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Abstract

We describe sufficient conditions which guarantee that a finite set of mapping classes
generate a right-angled Artin group quasi-isometrically embedded in the mapping class
group. Moreover, under these conditions, the orbit map to Teichmiiller space is a quasi-
isometric embedding for both of the standard metrics. As a consequence, we produce
infinitely many genus h surfaces (for any h at least 2) in the moduli space of genus g surfaces
(for any g at least 3) for which the universal covers are quasi-isometrically embedded in
the Teichmiiller space.

1 Introduction

Let S denote a surface and Mod(S) its mapping class group. Given independent pseudo-
Anosov mapping classes f1,..., fn € Mod(S), McCarthy [35] and Ivanov [21] proved that by
passing to sufficiently high powers, these mapping classes generate a free subgroup. This is the
primary ingredient in the proof that Mod(.S) satisfies the “Tits alternative”; see also [14} 32] for
quantitative versions of this. Farb and Mosher [I3] defined a notion of convex cocompactness
for subgroups of Mod(S) by way of analogy with Kleinian groups, and proved that fi,..., f,
could be raised to sufficiently high powers to further guarantee that the subgroup they generate
is convex cocompact; see also [37), [22] [18].

Given an arbitrary set of elements fi,. .., f, € Mod(S), we cannot expect that they generate
a free group upon raising to sufficiently high powers. However, Koberda [25] has recently proven
that the powers do generate a right-angled Artin group; see also [9, 12| [§] for partial results in
this direction.

In this paper, we are interested in geometric properties of right-angled Artin subgroups
of the mapping class group. As convex cocompact subgroups are necessarily Gromov hyper-
bolic, we must consider other geometric properties for non-free right-angled Artin subgroups
of Mod(S). For example, Crisp and Wiest [12] produced quasi-isometric embeddings of certain
right-angled Artin groups into braid groups (and hence also mapping class groups). In this
paper we show that this is possible in much greater generality, and furthermore, one can often
conclude even stronger geometric statements for the corresponding subgroups. Here we state
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our main theorem, and refer the reader to Section [2] for necessary terminology and a more
precise statement (Theorem [2.2]).

Theorem 1.1. Suppose f1,...,fn € Mod(S) are fully supported on overlapping nonannular
subsurfaces. Then after raising to sufficiently high powers, these elements generate a quasi-
isometrically embedded right-angled Artin subgroup of Mod(S). Furthermore, the orbit map to
the Teichmdiller space is a quasi-isometric embedding for both of the standard metrics, namely
the Teichmaller and Weil-Petersson metrics.

Remarks.

1. We note that for the second statement to hold, the assumption that the support of each f;
is not an annulus is necessary. On the other hand, it seems likely that the homomorphism to
Mod(S) is a quasi-isometry without this additional assumption.

2. There are a number of other “natural” metrics on Teichmiiller space besides the two we
have mentioned; the Bergman metric, Carathéodory metric, McMullen metric, K&hler-Einstein
metric, Ricci metric and perturbed Ricci metric. However, each of these is quasi-isometric to
the Teichmiiller metric (see [36] 42} [29] [30]), and so the conclusion of Theorem also holds
for any of these metrics.

In section [ we use the ideas from the proof of this theorem to describe the Thurston type
of any element in the right-angled Artin subgroup of Mod(S) we construct, and we see that it
is pseudo-Anosov on the largest possible subsurface. In particular, we describe exactly which
elements are pseudo-Anosov on S; see Theorem [6.1

The hypotheses in Theorem are general enough to easily provide quasi-isometric embed-
dings of any right-angled Artin group into some mapping class group (see the end of Section
. In particular we have the following.

Corollary 1.2. Any right-angled Artin group admits a homomorphism to some mapping class
group which is a quasi-isometric embedding, and for which the orbit map to Teichmaiiller space
s a quasi-isometric embedding with respect to either of the standard metrics. [

The fundamental group of a closed orientable surface (of genus h > 2) is called a (genus h)
surface subgroup. Many right-angled Artin groups contain quasi-isometrically embedded surface
subgroups; see [40} [11] (though the question of exactly which right-angled Artin groups contain
surface subgroups is still open; see for example [16] 23], 241 10, [39]). There are also constructions
of surface subgroups of the mapping class group [1, 26} [15]. In [27], infinitely many nonconjugate
surface subgroups were constructed with geometric properties akin to geometric finiteness in the
setting of Kleinian groups. From an explicit version of Corollary and the aforementioned
examples of surface subgroups of right-angled Artin groups, we obtain the following. See Section
for the proof.

Corollary 1.3. For any closed surface S of genus at least 3 and any h > 2, there exist infinitely
many nonconjugate genus h surface subgroups of Mod(S), each of which act cocompactly on
some quasi-isometrically embedded hyperbolic plane in the Teichmiiller space T(S), with either
of the standard metrics.

This corollary is in contrast to the work of Bowditch [5] who proves finiteness, for any fixed
h > 2, for the number of conjugacy classes of genus h surface subgroups of Mod(S) which are
purely pseudo-Anosov (we note that surface subgroups of the mapping class group which arise



as subgroups of right-angled Artin groups can never be purely pseudo-Anosov; see Proposition
below). While these surface subgroups are not purely pseudo-Anosov, by the corollary,
they do have the closely related property that every nontrivial element has positive translation
length on T(S).

Finally, we remark that while Bowditch’s result mentioned above is an example of a kind of
rank-1 phenomenon for Mod(S), our examples illustrate higher rank behavior. Specifically, we
could compare our results with those of Wang [41], who finds infinitely many conjugacy classes
of discrete, faithful representations of right-angled Artin groups (hence surface subgroups) into
higher rank Lie groups. Furthermore, Long, Reid and Thistlethwaite [31], find infinitely many
conjugacy classes of Zariski dense, purely semi-simple representations of a surface group into
SL(3,Z). In fact, these surface groups are very closely related to the ones we study, in the
sense that every nontrivial element has positive translation length on the associated symmetric
space.

1.1 Plan of the paper

We begin in Section [2|by setting up the relevant definitions and notation we will use throughout.
The section ends with a more precise version of our main theorem (Theorem . In Section
we describe an alternative space on which Mod(.S) acts, namely Masur and Minsky’s graph of
markings [33]. We also state the required distance formulas (Theorems and which
provide the coarse estimates for the distances in the desired spaces, Mod(S) and T(S), in terms
of sums of “local distances” between pairs of markings. These local distances are precisely the
subsurface distances, also described in this section.

The idea of the proof of Theorem is as follows. The hypothesis implies that each of the
generators of the right-angled Artin group corresponds to a mapping class which makes progress
in some subsurface—that is, it contributes nontrivially to some local distance. A geodesic in the
Cayley graph of the right-angled Artin group determines a sequence of mapping classes, each of
which makes progress in some subsurface. We need only ensure that this progress accumulates
(that is, we need to avoid cancellation of local distances). This is verified by Theorem [5.2
which relates a partial order on the set of syllables in a minimal length representative for an
element of the right-angled Artin group (see Section [4]) with the partial order from [3] on the
set of subsurfaces “between” a marking and its image under the associated mapping class (see
Section . The details of the proof of Theorem are carried out in Section |5 followed by
the proof of Theorem [2.2

In Section [6] we find the Thurston type of each element in the right-angled Artin subgroups
of Mod(S) we are considering. We show that by conjugating to use the minimal number of
generators to represent the element, it will be pseudo-Anosov on the smallest subsurface filled
by the supports of the generators. For this, we use Masur and Minsky’s Bounded Geodesic
Image Theorem [33] to prove that the element acts with positive translation distance on the
curve complex of the appropriate subsurface.

