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Coarse language

f : X → Y is an (K , L)–quasi-isometric embedding if, ∀p, q ∈ X

(1/K ) · dX (p, q)− L ≤ dY (f (p), f (q)) ≤ K · dX (p, q) + L

Whether a subgroup H < G is qi-embedded
does not

depend on generating set
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Coarse language

a qi-embedded subgroup is
“undistorted”

f : X → Y is an (K , L)–quasi-isometric embedding if, ∀p, q ∈ X

(1/K ) · dX (p, q)− L ≤ dY (f (p), f (q)) ≤ K · dX (p, q) + L

Whether a subgroup H < G is qi-embedded
does not

depend on generating set



Coarse language

Z ⊂ Y is a K –quasiconvex set if

NK (Z ) contains all geodesics between points in Z

Whether a subgroup H < G is quasiconvex
does

depend on generating set



Stability (Durham–Taylor)

Definition

A f.g. subgroup H < G is stable if it is

(1) quasi-isometrically embedded, and

(2) any pair of K –quasigeodesics* between points in H have
Hausdorff distance bounded by M(K ).

*K –quasigeodesic: (K ,K )–qi-embedding of an interval.

Stable subgroups of G are quasiconvex
with respect to any word metric on G .
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Convex cocompactness in mapping class groups

Definition (Farb–Mosher)

Finitely generated G < MCG (S) is convex cocompact if its orbit
G · X ⊂ Teich(S) is quasiconvex.

Compare:

Finitely generated, discrete G < Isom(Hn) is convex cocompact iff
its orbit G · p ⊂ Hn is quasiconvex.

Well-known theorems (Ivanov, Masur, Masur–Minsky)

MCG (S) = Isom(Teich(S)) and Teich(S) is not hyperbolic.

MCG (S) = Isom(Curve(S)) and Curve(S) is hyperbolic

Definition

Pseudo-Anosov mapping classes are elements of MCG (S) with N-S
dynamics along translation axis in Teich(S) (equiv., in Curve(S))
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Goal: motivate theorem on right

Theorems (Kent–Leininger,
Hamenstädt, Durham–Taylor)

TFAE for f.g. G < MCG (S)

(0) G is convex cocompact

(1) The orbit map
G ↪→ G · v ⊂ Curve(S) is a
q.i.-embedding

(2) G is stable in MCG (S).

Also, these imply
G is purely pseudo-Anosov.

Theorem (Koberda–M.–Taylor)

TFAE for f.g. G < A(Γ)

(1) The orbit map
G ↪→ G · v ⊂ Curve(Γ) is a
q.i.-embedding

(2) G is stable in A(Γ).

(3) G is purely loxodromic.



MCG convex cocompactness & surface group extensions

1 −→ π1(S) −→ EG −→ G −→ 1
|| ↓ ↓

1 −→ π1(S) −→ Mod(S̊) −→ Mod(S) −→ 1

Theorems (Farb-Mosher, Hamenstädt)

EG is word hyperbolic if and only if G is convex cocompact.

Theorem (Thurston’s geometrization of mapping tori)

1 −→ π1(S) −→ π1(Mφ) −→ 〈φ〉 −→ 1

Mφ is hyperbolizable if and only if φ is pseudo-Anosov,
i.e. iff 〈φ〉 is convex cocompact.
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MCG convex cocompactness & hyperbolic groups

Theorem (Thurston’s geometrization, proved by Perelman)

M closed, aspherical 3–mfld admits a hyperbolic metric
if and only if π1(M) does not contain Z⊕ Z.

Question (Gromov)

If H has finite K (H, 1) and no subgroups of the form
BS(p, q) = 〈a, b|a−1bpa = bq〉, is H hyperbolic?

Potential counterexample

f.g. purely pA G =⇒ EG has finite K (EG , 1) and no BS subgroups.

Question (Farb–Mosher)

Is f.g. purely pA G < MCG (S) necessarily convex cocompact?
(No here means no to Gromov, since EG would not be hyperbolic).
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Q: Does f.g. purely pA imply convex cocompact?

