Convex cocompactness in RAAGs and MCGs or

The geometry of purely loxodromic subgroups of right-angled Artin groups

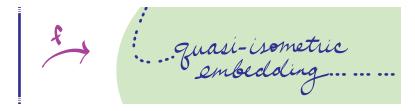
or

Some interesting subgroups of MCGs and RAAGs

Thomas Koberda, Johanna Mangahas*, Samuel J. Taylor

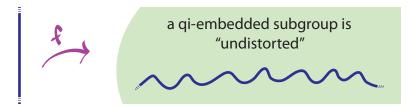
*University at Buffalo

December 7, 2014



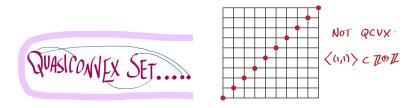
 $f: X \to Y$ is an (K, L)-quasi-isometric embedding if, $\forall p, q \in X$ $(1/K) \cdot d_X(p,q) - L \leq d_Y(f(p), f(q)) \leq K \cdot d_X(p,q) + L$

 $f: X \to Y$ is an (K, L)-quasi-isometric embedding if, $\forall p, q \in X$ $(1/K) \cdot d_X(p,q) - L \leq d_Y(f(p), f(q)) \leq K \cdot d_X(p,q) + L$



 $f: X \to Y$ is an (K, L)-quasi-isometric embedding if, $\forall p, q \in X$ $(1/K) \cdot d_X(p,q) - L \leq d_Y(f(p), f(q)) \leq K \cdot d_X(p,q) + L$

> Whether a subgroup H < G is qi-embedded does not depend on generating set



$Z \subset Y$ is a *K*-quasiconvex set if

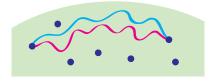
$N_{\mathcal{K}}(Z)$ contains all geodesics between points in Z

Whether a subgroup H < G is quasiconvex does depend on generating set

Stability (Durham–Taylor)

Definition

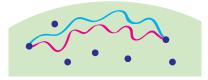
- A f.g. subgroup H < G is *stable* if it is
- (1) quasi-isometrically embedded, and
- (2) any pair of K-quasigeodesics* between points in H have Hausdorff distance bounded by M(K).
- *K-quasigeodesic: (K, K)-qi-embedding of an interval.



Stability (Durham–Taylor)

Definition

- A f.g. subgroup H < G is *stable* if it is
- (1) quasi-isometrically embedded, and
- (2) any pair of K-quasigeodesics* between points in H have Hausdorff distance bounded by M(K).
- *K-quasigeodesic: (K, K)-qi-embedding of an interval.



Stable subgroups of G are quasiconvex with respect to **any** word metric on G.

Definition (Farb-Mosher)

Finitely generated G < MCG(S) is *convex cocompact* if its orbit $G \cdot X \subset Teich(S)$ is quasiconvex.

Definition (Farb-Mosher)

Finitely generated G < MCG(S) is *convex cocompact* if its orbit $G \cdot X \subset Teich(S)$ is quasiconvex.

Compare:

Finitely generated, discrete $G < \text{Isom}(\mathbb{H}^n)$ is convex cocompact iff its orbit $G \cdot p \subset \mathbb{H}^n$ is quasiconvex.

Definition (Farb-Mosher)

Finitely generated G < MCG(S) is *convex cocompact* if its orbit $G \cdot X \subset Teich(S)$ is quasiconvex.

Compare:

Finitely generated, discrete $G < \text{Isom}(\mathbb{H}^n)$ is convex cocompact iff its orbit $G \cdot p \subset \mathbb{H}^n$ is quasiconvex.

Well-known theorems (Ivanov, Masur, Masur–Minsky) MCG(S) = Isom(Teich(S)) and Teich(S) is not hyperbolic.

MCG(S) = Isom(Curve(S)) and Curve(S) is hyperbolic

Definition (Farb-Mosher)

Finitely generated G < MCG(S) is *convex cocompact* if its orbit $G \cdot X \subset Teich(S)$ is quasiconvex.

Compare:

Finitely generated, discrete $G < \text{Isom}(\mathbb{H}^n)$ is convex cocompact iff its orbit $G \cdot p \subset \mathbb{H}^n$ is quasiconvex.

Well-known theorems (Ivanov, Masur, Masur-Minsky)

MCG(S) = Isom(Teich(S)) and Teich(S) is not hyperbolic.

MCG(S) = Isom(Curve(S)) and Curve(S) is hyperbolic

Definition

Pseudo-Anosov mapping classes are elements of MCG(S) with N-S dynamics along translation axis in Teich(S) (equiv., in Curve(S))

Goal: motivate theorem on right

Theorems (Kent–Leininger, Hamenstädt, Durham–Taylor)

TFAE for f.g. G < MCG(S)

- (0) G is convex cocompact
- (1) The orbit map $G \hookrightarrow G \cdot v \subset \text{Curve}(S)$ is a q.i.-embedding
- (2) G is stable in MCG(S).
 Also, these imply
 G is purely pseudo-Anosov.