We end with a discussion of surface subgroups and the proofs of Corollary [I.3] and Propo-
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being completed.

2 Notation and terminology

2.1 Quasi-isometries

Given A > 1 and B > 0, we write zAi/By to mean

y—B

<z<Ay+B

If (X1,d1) and (%2, ds) are metric spaces and A > 1, B > 0, then an (A4, B)—quasi-isometric
embedding from X; to X5 is a map
F xl — %2

with the property that for all x,y € X1, we have

dy (2,y) ¥ do(F (), F(y)).

If F'is an (A, B)—quasi-isometric embedding for some A and B, then we will say that F is a
quasi-isometric embedding.

If F:X; — X5 is a quasi-isometric embedding and there is a constant D > 0 so that any
point of X5 is within D of some point of F(X;), then F is called a quasi-isometry.

2.2 Right angled Artin groups

Let T be a graph with vertex set {s1,...,s,}. The associated right-angled Artin group G =
G(T), is defined to be the group with presentation

G ={(s1,...,8n|[8i,8;] =1 if {s;,s;} is an edge of I').

We will always work with the word metric on G with respect to this generating set, and will
denote it dg.

Examples of right-angled Artin groups are free groups, and direct products of free groups
(in particular, free abelian groups). A simple example of a right-angled Artin group which is
neither free nor a product of free groups is G(I') where T is the cyclic graph with 5 vertices
shown in Figure

2.3 Surfaces

Given a connected surface S of genus g with n punctures, the complexity is defined to be £(S) =
39 — 3 + n. Unless otherwise stated, we will assume throughout that £(S) > 0. The mapping
class group of S is the group of isotopy classes of orientation preserving homeomorphisms of S
and is denoted Mod(S). By a curve in S, we mean the isotopy class of an essential (non-null-
homotopic and non-peripheral) simple closed curve. A pants decomposition of S is a maximal
collection of pairwise disjoint curves in S. Since £(S) > 0, a nonempty pants decomposition
exists and has precisely £(S) curves in it.

A subsurface X C S is essential if it is either a regular neighborhood of an essential simple
closed curve, or else a component of the complement of an open regular neighborhood of a



Figure 1: The cyclic graph with 5 vertices.

(possibly empty) union of pairwise disjoint essential simple closed curves. In particular, we
assume that essential subsurfaces are connected. We will generally not distinguish between
punctures and boundary components, and if X C S has genus h with k£ punctures and b
boundary components, then we will write £(X) = 3g—3+k+b. Finally, we will assume that an
essential subsurface X has £(X) # 0, thus excluding a pair of pants as an essential subsurface.
The set of all isotopy classes of essential subsurfaces X of S with £(X) # 0 will be denoted
Q(9).

Figure 2: A genus 2 surface with 1 puncture S, a subsurface X (shaded) and a curve 7.

We will often refer to the isotopy class of an essential subsurface simply as a subsurface.
Furthermore, we will choose nice representative for each curve and each subsurface, and will not
distinguish between a representative and its isotopy class when it is convenient. To be precise,
we choose representatives as follows (annuli will play essentially no role in our discussion, so we
do not bother describing their preferred representatives).

Fix a complete hyperbolic metric on S, and realize each curve by its unique geodesic rep-
resentative. These representatives minimize the number of intersections (that is, they realize
geometric intersection number). For each curve «, we may choose some €,-neighborhood N («)
so that for any curves « and 3, the intersections of N(«) and N(f) correspond precisely to
the intersections of o and 3, and each such intersection is a “product square” (see Figure {4)).
For any nonannular subsurface X, which is a component of the complement of an open regular
neighborhood of a; U --- U ay, we take its representative to be defined as the corresponding
component of the complement of the interior of the neighborhood N(ay) U -+ U N(ay).



Suppose X,Y C S are representative subsurfaces. Observe that X NY = ) if and only if X
and Y cannot be isotoped to be disjoint. In this case, we say that X and Y are overlapping, and
write X MY if X €Y and Y € X. One can check that this notion of overlapping agrees with
that defined in [3], which is to say that X Y if and only if some component of 9X cannot be
isotoped disjoint from Y and some component of dY cannot be isotoped disjoint from X.

2.4 Realizing a graph

Given a graph I'; a surface S, and a collection of nonannular subsurfaces X;,...,X,, C S, we
say that X = {Xy,..., X,,} realizes " nicely in S if

1) X;NX,; =0 if and only if {s;,s;} is an edge of I", and
J J g
(2) whenever X; N X, # 0, then X; h X;.

As Figure [3] indicates, there is a nice realization of the cyclic graph of length 5 in a genus
3 surface obtained from a branched cover of the sphere, branched over 8 points. By adding
more points to this picture and taking a branched cover, we can produce nice realizations of
this graph in any surface of genus g > 3. Moreover, given any graph it is easy to find some
surface and a collection of subsurfaces which provide a nice realization (see [9} [11] for this kind
of construction). We sketch one such construction here.
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Figure 3: This figure represents a sphere with 8 punctures containing five curves, each of which
bounds a disk with 3 punctures. These five 3-punctured disks provide a nonannular realization
of the cyclic graph with 5 vertices. Taking a two-fold branched cover over the 8 points, we
obtain a nonannular realization on a genus 3 surface (by 1-holed tori).

Starting with a graph I', we take a disjoint union of annuli, one for each vertex of I'. Next,
glue together the annuli along product squares whenever the associated vertices of I' are not
connected by an edge. In each annulus, remove a disk and glue in a 1-holed torus. Finally, cap
off the boundary components of the resulting surface with disks. See Figure [4] for a particular
example.

If X is a nonannular subsurface of S and f € Mod(S) is the identity outside X, we say
that f is supported on X. We say that f is fully supported on X if we also have that f is



Figure 4: A graph I' and the associated annuli glued together along product squares as pre-
scribed by I'. At the bottom, we glue in a 1-holed torus to an annulus with a disk removed.

pseudo-Anosov on X. If f is supported on X, then f acts on C(X), the curve complex of X,
and we let 7x(f) denote the translation length of f on C(X). This is defined by

_dx (o, fF(a))
Tx(f)=klggoix .

7

where « is any curve in X, and dx is the distance in C(X)—see Section The following
result of Masur and Minsky [34][Proposition 4.6] says that if f is supported on X, then it is
fully supported on X if and only if 7x(f) > 0.

Theorem 2.1 (Masur-Minsky). Given X there exists ¢ > 0 so that if f € Mod(X) is pseudo-
Anosov, then for all o € C(X)
dx (v, f*¥(a)) > ck.

2.5 Homomorphisms

Suppose now that X = {X7y,---, X, } nicely realizes I' in S and that F = {f1,..., fn} € Mod(S)
are mapping classes. We say that F is (fully) supported on X if f; is (fully) supported on X; for
each ¢ = 1,...,n. Since homeomorphisms on disjoint subsurfaces commute, there is a unique

homomorphism
¢IF G — MOd(S)
defined by ¢r(s;) = fi.
We now state a more precise version of our main theorem. We write J(.S) for the Teichmiiller

space, and we denote its two standard metrics by dy for the Teichmiiller metric and dwp for
the Weil-Petersson metric.



