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Abstract. Let Mod(S) denote the mapping class group of a compact, ori-
entable surface S. We prove that finitely generated subgroups of Mod(S)

which are not virtually abelian have uniform exponential growth with mini-

mal growth rate bounded below by a constant depending only, and necessarily,
on S. For the proof, we find in any such subgroup explicit free group gener-

ators which are “short” in any word metric. Besides bounding growth, this

allows a bound on the return probability of simple random walks.

1. Introduction

Let G be a group generated by a finite set A. Denote by b(G,A, n) the number of
elements of G which may be written as words in A with length less than n. The
exponential growth rate of G with respect to A is

h(G,A) = lim sup
n→∞

log(b(G,A, n))
n

and the minimal exponential growth rate of G is

h(G) = inf{h(G,A) : A generates G}.

G is said to have exponential growth if h(G,A) > 0 for some and hence all A, and
uniform exponential growth if h(G) > 0.

Exponential growth does not generally imply uniform exponential growth [W],
but Eskin, Mozes, and Oh proved this implication holds for linear groups over a
field with characteristic zero [EMO]. Breuillard and Gelander strengthened the uni-
formity: for example, they proved that for a finitely generated, discrete subgroup
G < GLn(R) which is not virtually nilpotent, h(G) has a lower bound depending
only on n [BG]. In this note we mirror this property for mapping class groups
of surfaces. It is not known whether mapping class groups are linear, except in
special cases: most notably, Krammer and Bigelow proved linearity of braid groups
(mapping class groups of punctured spheres) [K], [Bi]. However, many linear group
results inspire mapping class group analogues. For example, McCarthy and Ivanov
independently proved that mapping class groups satisfy a version of the Tits alter-
native: either a subgroup is virtually abelian or it contains a rank-two free group
[Mc], [I]. The latter is a sufficient condition for exponential growth. In fact, the
mapping class group has uniform exponential growth, because its action on ho-
mology yields a surjection onto a linear group with uniform exponential growth
[AAS]. Here we prove that its subgroups with exponential growth have uniform ex-
ponential growth, and furthermore their minimal growth rates have a lower bound
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determined by the surface. This is a consequence of a stronger fact; we state both
precisely in the following theorem.

Where A generates the group G, let A-length denote the length of an element of
G in the word metric induced by A.

Theorem 1.1. Suppose S is a compact orientable surface with mapping class group
Mod(S) and G < Mod(S) is finitely generated and not virtually abelian.

• (Short independent words) There exists a constant w depending only on S
such that, for any finite set A generating G, some pair of elements with
A-length less than w generates a rank two free group.
• (Uniform uniform exponential growth) There exists a positive constant r

depending only on S such that h(G) > r.

Breuillard pointed out the independent interest of the first statement, which
he recently proved in the linear group setting, where G is a non-virtually-solvable
subgroup of GLn(K) and w depends only on n [Br]. One cannot hope for a bound
on w independent of dimension, in the linear group setting, or surface complexity,
in the mapping class group setting. This is because there exist linear groups with
arbitrarily small minimal growth rates ([GH]; see Remark 1.4 in [Br]). Furthermore,
these same examples embed into mapping class groups, by a construction suggested
by Breuillard and described in the last section. Thus we have

Theorem 1.2. Let w = w(S) and r = r(S) be the constants from Theorem 1.1.
There exists a sequence of surfaces Sn such that w(Sn) → ∞ and r(Sn) → 0 as
n→∞.

One application of the first part of Theorem 1.1 appears as a comment in [Br].
The existence of short independent words yields a fact about simple random walks:
return probability decays exponentially with a rate depending only on w and the
initial support of the walk. In other words, start at the identity and iterate a
uniform probability distribution on a symmetric set (i.e., one including elements
and their inverses) A to obtain a simple random walk on the group 〈A〉. Let
p(n) be the probability that one returns to the identity in n steps. The quantity
ρ = limn→∞(p(n))

1
n is the Kesten spectral radius, introduced in [Ke], and regarding

this one can show the corollary below, whose proof we include in Section 3.

Corollary 1.3. There exists a function f : N → (0, 1) depending only on S
which fulfills the following: for the simple random walk described above where
A ⊂ Mod(S), |A| = k, and 〈A〉 is not virtually abelian, one has ρ ≤ f(k).

