries is not as straightforward and may necessitate the use of more complicated models (for example,
taking into account the role of anisotropic normal stresses [16, 21]).

On the analysis side, it is very interesting to study the well-posedness of the system (21) (22) (or (43)
(44) ), which is of a complicated hyperbolic-parabolic type, especially in the case of a singular shock. The
absence of a diffusion term in the particle transport equation and dependence of the fluxes on φ0 and px make
the problem of well-posedness (substantially) different from other thin-film models. Progress on analysis of
the equations may also aid in developing numerical schemes with desirable properties, such as ensuring
boundedness of the particle concentration.

Acknowledgements: The authors would like to thank Dirk Peschka and Roman Taranets for fruitful
discussions and Sarah Burnett, Jesse Kreger, Hanna Kristensen, and Andrew Stocker for their experimental
work. This work is funded by NSF grants DMS-1312543 and DMS-10455536.

VII. APPENDIX

Here we show the uniform bound of the ratio (49). First notice that when φ0 ≤ φcrit (φcrit is the critical
value that distinguishes the ‘settled’ and ‘ridged’ regime [19]), we have g(φ0) ≤ φ0f(φ0) (Theorem 2.2 in
[23]), so the ratio is bounded by 1. When φ0 > φcrit, we see that the ratio is an increasing function in φ0
(we can check it numerically, please see Fig. 12), thus it suffices to check its bound near φm. Consider the
following Taylor expansion

f(φ0) = f(φm) + f ′(φm)(φ0 − φm) +
1

2
f ′′(φm)(φ0 − φm)2 +

1

3!
f ′′′(φm)(φ0 − φm)3 +O

(
(φm − φ0)4

)
,

g(φ0) = g(φm) + g′(φm)(φ0 − φm) +
1

2
g′′(φm)(φ0 − φm)2 +

1

3!
g′′′(φm)(φ0 − φm)3 +O

(
(φm − φ0)4

)
.

Since we have f(φm) = g(φm) = f ′(φm) = g′(φm)0 and φmf
′′(φm) = g′′(φm) 6= 0 (see Lemma 4.3 in [23]),

the ratio (49) expands as

(φm − φ0)f(φ0)

φmf(φ0)− g(φ0)
=

(φm − φ0)
[
1
2f
′′(φm)(φ0 − φm)2 + 1

3!f
′′′(φm)(φ0 − φm)3 +O

(
(φm − φ0)4

)]
1
3! [φmf

′′′(φm)− g′′′(φm)](φ0 − φm)3 +O ((φm − φ0)4)
. (52)

Recall again the calculation in [23] that

f ′′(φm) =

∫ 1

0

(1 + ρsφm)(1 +B)

µlφ2m

[
1− (1− s)2B+2

]
ds,

φmf
′′′(φm)− g′′′(φm) = −3

∫ 1

0

(1 + ρsφm)(1 +B)

µlφ2m

[
1− (1− s)2B+2

]
(1 +B)(1− s)Bds,

where B =
ρsφ

2
m+(C2+1)φm−C2

C1φm(1+ρsφm) , then the ratio (52) is estimated, with higher order term neglected, as 3(2B+2)
2(2B+3) .
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