Theorem 2.2. Given a graph T' and a nice realization X = {Xy,...,X,} of T in S, there
exists a constant C' > 0 with the following property. If F = {f1,..., fn} is fully supported on X
and 7x,(fi;) > C for alli=1,...,n, then the associated homomorphism

¢r : G(I') — Mod(S)

is a quasi-isometric embedding. Furthermore, the orbit map G — T(S) is a quasi-isometric
embedding for both dy and dwp.

Remark. We reiterate for the casual reader that the subsurfaces X; are assumed to be essen-
tial, connected, and nonannular.

The proof of Theorem will be carried out in Section Theorem easily implies
Theorem [l
3 Projections and distance estimates

Our proof of Theorem uses results from [33], [6], [38] and [3]. The main construction we
will use is that of subsurface projection, which we now briefly recall.

3.1 Projections

Figure 5: The projection wx (y), where S, X and v are as in Figure

Given a nonannular subsurface X of S and a curve «, we define the projection of v to X,
denoted mx(7), to be the subset of C(X) constructed as follows. If vy N X # @, then either 7 is
an essential simple closed curve in X, and we define mx(v) = {7}, or else yN X is a disjoint
union of essential arcs in X. For each arc, consider N, the regular neighborhood of the arc
union the boundary components of X which the arc meets. Then the boundary of IV is a union
of curves in X (and components of 0X), and we define wx () to be the set of all such curves
in X, over all arcs of yN X. See Figure[5| In general, the curves in mx () need not be disjoint,
but the set has diameter at most 2; see [33].

When X is an annulus and 7 a curve, there is also a notion of a projection to X, which
assigns to v a diameter one subset of the arc complex of X, denoted C(X), and again we denote
this by mx (7). For our purposes, simply the existence of this projection will suffice, so for the
details of its definition, we refer the reader to [33].



If 7 is a disjoint union of curves v, U- - -Uy, then we define wx (y) to be the union (J; 7x (i)
This set also has diameter at most 2. If yN X = (), then mx(y) = 0.

3.2 Markings

Another object we will need is a marking. For us, this will mean a complete clean marking
in the sense of Masur and Minsky [33]. More precisely, a marking 4 is a pants decomposition
called the base of u

base(,u) = {0417 SN ,(15(5)},
together with a transversal for each curve a; € base(u): this is a diameter at most one subset
of C(X;), where X; is the annular neighborhood of «;, together with some additional properties
which we will not need descriptions for; see [33] for a discussion.

Masur and Minsky [33] identify the set of all markings with the vertex set of a graph M(S )
called the marking graph of S. The edges of this graph correspond to certain_elementary moves
one can perform on a marking. We denote the resulting path metric on M(S) by ds;- The
graph J%(S ) is locally finite, and Mod(.S) acts by isometries on it. In particular, the orbit map

of this action is a quasi-isometry. We will use M(S) as a model for Mod(S).
Any marking u can be projected to a subsurface. If X is a nonannular subsurface, then
mx () is defined to be mx (base(p)). For annuli, the projection is defined differently; see [33].

3.3 Distances

Given a subsurface X and curves or markings p and p’, we define their distance in X to be

dx (p, p') = diam(mx () Umx (1))

where the diameter is computed in C(X).

A trivial observation is that if p, u' are curves or markings on S, f € Mod(S) is supported
on X, and Y is a nonannular subsurface disjoint from X such that g and g’ have nonempty
projection to Y then

dy (p, (1)) = dy (p, ).

Remark. We note that the validity of this observation relies on the assumption that Y is
nonannular.

Given K > 0 and p, i/ € M(S), define
QK p, ") ={X CS|&X) >1or X is an annulus, and dx (u, 4') > K}.

It is convenient to decompose Q(K, u, ') into the annular subsurfaces Q,(K, u, ') and the
nonannular subsurfaces Q,, (K, p, p').
The following theorem is proven in [33].

Theorem 3.1 (Masur-Minsky). There exists Ko > 0 (depending on S) so that if K > Ky,
then there exists A > 1, B > 0 with the following property. Given p,u' € M(S) then

AB
dyg(p i) = Y dx(pp)
XeQUKopu')



A theorem of Brock [0] states that the Weil-Petersson metric on Teichmiiller space is quasi-
isometric to the pants graph. In [33], Masur and Minsky give a formula similar to that of the
previous formula for distance in the pants graph. In particular combining these two results one
obtains the following.

Theorem 3.2 (Brock, Masur-Minsky). There exists Ko > 0 (depending on S) so that if
K > Ky, then there exists A > 1, B > 0 with the following property. If u,p’ € M(S) are
shortest markings for m,m’ € T(S), respectively, then

A,B
dwp(m,m') = > dx(u )
XeQ, (K, p,p")

A shortest marking for m is just a marking for which the pants decomposition has the
shortest total length among all pants decompositions, and the transversals are projections of
the shortest curves among those which can be used for transversals. For this theorem, the
transversals are unimportant.

The analogous result for the Teichmiiller metric was proven by Rafi in [3§].

Theorem 3.3 (Rafi). There exists Ko > 0 (depending on S) so that if K > Ky and € > 0 then

there exists A > 1, B > 0 with the following property. If u,p’ € J%(S) are shortest markings
for m,m’ in the e~thick part of T(S), respectively, then

A.B
dr(m,m’) = Y dx(up)+ Y log(dx(p, )
XeQ, (K,u,p') XeQq (K, pu,pu')

Remarks. (1) The special case of Theorem in which G(T') is abelian now follows imme-
diately from the preceding three theorems and Theorem Our proof is an extension of this
idea.

(2) Strictly speaking, Theorems and would be sufficient for our purposes since, up to
a constant, dwp provides a lower bound for dy by a result of Linch [28], and the lower bound
on distortion is the only nontrivial inequality we need to prove. However, it seems worthwhile
to include Theorem as this illustrates a common interpretation for all of the metric spaces

M(S) (or Mod(S)), (T(S),dy), and (T(S), dwp).

One final result about distances and subsurface projections which we will need is the fol-
lowing Bounded Geodesic Image Theorem [33].

Theorem 3.4 (Masur-Minsky). There exists Ko > 0 (depending on S) so that if {v1,...,v,}
is a geodesic in C(S) and X € Q(S), then either wy (vj) =0 for some j or else

diamx ({mx(v1),...,7x(vn)}) < Kp.

In particular, note that if v, v’ € €(S) are two curves with dx (v,v") > Kj, then any geodesic
between v and v’ in €(.S) must pass through a curve v” disjoint from X (for example, it may
pass through a curve in 0X).

For simplicity, we will assume, as we may, that Ky is the same constant in all of the theorems
in this section.
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3.4 Partial order on subsurfaces

In [3], Behrstock, Kleiner, Minsky and Mosher defined a partial order on Q(K, u, p') (for K
sufficiently large) which is closely related to the time-order constructed in [33] (see also [M]).
However, as is noted in [3], while the time-order in [33] (which is defined on geodesics in
hierarchies) requires a fair amount of the hierarchy machinery to describe it, the partial order
on Q(K, p,p') is completely elementary. As this is the basic tool we will use, we include the
construction and verification of the necessary properties of this partial order, for the sake of
completeness.