Our proof of Theorem 1.1 relies on Thurston’s classification of mapping classes
and Ivanov’s description of subgroups of the mapping class group to consider three
kinds of generators: pseudo-Anosov maps, Dehn twists, and maps which restrict to
pseudo-Anosovs on some subsurface. Specifically, we obtain a constant p with the
property that, for any mapping classes a and b in a certain finite-index subgroup of
Mod(S), if 〈a, b〉 contains the free group F2, at least one of the following situations
applies:

(a) If one, say a, is pseudo-Anosov, then 〈ap, bapb−1〉 ∼= F2.
(b) If both a and b are Dehn twists, then 〈ap, bp〉 ∼= F2.
(c) Otherwise a or b restricts to a pseudo-Anosov on a proper subsurface;

in this case either 〈ap, bp〉, 〈ap, bpapb−p〉, 〈bp, apbpa−p〉, or 〈ap, bapb−1〉 ∼= F2
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Case (a) is due to K. Fujiwara [F]. To establish case (b), we generalize a result
of Hamidi-Tehrani [H]. Case (c) is our primary contribution.

Acknowledgments. Many thanks to Juan Souto for posing and pushing the
question; Dick Canary for enduring the author’s rambles, re-writes, and stalls; and
Chris Leininger for the path to enlightenment. Most of this work was completed at
MSRI’s Workshop on Teichmüller Theory and Kleinian Groups, and the author is
grateful for the generosity and interest of many of its participants, including: Javier
Aramayona, Moon Duchin, Koji Fujiwara, Aditi Kar, and Hossein Namazi. Much
appreciation also to Emmanuel Breuillard for his comments and insight.

2. Preliminaries

2.1. Mapping class group elements and subgroups. Let S = Sg,p be an
oriented surface with genus g, punctures p, and complexity ξ(S) = 3g + p. Its
mapping class group Mod(S) consists of orientation-preserving homeomorphisms
of S up to isotopy. Elements of this group are mapping classes.

Let curve be shorthand for the isotopy class of a simple closed curve on S that
bounds neither a disk nor an annulus. The intersection number i(γ, γ′) of two curves
γ, γ′ is the minimum number of points of intersection over pairs of representatives
of their isotopy classes; if i(γ, γ′) = 0 the curves are disjoint, else they intersect.
This definition extends to multicurves, i.e. nonempty collections of disjoint, distinct
curves γ = {γi}ni=1.

The simplest example of an infinite-order mapping class is a (right) Dehn twist
about a curve γ: parametrize an annular neighborhood of γ with (orientation-
preserving) coordinates {(x, y) ∈ R× [0, 1]}/(x, y) ∼ (x+ 1, y), and apply the map
defined by (x, y) 7→ (x + y, y) inside the annulus and the identity everywhere else.
In this note we also use the term to describe any composition of Dehn twists about
disjoint curves. The following lemma, which we need later, may be used to prove
that Dehn twists have infinite order. Let Tγ denote the Dehn twist about γ.

Lemma 2.1 (Intersection after Dehn twisting). Let γ1, . . . , γs be disjoint curves
and let T = T e1γ1 · · ·T

es
γs

. Then for all multicurves δ, δ′ on S,

i(T (δ), δ′) ≥
∑
j

(|ej | − 2)i(δ, γj)i(δ′, γj)− i(δ, δ′)

This is Lemma 4.2 in [I]. If the ej have the same sign, the −2 may be omitted.
Note that Tγ fixes γ; in general, if a mapping class fixes a multicurve setwise it

is called reducible. Thurston characterized the infinite-order irreducible mapping
classes as those that stretch and shrink a pair of singular foliations of the surface;
these are called pseudo-Anosov in analogy with Anosov maps on the torus. Given
a reducible mapping class φ, we want to cut the surface along its fixed multicurve
so that φk acts like the identity map or a pseudo-Anosov on the components,
where the power k accounts for the possibility that φ permutes the components.
Thurston’s classification of Mod(S) elements enables such a decomposition, and
Birman, Lubotzky, and McCarthy proved its uniqueness [FLP], [BLM]. Ivanov
generalized the ideas to apply to subgroups instead of individual elements, obtaining
the results we paraphrase for the remainder of this subsection [I].

For our purposes we may restrict attention to a particular finite-index subgroup
of Mod(S), in which the problem of permuting components does not arise. Let
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Γ(S) be the kernel of the Mod(S)-action on homology with Z/3Z coefficients; call
the elements of Γ(S) pure mapping classes.

Theorem 2.2 (Structure of pure mapping classes). Associated to a pure mapping
class φ is a unique multicurve C such that

• φ has a representative homeomorphism f which fixes a representative of
each component of C,
• where R1, . . . Rn are the components of S cut along C, f(Ri) = Ri, and
f |Ri

is either pseudo-Anosov or the identity, and
• i(γ,C) > 0 implies φ(γ) 6= γ.