Yes answers in special cases

H < G for G from a certain family of MCG (S)–subgroups:

H < Isom(H2) for H2 ⊂ Teich(S) (Veech groups);

Leininger–Reid combinations of Veech groups (Leininger)

H < π1(Mφ) when Mφ is hyperbolic;

quasiconvex H < EG when EG is hyperbolic

(Dowdall–Kent–Leininger, generalizing Kent–Leininger–Schleimer)

H < A(Γ) < MCG (S) for “admissible” A(Γ)

(M.–Taylor, Koberda–M–Taylor)



RAAGs in MCGs

Definition

A(Γ) = 〈vi ∈ V (Γ) | [vi , vj ] = id if (vi , vj) ∈ E (Γ) 〉

Theorems (Koberda, Clay–Leininger–M,
Crisp–Paris/–Weiss/–Farb)

Many ways to embed A(Γ) in some MCG (S).



RAAGs in MCGs

Definition

A(Γ) = 〈vi ∈ V (Γ) | [vi , vj ] = id if (vi , vj) ∈ E (Γ) 〉

Theorem (Clay–Leininger–M)

For partially pA {f1, . . . , fn} supported on connected, non-nested
Xi with disjointess recorded in the graph Γ, for large enough pi ,

A(Γ)→ 〈f p1
1 , . . . , f pn

n 〉 < MCG (S)

is a quasi-isometric embedding.
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*meaning A(Γ) ↪→ MCG (S):

(i) Comes with large subsurface curve complex projections, and

(ii) Word partial order matches subsurface partial order



Our special case

Suppose A(Γ) < MCG (S) admissible.

Theorem (M–Taylor)

F.g. purely pA H < AΓ < MCG (S) is convex cocompact in
MCG (S) if and only if H is combinatorially quasiconvex* in A(Γ).

*word metric using standard vertex generators

Easy fact

φ ∈ A(Γ) < MCG (S) pseudo-Anosov =⇒ φ ∈ A(Γ) loxodromic.

Corollary (Koberda–M–Taylor)

H < A(Γ) < MCG (S) is convex cocompact if and only if
H is f.g. purely pA.



Curve(S) and Curve(Γ)

Curve(S):

Vertices ←→ ess. simple closed curves on S up to isotopy

Edge (α, β)⇐⇒ α, β are disjoint

Curve(Γ) aka extension graph Γe of Γ, defined by Kim–Koberda:

Realize A(Γ) ↪→ MCG (S) by
vertex generators 7−→ high-powered Dehn twists (Koberda)

Vertices ←→ base curves of A(Γ)–conjugates of vertex gens

Edge (α, β)⇐⇒ α, β are disjoint

Theorem (Kim–Koberda)

Curve(Γ) is hyperbolic (in fact, it is a quasi-tree).



Loxodromic elements

Definition

φ ∈ A(Γ) is loxodromic if φ · v ⊂ Curve(Γ) is unbounded.

Note

φ ∈ MCG (S) is pseudo-Anosov iff φ · v ⊂ Curve(S) is unbounded.

Theorems (Kim–Koberda, Servatius, Behrstock–Charney)

For φ ∈ A(Γ), TFAE:

φ is loxodromic

φ /∈ Z⊕ Z < A(Γ)

φ acts as a rank-1-isometry of S̃(Γ), the CAT(0) cube
complex whose 1–skeleton is Cayley(A(Γ),V (Γ))



Convex cocompactness in RAAGs

Theorem (Haglund)

For H < AΓ, tfae:

Exists (non-empty) convex subcomplex C ⊂ S̃(Γ) which is
H-invariant and cocompact.

H combinatorially quasiconvex in A(Γ),

i.e. vertex orbit H · v quasiconvex in S̃(Γ)
(1)

.

Proposition (K–M–T)

comb.
qcvx

purely
loxo.

star-
free



Non-loxodromic elements: join-words and star-words

Theorem (Servatius)

φ not loxodromic =⇒ cφc−1 ∈ A(J) for a join J ⊂ Γ.

Definition

A join J = Γ1 ∗ Γ2.

join words conj. into A(J)

A star T = Γ1 ∗ v :

star words conj. into A(T )

{purely loxo. (no join words)} ( {star-free (no star words)}
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Star-free RAAG subgroups

Theorem (Koberda–M–Taylor)

If G < A(Γ) is finitely generated and star-free, then

(1) G is a free group,

(2) G is quasi-isometrically embedded in A(Γ), and

(3) G ∩ A(Λ) is finitely generated, for any subgraph Λ ⊂ Γ.

comb.
qcvx

purely
loxo.

star-
free