The starting point is the “Behrstock inequality” [2] (see also [32], Lemma 2.5, for the version
stated here).

Proposition 3.5 (Behrstock). Suppose X and Y are overlapping subsurfaces of S and p is a
marking on S. Then

dx (8Y,p) > 10 = dy (90X, p) < 4.

Suppose K > 20 and we define the partial order as follows. Given X,Y € Q(K, u, ¢/) with
X MY, then we write X <Y if
dx (1, 0Y) > 10. (1)

That this is a strict partial order is a consequence of the following useful description of <.

Proposition 3.6 (Behrstock-Kleiner-Minsky-Mosher). Suppose K > 20 and X, Y € Q(K, u, 1')
with X MY . Then X andY are ordered and the following are equivalent

1) X=<Y (5) dy(1/,0X) > 10

(2) dx(p,dY) > 10 (6) dy(i/,0X)> K —4
8) dx(mdY)>K -4 (1) dy(n0X)<4

(4) dx(p/,0Y) <4

Proof. Assume the hypothesis of the proposition. Since X M Y, we know that wx(9Y) # 0
and 7wy (0X) # (0. To verify the equivalences, first observe that (1) and (2) are equiva-
lent by definition, and since K —4 > 10, (3) implies (2) and (6) implies (5). Next, since
dx (u, 1), dy (p, p') > K, the triangle inequality guarantees that (4) implies (3) and (7) implies
(6). Furthermore, since K —4 > 10, Proposition [3.5 tells us that (2) implies (7) and (5) implies
(4). This proves all the required implications.

Finally, we prove that X and Y are ordered. By the triangle inequality we have

20 < K <dx(p,p') < dx(p,0Y) + dx (i, 0Y).

and so one of dx(p,9Y) or dx(p/,9Y) is at least 10. If dx(u,0Y) > 10 then X < Y. If
dx(p',0Y) > 10, then reversing the roles of X and Y in each of the 7 equivalent statements we
see that Y < X, as required. O

Corollary 3.7 (Behrstock-Kleiner-Minsky-Mosher). Suppose K > 20. Then the relation < is
a strict partial order.
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Proof. Since we never have X M X, it follows that < is non-reflexive. Furthermore, the equiva-
lence of (2) and (7) in Proposition [3.6)means that X <Y implies Y £ X, so < is antisymmetric.
Finally, if X <Y and Y < Z then we know 7y (0X) and 7y (0Z) are nonempty, and appealing
to Proposition and the triangle inequality we have

20 < K <dy(pu, ') < dy(p,0X) +dy(0X,02) + dy (1',0Z) < dy(0X,0Z) + 8

and so
dy (0X,0Z) > 12 > 10.

In this case, X and 07 intersect nontrivially in Y, so in particular, X th Z.
Now we apply Proposition to the preceding inequality to obtain

dx(0Y,07) <4
and hence by the triangle inequality
16 <K —4<dx(0Y,p) <dx(0Y,0Z) +dx(0Z,p) <4+ dx(0Z, u).

Therefore, dx (07, 1) > 12 > 10, and X < Z. O

4 Normal forms in right-angled Artin groups

Here we describe the normal forms in G = G(I") as defined by Green [I7], and Hermiller and
Meier’s procedure for obtaining these normal forms [19]. We refer the reader to Charney’s
survey article [7] for a discussion.

Suppose w = x7* - - - 27" is a word in the generators: x; € {s1,...,s,} and e; € Z. Each z}’
is called a syllable of w. We consider the following moves which can be applied to w (see also
[20]):

1. Remove a syllable z{" if e; = 0.

2. If 2; = x;41, then replace consecutive syllables z{ z;\"" by gfire

3. If [zi, x41] = 1, then replace 'z} with @7 ¢

Let Min(o) be the set of words representing o € G with the fewest number of syllables.
Green’s normal form for o is a certain type of element of Min(o) obtained by stringing together,
from left to right, maximal collections of commuting syllables. For us, we will consider any
element of Min(o) as a normal form, and we will shortly impose some additional structure on
the set of syllables. First, we state the following from [19].

Theorem 4.1 (Hermiller-Meier). Any word representing o € G can be transformed to any
element of Min(o) by applying a sequence of the moves above. In particular, in any such
sequence, the number of syllables and the length does not increase.

It follows that the words in Min(o) determine geodesics in (the Cayley graph of) G with re-
spect to s1,. .., S,. Moreover, note that any two elements of Min(o) differ by moves of type (3).

Let w = 2f'---zy* € Min(o) and consider the set of syllables syl(w) = {z{'}¥_,. We
consider this as a set of k distinct elements: for example, we can artificially write this as
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{(zf,i)}F_,. If we have two elements w,w’ € Min(c) that differ by a single application of
move (3) above, then there is an obvious bijection between syl(w) and syl(w’). Moreover,
any sequence of these types of moves results in a sequence of bijections between the syllables
of consecutive words in Min(c). Observe that any such bijection between syl(w) and syl(w’)
sends a syllable of w to one of w’ representing the same element of G.

From this it follows that if any such sequence of moves ever brings a word w back to itself,
then the bijection from syl(w) to itself is the identity. The reason is that if z{’ and z'7 are
syllables of w which represent the same element in G (so ; = z;, e; = €;), then if 2 precedes
x;j in w, any of the bijections will preserve this property: a sequence of type (3) moves which
would theoretically accomplish a swap of their positions making :17;’ precede z;" would require
a move where z;' and x;j are adjacent, at which time a type (2) move could be applied to
reduce the number of syllables, and this is impossible. We use these bijections to identify the
syllables of any two words w,w’ € Min(o), and simply write syl(o) for this set of syllables.

We can define a strict partial order on this set of syllables, denoted syl(c), by declaring
xgt =< x;j if and only if 7" precedes CB? in every word w € Min(o). So for any w € Min(o), the
order of the syllables is a refinement of the partial order (and the partial order is the largest
partial order having this property for every w € Min(o)).

5 The proof of Theorem [2.2]

Throughout this section, we will assume X = {Xj,...,X,} realizes T nicely in S, F =
{fi,..., fn} is fully supported on X, and ¢ : G = G(I') — Mod(S) is the associated ho-
momorphism.

Given a word z{' - -- 2% with x; € {s1,...,s,} for all ¢, let J(i) € {1,...,n} be the unique
number for which x; = 5;¢;). For any 0 € G and w = 27" --- 23" € Min(0), set

X(25) = ¢e(i - 275 (X))
for i =2,...,k and define X" (27") = X j(1). We think of this as defining a map
X isyl(o) — Q(S).
Lemma ?.1. Suppose T';, X and F are as above. If o € G(T') and w,w’ € Min(o), then
X" =X" :syllo) — QS).

Proof. Since any two words w,w’ € Min(o) differ by a sequence of moves of type (3), that is, in
which adjacent commuting syllables are exchanged, it suffices to verify the lemma in the case
that w and w’ differ by such a move:

€it+1 €n €i+1,.€; €en

— €1 € /I __ .1
w = ] T z;r and w' = ] )\ T "

For j # i ori+ 1, we clearly have X*(z}’) = xv' (z37), and so we must show

XU(z¢) = XY (2f)  and  XV(xf) = XV (25,

7

Interchanging the roles of w and w’, it suffices to prove just one of these equations, say
Xv(xf) = X (af).
We have
X¥(x) = ¢rlaf’ - 275" (X))
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whereas

XY (a5) = gr(af e wg ) (X ) = da(aft -2 )ea(a iy ) (Xog))-

Since z;* and xsz commute, X y(;41), the support of qﬁF(a:frf) = f;’(jjrl) is disjoint from X j;.

