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Coarse language

’e a gi-embedded subgroup is

; “undistorted”

f: X — Yis an (K, L)—quasi-isometric embedding if, Vp,q € X

(1/K)-dx(p,q) — L < dy(f(p),f(q)) < K-dx(p,q)+L

Whether a subgroup H < G is gi-embedded
does not
depend on generating set



Coarse language

NoT QCVX:

UASICony @ Lupy c pol

Z C Y is a K—quasiconvex set if

Nk (Z) contains all geodesics between points in Z

Whether a subgroup H < G is quasiconvex
does
depend on generating set



Stability (Durham—Taylor)

Definition

A f.g. subgroup H < G is stable if it is

(1) quasi-isometrically embedded, and

(2) any pair of K—quasigeodesics* between points in H have
Hausdorff distance bounded by M(K).

*K—quasigeodesic: (K, K)—gi-embedding of an interval.
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Definition

A f.g. subgroup H < G is stable if it is

(1) quasi-isometrically embedded, and

(2) any pair of K—quasigeodesics* between points in H have
Hausdorff distance bounded by M(K).

*K—quasigeodesic: (K, K)—gi-embedding of an interval.
M
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Stable subgroups of G are quasiconvex
with respect to any word metric on G.
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Convex cocompactness in mapping class groups

Definition (Farb—Mosher)

Finitely generated G < MCG(S) is convex cocompact if its orbit
G - X C Teich(S) is quasiconvex.

Compare:

Finitely generated, discrete G < Isom(H") is convex cocompact iff
its orbit G - p C H" is quasiconvex.

Well-known theorems (lvanov, Masur, Masur—Minsky)
MCG(S) = Isom(Teich(S)) and Teich(S) is not hyperbolic.
MCG(S) = Isom(Curve(S)) and Curve(S) is hyperbolic

Definition
Pseudo-Anosov mapping classes are elements of MCG(S) with N-S
dynamics along translation axis in Teich(S) (equiv., in Curve(S))



Goal: motivate theorem on right

Theorems (Kent—Leininger,
Hamenstadt, Durham—Taylor)
TFAE for f.g. G < MCG(S)
(0) G is convex cocompact
(1) The orbit map
G— G-vC Curve(S) is a
q.i.-embedding
(2) G is stable in MCG(S).
Also, these imply
G is purely pseudo-Anosov.

Theorem (Koberda—M.-Taylor)
TFAE for f.g. G < A(IN)

(1) The orbit map
G— G-vCCurve(lN) is a
q.i.-embedding

(2) G is stable in A(T).

(3) G is purely loxodromic.



MCG convex cocompactness & surface group extensions

1 — m(S) — Ec — G — 1

| 3 +
1 — m(S) — Mod(5) — Mod(S) — 1

Theorems (Farb-Mosher, Hamenstadt)

E¢ is word hyperbolic if and only if G is convex cocompact.



MCG convex cocompactness & surface group extensions

1 — m(S) — Ec — G — 1

| 3 +
1 — m(S) — Mod(5) — Mod(S) — 1

Theorems (Farb-Mosher, Hamenstadt)

E¢ is word hyperbolic if and only if G is convex cocompact.

Theorem (Thurston’s geometrization of mapping tori)

1 — m(S) — m(My) — (¢ — 1

My is hyperbolizable if and only if ¢ is pseudo-Anosov,
i.e. iff (¢) is convex cocompact.



MCG convex cocompactness & hyperbolic groups

Theorem (Thurston's geometrization, proved by Perelman)

M closed, aspherical 3—mfld admits a hyperbolic metric
if and only if w1(M) does not contain 7 & Z.

Question (Gromov)

If H has finite K(H, 1) and no subgroups of the form
BS(p, q) = (a, bla"1bPa = b9), is H hyperbolic?
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MCG convex cocompactness & hyperbolic groups

Theorem (Thurston's geometrization, proved by Perelman)

M closed, aspherical 3—mfld admits a hyperbolic metric
if and only if w1(M) does not contain 7 & Z.

Question (Gromov)

If H has finite K(H, 1) and no subgroups of the form
BS(p, q) = (a, bla"1bPa = b9), is H hyperbolic?

Potential counterexample
f.g. purely pA G = Eg has finite K(Eg, 1) and no BS subgroups.

Question (Farb—Mosher)

Is f.g. purely pA G < MCG(S) necessarily convex cocompact?
(No here means no to Gromov, since Eg would not be hyperbolic).