Call C a canonical reducing system for φ, and the Ri pseudo-Anosov components
or identity components depending on f |Ri

. If C is empty, φ is either the identity
or pseudo-Anosov. If C is nonempty but all the Ri are identity components, φ is a
Dehn twist. Otherwise φ has a pseudo-Anosov component Ri 6= S; in this case we
call φ relatively pseudo-Anosov, borrowing terminology from Hamidi-Tehrani [H].
We also consider the components Ri as subsurfaces of S; then the theorem above
may be restated as: every pure mapping class is either a Dehn twist, pseudo-Anosov,
or relatively pseudo-Anosov, the latter meaning it restricts to a pseudo-Anosov on
a proper subsurface.

Notions for Mod(S) elements extend to Mod(S) subgroups. An irreducible sub-
group is one for which no multicurve is preserved by all elements of the group. One
may associate to a subgroup H a canonical reducing system C, and subsurfaces
Ri from S cut along C, such that one has induced groups Hi < Mod(Ri) which
are each either trivial or irreducible. For a pure subgroup H < Γ(S), the Hi are
generated by the restrictions h|Ri

of elements of H to the subsurface Ri; each Hi

is also pure, and furthermore the nontrivial Hi are either infinite cyclic or contain
a rank-two free group. If the latter occurs for some Hi, then H itself contains a
rank-two free group; otherwise H is abelian—we will refer to this fact as the “strong
Tits alternative” for pure subgroups. We state the other relevant consequences in
a theorem for later reference:

Theorem 2.3. If H < Γ(S) contains a free group, then on some subsurface R of
S, H induces an irreducible subgroup H ′ < Γ(R) which contains a free group. If
a, b ∈ H restrict to aR, bR ∈ HR such that 〈aR, bR〉 ∼= F2, then 〈a, b〉 ∼= F2.

2.2. The curve complex and projection of curves to subsurfaces. The curve
complex C(S) of a surface S gives a way to quantify the action of mapping classes
on curves. For a surface with complexity ξ(S) > 4, C(S) has vertex set C0(S)
representing the connected curves on S, and edges joining vertices representing
disjoint curves. Higher simplices correspond to n-tuples of pairwise disjoint curves,
but we only need the 1-skeleton C1(S). We are also interested in the cases where
ξ(S) = 4, namely the once-punctured torus S1,0 and the four-punctured sphere
S0,4. For these, the vertices are still curves on the surface but edges join curves
which intersect minimally for any two curves on the surface—i.e., once for S1,0

and twice for S0,4. Both C1(S1,0) and C1(S0,4) are the familiar Farey graph. Give
C1(S) the path metric where edges have unit length, and let dS(γ, γ′) denote the
distance between vertices γ, γ′ in C1(S). Mod(S) acts on C1(S) by isometries. Of
all the interesting facts about the action of pseudo-Anosovs on C(S), we need the
following:
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Theorem 2.4 (Minimal translation of pseudo-Anosovs). Suppose ξ(S) ≥ 4. There
exists c > 0 depending only on S such that, for any pseudo-Anosov h ∈ Mod(S),
any curve γ ∈ C0(S), and any n ∈ Z− {0},

dS(hn(γ), γ) ≥ c|n|.

This theorem for ξ(S) > 4 comes from Masur and Minsky in [MM1]. For C1(S1,0)
and C1(S0,4) one obtains the same result by considering hyperbolic actions on the
Farey graph.

We also want to relate C0(S′) to C0(S) where S′ is a subsurface of S and
ξ(S), ξ(S′) ≥ 4. We always assume that a subsurface S′ ⊂ S is connected and
essential, i.e. no component of ∂S′ bounds a disk in S. As with curves, subsurfaces
are only defined up to isotopy; this poses no problem in light of Theorem 2.2. Note
that only surfaces with complexity ξ(S) ≥ 4 can support a pseudo-Anosov.

Here we recall ideas described at length in [MM2]. Define a projection πS′ from
C0(S) to subsets of C0(S′) as follows: represent γ ∈ C0(S) by a curve with minimal
intersection with ∂S′. If γ ⊂ S′, πS′(γ) = {γ}. Otherwise, for each arc γi of
γ ∩ S′, take the boundary of a regular neighborhood of γi ∪ ∂S′ and exclude the
component curves which bound an annulus in S′; call the remaining curves γ′i.
Then πS′(γ) = ∪iγ′i. If γ misses S′, then πS′(γ) is the empty set; otherwise it is a
subset of C0(S′) with diameter at most two, as shown in Lemma 2.2 of [MM2]. If
πS′(α) and πS′(β) are non-empty we may define the projection distance dS′(α, β)
as the diameter in C0(S′) of πS′(α) ∪ πS′(β).