Therefore7
or(zi ) (X)) = X6
and the lemma follows. O

By this lemma we can unambiguously define X? = X", independent of the choice of w €
Min(o).

The main technical theorem we prove is the following. From this, together with Theorems
and our Theorem (and hence also Theorem follows easily.

Theorem 5.2. Suppose I' and X are as above and p € JV[(S) Then there exists a constant
K > K with the following property.

Suppose that F = {f1,..., fu} is fully supported on X and that 7x,(f;) > 2K for all 1 <
Jj <n, and let ¢y : G — Mod(S) be the associated homomorphism. Then, for any o € G with
x{t -+ xf* € Min(o) we have

1. dya ey (s ¢(o)p) = Klei| for eachi=1,... k. Consequently,
X7(syl(o)) € QK i, ¢(0) ).
2. X7() :syl(o) — QK, u, d(o)p) is an order-preserving injection.
Proof. Let
K= K() +204+2- maX{de (OXZ,,u) 11 75 ]}

Throughout the proof, we let ¢ = ¢p.
In what follows, we prove statements 1 and 2 separately. For both, the proof is by induction
on the number of syllables in w € Min(o).

Proof of Statement 1. To make the ideas in the proof more transparent, we introduce simplified
notation. Given w = z{' --- 2} € Min(0), define

g9i = o(ai") = [3i and Y= X,

Then X7 (z7') = Y1, X7 (25?) = ¢1Y2, and in general X7 (x") = g1g2 - - - gi—1Y;- In this notation,
statement 1 claims that
dgl"'gi—lyt(:uvgl cegrp) > Kleil,

fori=2,...,k, and also dy, (u, g1 - - grpt) > Kleq].
Suppose w has only one syllable. Then the claim only states that dy, (i, g1) > Kleq|, which
holds because, letting j = J(1), we know

dyy (1, g1p) = dx,; (s [ (1)
= diamx; (7x, (@) U Tx; ((fel)ﬂ))
= dlamx (7TXJ () Ufjel(WXj(H)))
')

x; (ff
2K|€1|.

vV v
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Now suppose we have proved the claim for elements of G = G(T") whose minimal representa-
tives have at most k — 1 syllables. Let 0 € G with w = 7' - - - ;¥ € Min(¢) having k syllables.
Define g; and Y; as above. Our next step is to separate the product g; - - - gy into subproducts,
as illustrated below, with the additional possibility that a, b, or ¢ might be the empty word:

a b c

———  —
g1---9gege+1 - 9i—-19i gi+1 - Gk,

The subproducts a, b, and ¢ are defined as follows. By Lemma [5.1} we may assume that either
g; and g;11 fail to commute, or by replacing w with another word in Min(c), that ¢ = k. In the
first case, let ¢ = g;41 - - - gk; in the latter case, let ¢ be the identity. If there exists some syllable
to the left of g; which does not commute with g;, let ¢ be the largest index such that g; and gy
do not commute, and let a = g1 - - - g¢. Otherwise let a be the identity. Let b = gpyq---¢g;—1 if
¢+ 1 < i, and otherwise let b be the identity; observe that by construction, b commutes with

Gi-
Because g1 - - - g = abg;c, we have

dgy g1 vi (1, 91 - - - Grft) = dapy, (1, abgicp) = dy, (b_la_lu,gicu).
By the triangle inequality and the fact that dy, (gicu, cu) > 2K|e;],
dy, (b a tp, gicp) > 2K |e;| — dy, (b a ™ p, cp).
To control the last term we again employ the triangle inequality:
dy,(b" a ™ pyep) < dy, (07 a™ ) + dy; (i, cpp).

Because b is the (possibly empty) product of syllables g; that commute with g;, b acts as
the identity on Y;. Therefore we have

dy, (b~ a " p,p) = dy,(a” p, bp)
= diamy, (ry, (™' p) Uy, (b))
= diamy, (ry,(a”'p) Unry, (1))

dy, (@™, o).
So far, we have shown

dgl"'g'i—li/i (/’L’ g1 gk,u) > 2K|ei| - in (a/_llu’ M) - in (/J’v C/,(,).

To finish, we prove that the last two terms on the right are each less than K /2. Since the sign
of the e; never comes into play, the proof is very similar for either term, so we focus on dy; (i, cp).
If ¢ is the identity, then dy; (i, cu) = diamy, (1) < 2 < K/2. Otherwise ¢ = g;4+1 - - - gr. Because
subwords of minimal words are also minimal, ¢ = ¢(o.) for some o, € G with minimal word

oo -, which has strictly less than k syllables. Let 2} = z;'' be the first syllable.
Applying the induction hypothesis, we have

in+1 (/j,’ Gi+1 - gk/l) = in+1 (Ma C,u)
= dxoc(a)(pt, d(0c)p)
K|€Z‘+1‘.
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By our choice of K, dy,,, (i, 9Y;) = dx, ., (1,0X ;) < K/2. Since g; and g;4+1 do not
commute, Y; h Y;11, so we may apply the triangle inequality to obtain

dy, ,(0Yi, giv1---gep) > Kleip1| —dy, (1, 0Y;)
> Klep| — K/2 > K/2 > 20/2 = 10.

On the other hand, appealing to Proposition we know that dy,(0Yiy1, git1 - grp) < 4.
By our choice of K, dy; (1, 0Yi+1) = dx (1, 0X j(iy1)) < K/2 — 4, so combining, we have

dy,(p,cp) < dy, (p, 0Yig1) + dy, (Yis1, cp)

dy, (1, OYiy1) + dy, (0Yis1, Git1 -+ - Grpt)
< K/2-4+4=K/2.

The entire argument can be mirrored for dy; (a 'y, 1), starting with the observation that either
a~! is the identity or ¢! = g[l .- -gfl, where g, and ¢; do not commute.
To summarize, we have shown

dgl'“gz‘—lyf,(ﬂagl cegrp) > 2K e — K/2 — K/2 > Klel,
completing the induction for statement 1. O

Proof of Statement 2. We will now show that X¢ is an order-preserving injection. The base
case for the induction is when ¢ has one syllable, and then the conclusion is trivially verified.
We assume that the conclusion holds for elements ¢ with at most k& — 1 syllables, and prove
that it also holds for elements with k syllables.

The subwords wjn;: = 5 - ~xzk_‘11 and Wyerp = 252 -+ - 2" of w are clearly minimal repre-
sentatives of the elements oinit, Oterm € G they represent. Furthermore, the partial order on
the syllables of w;y;; and Weerm is the restriction of the partial order on the syllables of w.