Theorem (Koberda–M.–Taylor)

TFAE for f.g.
$$G < A(\Gamma)$$

- (1) The orbit map $G \hookrightarrow G \cdot v \subset \operatorname{Curve}(\Gamma)$ is a q.i.-embedding
- (2) G is stable in $A(\Gamma)$.
- (3) G is purely loxodromic.

MCG convex cocompactness & surface group extensions

Theorems (Farb-Mosher, Hamenstädt)

 E_G is word hyperbolic if and only if G is convex cocompact.

MCG convex cocompactness & surface group extensions

Theorems (Farb-Mosher, Hamenstädt) E_G is word hyperbolic if and only if G is convex cocompact.

Theorem (Thurston's geometrization of mapping tori)

$$1 \longrightarrow \pi_1(S) \longrightarrow \pi_1(M_{\phi}) \longrightarrow \langle \phi \rangle \longrightarrow 1$$

 M_{ϕ} is hyperbolizable if and only if ϕ is pseudo-Anosov, *i.e.* iff $\langle \phi \rangle$ is convex cocompact.

MCG convex cocompactness & hyperbolic groups

Theorem (Thurston's geometrization, proved by Perelman) M closed, aspherical 3–mfld admits a hyperbolic metric if and only if $\pi_1(M)$ does not contain $\mathbb{Z} \oplus \mathbb{Z}$.

Question (Gromov)

If H has finite K(H, 1) and no subgroups of the form $BS(p, q) = \langle a, b | a^{-1} b^p a = b^q \rangle$, is H hyperbolic?

MCG convex cocompactness & hyperbolic groups

Theorem (Thurston's geometrization, proved by Perelman) M closed, aspherical 3–mfld admits a hyperbolic metric if and only if $\pi_1(M)$ does not contain $\mathbb{Z} \oplus \mathbb{Z}$.

Question (Gromov)

If H has finite K(H, 1) and no subgroups of the form $BS(p, q) = \langle a, b | a^{-1} b^p a = b^q \rangle$, is H hyperbolic?

Potential counterexample

f.g. purely pA $G \Longrightarrow E_G$ has finite $K(E_G, 1)$ and no BS subgroups.

Question (Farb-Mosher)

Is f.g. purely pA G < MCG(S) necessarily convex cocompact?

MCG convex cocompactness & hyperbolic groups

Theorem (Thurston's geometrization, proved by Perelman) M closed, aspherical 3–mfld admits a hyperbolic metric if and only if $\pi_1(M)$ does not contain $\mathbb{Z} \oplus \mathbb{Z}$.

Question (Gromov)

If H has finite K(H, 1) and no subgroups of the form $BS(p, q) = \langle a, b | a^{-1} b^p a = b^q \rangle$, is H hyperbolic?

Potential counterexample

f.g. purely pA $G \Longrightarrow E_G$ has finite $K(E_G, 1)$ and no BS subgroups.

Question (Farb–Mosher)

Is f.g. purely pA G < MCG(S) necessarily convex cocompact? (No here means no to Gromov, since E_G would not be hyperbolic). Q: Does f.g. purely pA imply convex cocompact?

Yes answers in special cases

H < G for G from a certain family of MCG(S)-subgroups:

- $H < \text{Isom}(\mathbb{H}^2)$ for $\mathbb{H}^2 \subset \text{Teich}(S)$ (Veech groups);
- Leininger-Reid combinations of Veech groups (Leininger)
- *H* < π₁(*M*_φ) when *M*_φ is hyperbolic;
 quasiconvex *H* < *E*_G when *E*_G is hyperbolic

(Dowdall-Kent-Leininger, generalizing Kent-Leininger-Schleimer)

 H < A(Γ) < MCG(S) for "admissible" A(Γ) (M.-Taylor, Koberda-M-Taylor)

RAAGs in MCGs

Definition

 $A(\Gamma) = \langle v_i \in V(\Gamma) \mid [v_i, v_j] = \textit{id} \text{ if } (v_i, v_j) \in E(\Gamma) \rangle$

Theorems (Koberda, Clay–Leininger–M, Crisp–Paris/–Weiss/–Farb)

Many ways to embed $A(\Gamma)$ in some MCG(S).

RAAGs in MCGs

Definition

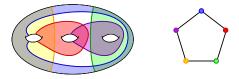
 $A(\Gamma) = \langle v_i \in V(\Gamma) \mid [v_i, v_j] = \textit{id} \text{ if } (v_i, v_j) \in E(\Gamma) \rangle$

Theorem (Clay–Leininger–M)

For partially pA $\{f_1, \ldots, f_n\}$ supported on connected, non-nested X_i with disjointess recorded in the graph Γ , for large enough p_i ,

$$A(\Gamma) \rightarrow \langle f_1^{p_1}, \ldots, f_n^{p_n} \rangle < MCG(S)$$

is a quasi-isometric embedding.