Q: Does f.g. purely pA imply convex cocompact?

Yes answers in special cases
H < G for G from a certain family of MCG(S)-subgroups:

o H < Isom(H?) for H2 C Teich(S) (Veech groups);
@ Leininger—Reid combinations of Veech groups (Leininger)
o H < mi(My) when M, is hyperbolic;
quasiconvex H < E¢ when Eg is hyperbolic
(Dowdall-Kent-Leininger, generalizing Kent—Leininger—Schleimer)
e H<A(l') < MCG(S) for “admissible” A(I)
(M.=Taylor, Koberda—M-Taylor)



RAAGs in MCGs
Definition
AT) = (vie V() | [vi,vj] = id if (vi,vj) € E(T))

Theorems (Koberda, Clay—Leininger—M,
Crisp—Paris/~Weiss/—Farb)
Many ways to embed A(T') in some MCG(S).
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For partially pA {fi, ..., f,} supported on connected, non-nested
X; with disjointess recorded in the graph I, for large enough p;,
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RAAGs in MCGs
Definition
AT) = (vie V() | [vi,vj] = id if (vi,vj) € E(T))

Theorem (Clay—Leininger-M)

For partially pA {fi, ..., f,} supported on connected, non-nested

X; with disjointess recorded in the graph I, for large enough p;,
A(T) = (FP, ... fPy < MCG(S)

is an admissible* embedding.

*meaning A(l') — MCG(S):
(i) Comes with large subsurface curve complex projections, and

(i) Word partial order matches subsurface partial order



Our special case

Suppose A(I') < MCG(S) admissible.

Theorem (M-Taylor)

F.g. purely pA H < Ar < MCG(S) is convex cocompact in
MCG(S) if and only if H is combinatorially quasiconvex* in A(T).

*word metric using standard vertex generators

Easy fact
¢ € A(l') < MCG(S) pseudo-Anosov = ¢ € A(I") loxodromic.

Corollary (Koberda—M-Taylor)

H < A(l') < MCG(S) is convex cocompact if and only if
H is f.g. purely pA.



Curve(S) and Curve(l')

Curve(S):
@ Vertices <— ess. simple closed curves on S up to isotopy

e Edge (a, ) <= a, B are disjoint

Curve(l') aka extension graph '® of T, defined by Kim—-Koberda:
@ Realize A(I') < MCG(S) by
vertex generators — high-powered Dehn twists (Koberda)
@ Vertices <— base curves of A(I')—conjugates of vertex gens
e Edge (a, ) <= a, 3 are disjoint

Theorem (Kim—Koberda)
Curve(l) is hyperbolic (in fact, it is a quasi-tree).



Loxodromic elements

Definition
¢ € A(T) is loxodromic if ¢ - v C Curve(l') is unbounded.

Note
¢ € MCG(S) is pseudo-Anosov iff ¢ - v C Curve(S) is unbounded.

Theorems (Kim—Koberda, Servatius, Behrstock—Charney)
For ¢ € A(I'), TFAE:
@ ¢ is loxodromic
0o e ZaZ < AT)
@ ¢ acts as a rank-1-isometry of §(VF) the CAT(0) cube
complex whose 1—skeleton is Cayley(A(I'), V(I'))



Convex cocompactness in RAAGs

Theorem (Haglund)
For H < Ar, TFAE:

e Exists (non-empty) convex subcomplex C C S(I') which is
H-invariant and cocompact.
e H combinatorially quasiconvex in A(T),

. : , - aa@
i.e. vertex orbit H - v quasiconvex in S(I') .

Proposition (K-M-T)

purely
loxo.



Non-loxodromic elements: join-words and star-words
Theorem (Servatius)
é not loxodromic = c¢c~t € A(J) for a join J C T.

Definition
A join J =T1*T>.

<

Join words conj. into A(J)
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Non-loxodromic elements: join-words and star-words

Theorem (Servatius)

é not loxodromic = c¢c~t € A(J) for a join J C T.

Definition
A join J =T1*T>. Astar T=T1x%xv:
Join words conj. into A(J) star words conj. into A(T)

{purely loxo. (no join words)} < {star-free (no star words)}



Star-free RAAG subgroups

Theorem (Koberda—M-Taylor)

If G < A(T) is finitely generated and star-free, then

(1) G is a free group,

(2) G is quasi-isometrically embedded in A(T'), and

(3) GN A(N) is finitely generated, for any subgraph N C T.

purely
loxo.