By the inductive hypothesis, the conclusion of the theorem holds for ¢;,;; and oterm. By

construction we have

. X Tinit (1) ifi £k
X (x5 = s v o
#1) = et (e i p
If 7 is neither 1 nor k, then the two defining expressions are indeed equal. In particular, notice
that to establish injectivity, we need only show that X7 (z{') # X7 (x}*).
Suppose z;* < a:jj for two syllables of o. If j # k, then both are syllables of ¢;,;; and hence
by induction X 7imit (") < X7mit(z77). Thus X7mi (27*) h X it (277) and

dXUmit (Ifz)(,l,h X init (l‘;j )) > 10.
Since X7t (z{') = X7 (f") and X7t (257) = X7 (2}), we have X7 (z7") < X7(z77). i # 1,
then we can make a similar argument using the induction hypothesis applied to oterpm,. In this
case we appeal to condition (4) of Proposition to conclude that
dXUterm (;pfi)(axat”m (J;;j)7 ¢(0term),u) S 47

so that applying ¢(z5'), this becomes

o (ei) (0X7(23), o)) < 4,
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and so X7 (z7*) < X"( ) as required.
Now suppose z7' < xk . There are two cases.

Case 1. There is a syllable " such that z{' < 27" < a}*.

Arguing as above, by induction we have X7(z7') < X7(z Zi) and X"( §) < X%(zpk) in
Q(K, 1, ¢(11)) and hence by Corollary 3.7 we have that X7 (z7) < X (2¢*).

Case 2. There is no syllable 2’ such that z{" < x{’ < x}*.

Then there is a word w € Min(o) of the form:
w = w7 T ws
where [wy,z1] = 1 and [zg, ws] =1 (and either or both of w; may be the empty word). Now:

dXJ(l)(%an(fczk)) dXJ(l)( 7¢(w1) (xll)aXJ(k))
= dXJ(l)( ’¢(x?)aXJ(k))

dx ) (s P27 )1) = dx 0 (P(27 )12, 9(271)OX 1))
2K]er| — (K — 20) > 10

(A\VARLYS

where the second equality comes from the fact that w; commutes with xh and so ¢(w1) is the
identity on X ;). Thus, by Proposition (2), we have X7(x7") < X7 (z").

In particular, if 7' < z3* then X7 is mJectlve
All that remains now is to show that if 2{* and z}* are not comparable by <, then X7 (") #
X”( 6’“). If they are not comparable, then o is represented by a word of the form w =

wix TP ws, where as above [wy,2z1] = 1 and [z}, ws] = 1. Furthermore, z7* and z* must
commute, and hence it is clear that X7 (x}*) is disjoint from X7 (z{"). In particular, X7 (z7") #
o/..€e
X (zpF). O
This completes the proof of the Theorem. O

We can now prove the main theorem.

Theorem Given a graph T' and a nice realization X = {X1,...,X,} of T in S, there
exists a constant C' > 0 with the following property. If F = {f1,..., fn} is fully supported on X
and 7x,(f;) > C for alli=1,...,n, then the associated homomorphism

¢r : G(I') — Mod(S)

is a quasi-isometric embedding. Furthermore, the orbit map G — T(S) is a quasi-isometric
embedding for both dy and dwp.

Proof. We first prove that given € M(S), we can choose C' > 0 so that if 7x,(f;) > C for
each 4, then the orbit map G(I') — M(S) given by o — ¢r (o) is a quasi-isometric embedding.
Since the orbit map Mod(S) — Jv[(S) is a quasi-isometry, this will suffice to prove the first
statement. Let K > 0 be as in the proof of Theorem and let C' = 2K.
First observe that for any metric space (X,d), any « € X and any 0,7 € G(T'), the triangle
inequality implies
dlo-z,7-2) < Adg(o,7)
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as long as A > max{d(s; - z,z)}?; (here s; are the generators for G).
In particular, given p € M(S), to prove that the orbit map to M(S) is a quasi-isometry, it
suffices to find A > 1 and B > 0 so that

da(1,0) < Ads(p, dr(o)(p)) + B

for all 0 € G (then we further increase A if necessary so that A > max{ds;(p, ¢r(si)p) }iey)-
Since K > K, from Theorem there exists A and B so that for all o € G,

> dx (1, ¢r(0) (1)) < Adg(p, ¢r(0)(1)) + B.
XEQK (o) (1))

On the other hand, if we let w = 27" ... 2" € Min(o) then by Theorem since 7x, (fi) >
C = 2K (and since K > 1) we have

dg(l,0) = Z|€i| < ZK|€z‘|

k
S dieo o (s 85(0) (1)

<

< Z dx (p, ¢r(o) (1))
XEeQK,p,¢r (1))

< Ads(p, dr(0)(p) + B

which completes the proof of the first statement.

The proof of the statements regarding Teichmiiller space are essentially identical. For this,
we observe that the topological types of the surfaces in X?(syl(c)) are the same as those of X
and hence all are nonannular. That is, X7 (syl(c)) C Q. (K, i, ¢r(i)). So, the above proof can
be carried out replacing the use of Theorem with the use of Theorems and O

6 Elements of the Constructed Subgroups

We now assume the hypothesis of Theorem (and hence also Theorem on I') X =
{X1,...,X,},C=2K>0,and F = {f1,..., fn}, and let

¢r : G(T') — Mod(S)

denote the associated homomorphism. In this section we describe, in terms of the Thurston
classification, the mapping class image of any o € G(T'). In particular, we identify all pseudo-
Anosov elements in the image.

Conjugate elements in G(I') map to conjugate elements in Mod(S), and conjugation pre-
serves mapping class type, displacing the support of a mapping class by the homeomorphism
corresponding to the conjugating element. Therefore to understand the image of ¢ € G(T'),
we may assume it is an element with the minimal number of syllables among members of its
conjugacy class (there may be more than one such element, but we just pick one). We represent
o by a word w € Min(o). By changing the indices if necessary, we can assume that w is a word
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in the first » = (o) generators sq,...,s,, and r is the least number of generators needed to
write w (note that a conjugate also having the minimal number of syllables will be written in
terms of this same set of generators).

Remark. In what follows, we will always assume that the indices on the generators are of this
type for the particular element o we are interested in.

We write Fill(Xq, ..., X,) to denote the minimal union of subsurfaces, ordered by inclusion,
which contains all of the subsurfaces X7, ..., X,.. Alternatively, Fill(Xy, ..., X,) is the unique
union of subsurfaces containing X; U ... U X, with the property that for every essential curve
~ contained in it, the projection to at least one of Xi,..., X, is nontrivial. Write Fillx(c) =
Fill(X,,...,X,).

Now, if 0/ = ogooy !, then we define Fillg(c’) = ép(00)(Fillx(c)). Note that if og is the
identity so ¢’ = o, then Fillr(c) = Fillx(c) depends only on X, whereas otherwise, it may also
depend on F.

Tt follows easily from the discussion above that for any o, ¢g(c) is supported on Fillg(o).
That is, ¢p(o) is represented by a homeomorphism which is the identity outside Fillp(c). In
this section, we prove the following.

Theorem 6.1. Suppose I', X = {X1,...,X,,}, C = 2K > 0, F = {f1,..., fn} satisfy the
hypotheses of Theorem (2.4, and let

¢r = ¢ : G(T') — Mod(S)

denote the associated homomorphism. Then ¢(o) is pseudo-Anosov on each component of
Fillg(o). In particular, ¢(c) is pseudo-Anosov if and only if Fillp(c) = S.

Before we begin the proof, we explain a few reductions which will greatly simplify the
exposition. First, as remarked above, we need only consider the case that o has the minimal
number of syllables among all its conjugates, so we assume this is the case from now on.
Therefore Fillp(o) = Fillx(o).