RAAGs in MCGs

Definition

 $A(\Gamma) = \langle v_i \in V(\Gamma) \mid [v_i, v_j] = \textit{id} \text{ if } (v_i, v_j) \in E(\Gamma) \rangle$

Theorem (Clay–Leininger–M)

For partially pA $\{f_1, \ldots, f_n\}$ supported on connected, non-nested X_i with disjointess recorded in the graph Γ , for large enough p_i ,

$$A(\Gamma) \rightarrow \langle f_1^{p_1}, \ldots, f_n^{p_n} \rangle < MCG(S)$$

is an admissible* embedding.

*meaning $A(\Gamma) \hookrightarrow MCG(S)$:

(i) Comes with large subsurface curve complex projections, and(ii) Word partial order matches subsurface partial order

Our special case

Suppose $A(\Gamma) < MCG(S)$ admissible.

Theorem (M–Taylor)

F.g. purely pA $H < A_{\Gamma} < MCG(S)$ is convex cocompact in MCG(S) if and only if H is combinatorially quasiconvex* in $A(\Gamma)$.

*word metric using standard vertex generators

Easy fact

 $\phi \in A(\Gamma) < MCG(S)$ pseudo-Anosov $\Longrightarrow \phi \in A(\Gamma)$ loxodromic.

Corollary (Koberda–M–Taylor)

 $H < A(\Gamma) < MCG(S)$ is convex cocompact if and only if H is f.g. purely pA.

Curve(S) and $Curve(\Gamma)$

Curve(S):

- Vertices \longleftrightarrow ess. simple closed **curves** on *S* up to isotopy
- Edge $(\alpha, \beta) \iff \alpha, \beta$ are disjoint

 $\operatorname{Curve}(\Gamma)$ aka *extension graph* Γ^e of Γ , defined by Kim–Koberda:

- Realize A(Γ) → MCG(S) by vertex generators → high-powered Dehn twists (Koberda)
- Vertices ↔ base curves of A(Γ)-conjugates of vertex gens
- Edge $(\alpha, \beta) \iff \alpha, \beta$ are disjoint

Theorem (Kim-Koberda)

 $\operatorname{Curve}(\Gamma)$ is hyperbolic (in fact, it is a quasi-tree).

Loxodromic elements

Definition $\phi \in A(\Gamma)$ is loxodromic if $\phi \cdot v \subset \operatorname{Curve}(\Gamma)$ is unbounded.

Note

 $\phi \in MCG(S)$ is pseudo-Anosov iff $\phi \cdot v \subset Curve(S)$ is unbounded.

Theorems (Kim–Koberda, Servatius, Behrstock–Charney) For $\phi \in A(\Gamma)$, TFAE:

- ϕ is loxodromic
- φ ∉ ℤ ⊕ ℤ < A(Γ)
- φ acts as a rank-1-isometry of S(Γ), the CAT(0) cube complex whose 1-skeleton is Cayley(A(Γ), V(Γ))

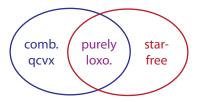
Convex cocompactness in RAAGs

Theorem (Haglund)

For $H < A_{\Gamma}$, then the transformation of transfo

- Exists (non-empty) convex subcomplex $C \subset S(\Gamma)$ which is *H*-invariant and cocompact.
- *H* combinatorially quasiconvex in $A(\Gamma)$,
 - i.e. vertex orbit $H \cdot v$ quasiconvex in $\widetilde{S(\Gamma)}^{(1)}$.

Proposition (K-M-T)

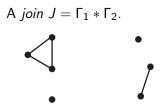


Non-loxodromic elements: join-words and star-words

Theorem (Servatius)

 ϕ not loxodromic $\Longrightarrow c\phi c^{-1} \in A(J)$ for a join $J \subset \Gamma$.

Definition



join words conj. into A(J)

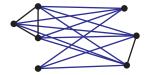
Non-loxodromic elements: join-words and star-words

Theorem (Servatius)

 ϕ not loxodromic $\Longrightarrow c\phi c^{-1} \in A(J)$ for a join $J \subset \Gamma$.

Definition

A join $J = \Gamma_1 * \Gamma_2$.



join words conj. into A(J)

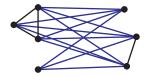
Non-loxodromic elements: join-words and star-words

Theorem (Servatius)

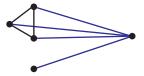
 ϕ not loxodromic $\Longrightarrow c\phi c^{-1} \in A(J)$ for a join $J \subset \Gamma$.

Definition

A join $J = \Gamma_1 * \Gamma_2$.



A star $T = \Gamma_1 * v$:



join words conj. into A(J)

star words conj. into A(T)

{purely loxo. (no join words)} \subseteq {star-free (no star words)}

Star-free RAAG subgroups

Theorem (Koberda–M–Taylor)

- If $G < A(\Gamma)$ is finitely generated and star-free, then
- (1) G is a free group,
- (2) G is quasi-isometrically embedded in $A(\Gamma)$, and
- (3) $G \cap A(\Lambda)$ is finitely generated, for any subgraph $\Lambda \subset \Gamma$.