Next, we wish to further reduce to the case that Fillx(o) is connected. To describe this
reduction, first let IV denote the subgraph spanned by si,...,s,. Since the other generators
play no role in this discussion, we assume as we may, that IV = T'. Let I'“ be the complement
of I'. That is, I'® is the graph with the same vertex set as I' and where two vertices span an
edge in I'° if and only if they do not span an edge in I". Note that generators/vertices s; and
s; in different components of I'* commute. Therefore, we may write o = o1 - - - 04, where £ is
the number of components of I'® and each o; is in the group generated by vertices in a single
component of I'°. In particular, [o;,0;] = 1 for all ¢ and j.

Now observe that the vertices of a path in I'° corresponds to a chain of overlapping subsur-
faces in S, and hence the components of Fillx (o) correspond precisely to the components of T'“.
In fact, one easily checks that each o; also has the least number of syllables in its conjugacy
class, and {Fillx(o1), ..., Fillx(o¢)} is precisely the set of components of Fillx(¢). So, restricting
attention to one of the subwords o;, we may assume that Fillx(o) is connected.

Finally, we note that we can in fact restrict to the case that Fillx(o) = S. To see that
this is possible, note that ¢(G(T")) is the identity outside S’ = Fillx(o). So, ¢ “restricts” to a
homomorphism

¢ : G(T') — Mod(S")
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and ¢(0) is pseudo-Anosov if and only if ¢(c) is pseudo-Anosov on S’ = Fillg (o).

We now set out to prove Theorem assuming (1) that o has the least number of syllables
in its conjugacy class and (2) Fillx(o) = S. The proof makes use of the partial order on syl(o)
and syl(o™), and the order-preserving injection X7 (-) of the previous section. Regarding these,
let us set down a series of lemmas.

Lemma 6.2. For o as above, Fill(X? (syl(c))) = S.

Proof. Fix a minimal word z{* ---27* € Min(o). Given a curve v C S, we must show that ~
intersects some X7 (z{*) = gb(zfl . 61 )X ) As Fillx(0) = Fill(X1, ..., X,) = S, the curve
< intersects some X;. Let ¢ be the minimal index such that v intersects X j;.

If i = 1, then ~ intersects X ;i) = X7(z 61) and the lemma holds. Else, notice that
o(xT ~--xfill)(7) = 7. Hence v intersects X7 (z;*). O

Lemma 6.3. For o as above, w € Min(c), and n € Z we have w™ € Min(c™).

Proof. Clearly w™ represents the element ¢"; what needs to be shown is that this word is
minimal.

Write w = 7' ---z* and assume that w™ is not a minimal word representing ¢”. Thus
we have a sequence of the three moves described in Section |4 which reduces the number of
syllables in w”. We can label the syllables of w™ by x, - -y sty - anly, where each block

zih x5 = w. As w is minimal, each of the e; # 0, hence in order to reduce the number of

syllables of w* we have some sequence of type (3) moves followed by a type (2) move.

Also as w is minimal, the type (2) cannot occur between syllables of the form z¢ S and x5
Therefore, after applying some type (3) moves, we have a type (2) move between syllables of
the form ¢, and x; Z, where j < j'. We claim that we can assume that ;' = j 4+ 1. For if not,
then [x“ xg] = 1 for all £ and hence after a sequence of type (3) moves we could apply the move
x§ x 7o xe itew , contradicting the fact that w is minimal.

As the set of indices ¢ such that [z ;, z¢] = 1 and the set of indices ¢ such that [z}, z,] =1
are the same, the above assumptions give a sequence of type (3) moves on w such that brings
w to a word of the form z3/' (' - - - 2*2{*. But now conjugating o by z{ results in an element
with fewer syllables than ¢ which contradicts our assumption that |syl( )| is minimal among

conjugates of o. Thus w" € Min(o™). O

The above lemma allows us to define syllable shift maps o,: syl(c™) — syl(e™*!) by
an(x;’l) = mﬁ_ll using the notation from the proof of the lemma. Notice, the maps o,
preserve the partial order. For n > m we use the notation o,,,, = 0n—1---0m. The map
Omon: syl(c™) — syl(c™) shifts syllables by n — m blocks and also preserves the partial order.
The lemma also allows us to view syl(c™) as a subset of syl(c™), if m < n, via the obvious
inclusion of w™ as a prefix of w™.

Under the assumption that Fill(X;,..., X,) = 5, we have that I'° is connected. In particular
for any syllable z*, there is another syllable mj’ such that [z;, z;] # 1.

Lemma 6.4. For o as above, and all ' € syl(o), we have x§' < o1 2(z§") € syl(o?).

Proof. This is similar to the proof of Lemma If the conclusion is wrong, then [z;, z;] =1
for all syllables m € syl(o). This contradicts the fact that I'° is connected. O
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Lemma 6.5. For o as above, and all :zrf'i,xjj € syl(o), there exists n, 1 <n <r+1, such that
at < o1 (). In particular, for all syllables ', x5’ € syl(o) we have x§* < o1 py1(2}’).
Proof. Fix a minimal sequence of generators x; = x;,,...,x;, = x; such that [z;,,x;,, ] # 1.
Such a sequence exists as I'“ is connected. Further, notice that m < r. We will prove the lemma
by induction on m. Specifically, we will prove that if there is a path of length m between v ;)
and vy(;) in I'°, then z§* < 017m+1(x§").

Suppose m = 1, hence as generators z; = z;. The case when z{* = x;j as syllables in syl(o)
is covered by Lemma H Else, we must have that zj’ < x;j or xjj < z7'. In the first case
using Lemma 6.4 we have §* < 7 < 012(z}’). In the second case, if z§* £ 01 2(2}’) we can
argue as in the proof of Lemma that |syl(o)| is not minimal among conjugates of o.

Now by induction, we have that z¢' < oy, (z;, ™"

Tm—1

). Since [z;,, ,,x;] # 1, we must have

€; " . €4 . .
JLm(xim":l) =< 017m+1(x?). Hence zi* < alym(xin:':l) =< 017m+1(x§’). This completes the
proof of the lemma. O

Proof of Theorem[6.1, We assume o is as above, so Fillx(c) = S, and prove ¢(o) is pseudo-
Anosov. For this, it suffices to prove the following.

Claim. For every integer N > 0 we have
dS(aXJ(l)v¢(UN(2T+1))(6XJ(1))) > N.
Indeed, this claim says that ¢(o) acts with positive translation length on €(S) as required.

Proof of claim. According to Lemma [6.5] we have
2f < o1r1(27) < ori12011 (01,041 (27Y)) = 012041 (27)

Now, from the definitions, we see that X" o Oin = ¢(0™ 1) o X7 for all n > 1, and since X7
and X°" are order preserving by Theorem [5.2| we also have

Xy < S0 (X (27) < ¢(0* ) (X))

This implies that no curve v C S is disjoint from both 9.X ;1) and ¢(0’2T+1)8XJ(1). Indeed,
suppose otherwise. According to Lemma the collection of subsurfaces ¢(o" 1) X (syl(c))
fill S, so there is some subsurface, say ¢(c"1)X ”(xjj) where 7 has nonempty projection.
Hence,

dyrnyxo (a9 (OX 1), S0 T)IX 1)) < 4.

However, since X ;1) < ¢(o"t)(X7(x})) < ¢(0>+1)(X 1)) it follows from Proposition
and the triangle inequality that

dygrnyxo (@) (0K a1y, #0*)IX 1)) 2 K =8> 4

which is a contradiction.
By the same reasoning, no curve 7 can be disjoint from more than one of the following sets
of curves

{0X 501y, B(0¥ ) (OX 51)), - - - SN P FDYN DX (1))}
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On the other hand, since X ;1) < ¢(c“+D) (X ;01))) < d(aV @ +TV)(X (1)) for all 0 < £ < N,
Proposition [3.6| and the triangle inequality again imply

dy(oer0)(x 5 0) (OX (1), SN THOX (1)) > K =8 > K

where the last inequality comes from the choice of K in the proof of Theorem [5.2

Now, according to Theorem any geodesic in C(S) from 9.X (1) to ¢(0N(2T+1))(8XJ(1))
must contain a curve disjoint from each ¢(o*™+1))(0X ;1)), for each £ =0,..., N. Since these
curves must all be distinct by the previous paragraph, we see that this geodesic contains at

least N + 1 vertices, so
ds(0X 1), o(0™ V) (0X 1)) = N

as required.
This completes the proof of the claim, and also the proof of the Theorem.

7 Surface subgroups

In this final section we prove the following corollary of Theorem and briefly discuss surface
subgroups of right-angled Artin subgroups of the mapping class group.

Corollary [I.3] For any closed surface S of genus at least 3 and any h > 2, there exist infinitely
many nonconjugate genus h surface subgroups of Mod(S), each of which act cocompactly on
some quasi-isometrically embedded hyperbolic plane in the Teichmiiller space T(S), with either
of the standard metrics.

Proof. Let T be the cyclic graph of length 5 and G(I") the associated right-angled Artin group. It
was shown in [IT] that G(T') contains a quasi-isometrically embedded genus 2 surface subgroup,
and hence surface subgroups of all genus A > 2 (it had been previously shown to contain a
genus 5 surface subgroup in [40]). As described in [I1], this example has a nice description as
follows.

Suppose the generators of G(I') are a,b,c,d, e with [e,a] = [a,b] = [b,c] = [¢,d] = [d,e] =
1. Then the homomorphism from the fundamental group of a genus two surface to G(T") is
described by Figure[6] as follows. The figure shows a system of curves on the surface with labels
from the set {a,b, ¢, d, e} and transverse orientations. Choosing a basepoint in the complement
of the curve system shown, a loop will cross the curves in the system, and one reads off an
element of G(I') according to the curves one crosses, and in which direction (crossing in the
direction opposite the given transverse orientation, one should read an inverse of the generator);
see [11] for more details.

In Section [2.4] we observed that I has a nice realization X = {X1,..., X5} in any closed sur-
face S of genus g > 3. Let C' > 0 be the constant from Theoremand F={f1,...,fs} beany
mapping classes fully supported on X with 7x,(f;) > C. For every n > 0 let F* = {f{",..., f&'}
so that we also have 7x, (f]") > nC. The family of right-angled Artin subgroups ¢~ (G(I")) nec-
essarily contains infinitely many distinct conjugacy classes—observe that the proof of Theorem
implies that the minimal translation length on T(S) of any element of ¢p- (G(T")) is tending
to infinity as n — oco. Similarly, the set of surface subgroups described above, thought of as
subgroups of Mod(S) via the homomorphisms ¢g», have minimal translation length on T(.5)
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Figure 6: A curve system on a genus 2 surface which defines an embedding into G(T"), where T’
is the cyclic graph of length 5.

tending to infinity as n — co. Consequently, there are infinitely many pairwise nonconjugate
genus h surface subgroups.

That each of these stabilizes a quasi-isometrically embedded hyperbolic plane H C T(S)
follows from the fact that the surface group itself is quasi-isometric to H, and the orbit map de-
fines a quasi-isometric embedding by Theorem The surface group clearly acts cocompactly
on this plane. O

It follows that these surface groups all have positive translation length on Teichmiiller space.
However, as we have already mentioned, they cannot be purely pseudo-Anosov. In fact, for
surface subgroups of right-angled Artin groups, this is always the case.

Proposition 7.1. Suppose G(T') < Mod(S) is a right-angled Artin subgroup and 71 (X) < G(T')
is a surface subgroup. Then as a subgroup of Mod(S), m(X) contains a nontrivial reducible
element.

Proof. As was shown in [I1], every homomorphism from a surface group m1(X) into a right-
angled Artin group G(T') arises as in the proof of the previous corollary. That is, there is a
curve system on X, each curve is endowed with a transverse orientation, the components are
labeled by generators of G(I"), and the homomorphism is obtained by taking a loop and reading
off the generators as one crosses the curves in the system.

Furthermore, one may assume that each of the curves in the system is essential, and if the
homomorphism H — G(T') is injective then these curves cut X into disks. Now, consider a loop
~ which runs parallel to, without crossing, one of the curves in the system. Call this curve
and suppose the associated generator of G(I") is s1. The loop «y crosses other curves ;,, ..., 7,
and so determines some word sil e sil, which is the image of v in G(I'). Choosing v to run
very close to 71, we can assume that the curves 7;,,...,n;, which v crosses are also nontrivially
intersected by 7;. As noted in [I1], each of the associated generators s;,, ..., s;, must commute
with s1, and be different from it.

Now we are essentially done. The image of v is an element which commutes with s;, and in
fact, the image of v and s; in G(I') generate a subgroup isomorphic to Z2. If G(T') < Mod(S),
then the image of v in Mod(S) has centralizer which contains Z2. As is well known, the image
of v cannot be pseudo-Anosov; see [2]]. O

Remark. In fact, the assumption that m;(X) is a surface group can be relaxed considerably.
Indeed, a similar proof shows that any finitely presented 1-ended subgroup of a right-angled
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Artin group G(I') < Mod(S) contains a reducible element.

In [25], Koberda observes that Mod(S,) is not commensurable with a right-angled Artin
group if g > 3 (in fact, he proves the stronger statement that Mod(Sy) cannot virtually embed
in a right-angled Artin group). This is also true for genus 2 as the following shows.

Proposition 7.2. The group Mod(S3) is not commensurable with a right-angled Artin group.

Proof. Suppose Mod(S3) is commensurable with G(I"), with A isomorphic to a finite index
subgroup of both. Let 71 (X) < Mod(Sz2) be a surface subgroup as constructed in [27]. In this
surface group, there is exactly one element of 71 (X), up to conjugacy and powers, which is not
pseudo-Anosov. Moreover, this one element represents a simple closed curve « on X.

Now, 71 (X) N A is a finite index subgroup of 71 (%) and so corresponds to a covering space
p: Y — %, and we write Fl(i) < m1(X) for the image under p.. Note that the reducible
elements of wl(i) in Mod(S2) represent a finite set of pairwise disjoint simple closed curves on
5, namely p~ ().

On the other hand, a closer inspection of the proof of the previous proposition shows that,
viewing A < G(I), there are actually two elements 71,72 € m1(X) which represent curves on
% which nontrivially intersect, whose centralizers in G(I') contain Z2. These must represent
reducible elements in Mod(.S), and this is a contradiction. O

Remark. This same proof also works to show that the mapping class group of an n—punctured
sphere, with n > 6 is not commensurable with any right-angled Artin group. The point is that
the examples from [27] can be chosen to descend to the quotient by the hyper-elliptic involution,
and then one of the punctures can be erased (with the exception of the genus 2 case).
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