Let us now present a useful lemma about subsurface projection, due to Behrstock.
To keep constants as constructive as possible, we record the relatively elementary
proof indicated to me by Chris Leininger. Call two subsurfaces A and B of S
overlapping if they are neither disjoint nor nested (equivalently, both πA(∂B) and
πB(∂A) are non-empty).

Lemma 2.5 (Behrstock [B]). For any pair of overlapping subsurfaces Y and Z
of S such that ξ(Y ), ξ(Z) ≥ 4, and any multicurve x with nonempty projection to
both,

dY (x, ∂Z) ≥ 10 =⇒ dZ(x, ∂Y ) ≤ 4

This follows after a few facts. Suppose S′ is a subsurface of S and ξ(S), ξ(S′) ≥ 4.
Let u0 and v0 be curves on S which minimally intersect S′ in sets of arcs which
include au and av respectively, and suppose u is a component of the boundary of a
neighborhood of au ∪ ∂S′, as is v for av ∪ ∂S′, so that u ∈ πS′(u0) and v ∈ πS′(v0).
Define intersection number of arcs to be minimal over isotopy fixing the boundary
setwise but not necessarily pointwise. One has:

• Fact 1. If i(au, av) = 0, then dS′(u0, v0) ≤ 4
• Fact 2. If i(u, v) > 0, then i(u, v) ≥ 2(dS′ (u,v)−2)/2

• Fact 3. i(u, v) ≤ 2 + 4 · i(au, av)
Fact 1 follows from Lemma 2.2 in [MM2]. A straightforward induction proves

Fact 2, which Hempel records as Lemma 2.1 in [He]. Fact 3 is the observation that
essential curves from the regular neighborhoods of au ∪ ∂S′ and av ∪ ∂S′ intersect
at most four times near every intersection of au and av, plus at most two more
times near ∂S′.

Proof of Behrstock’s Lemma. Since dY (x, ∂Z) ≥ 10 > 2, the diameter is
realized by curves u ∈ πY (x), v ∈ πY (∂Z) such that, by Fact 2, i(u, v) ≥ 24 = 16.
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By the definition of πY , these u and v come from arcs au ⊂ x∩Y and av ⊂ ∂Z ∩Y
respectively. By Fact 3, i(au, av) ≥ (16 − 2)/4 > 3. Thus au is an arc of x
intersected thrice by an arc av of ∂Z, within the subsurface Y . Observe that one of
the segments of au between points of intersection must lie within Z. This segment
is an arc ax of x disjoint from arcs of ∂Y in Z. Fact 1 implies dZ(x, ∂Y ) ≤ 4. �

2.3. Growth bounds and ping-pong. Two elements a, b of a group G are in-
dependent if 〈a, b〉 is a rank-two free subgroup of G. If one finds independent
elements of length less than d in the word metric induced by some generating set
A, h(G,A) ≥ (log 3)/d. To prove independence, one has the following lemma, a
geometric group theory standard.

Lemma 2.6 (Ping-pong). Suppose G = 〈a, b〉 acts on a set X, and suppose there
exist nonempty disjoint subsets Xa, Xb ⊂ X such that ak(Xb) ⊂ Xa and bk(Xa) ⊂
Xb for all k ∈ Z− {0}. Then G is a rank-2 free group.

Proof. Any non-empty reduced word of the form w = a∗b∗ · · · b∗a∗ (*’s are non-
zero integers) cannot be the identity because w(Xb) ∩ Xb ⊂ Xa ∩ Xb = ∅. Any
other reduced word is conjugate to w in the above form. �

3. Short words, fast growth

Theorem 1.1 follows from:

Lemma 3.1 (Main lemma). There exists a constant p depending only on S such
that, for any pure mapping classes a, b ∈ Mod(S), if 〈a, b〉 contains the free group
F2, then one of the following holds:

(a) If one, say a, is pseudo-Anosov, then 〈ap, bapb−1〉 ∼= F2.
(b) If both a and b are Dehn twists, then 〈ap, bp〉 ∼= F2.
(c) Otherwise a or b is relatively pseudo-Anosov; in this case either
〈ap, bp〉, 〈ap, bpapb−p〉, 〈bp, apbpa−p〉, or 〈ap, bapb−1〉 ∼= F2

Proof of Theorem 1.1. Suppose G < Mod(S) has finite generating set A. Con-
sider its finite-index pure subgroup H = G ∩ Γ(S). Lemma 3.4 of Shalen and
Wagreich in [SW] gives a finite generating set A′ for H, whose elements have A-
length at most 2[G : H] − 1. If G is not virtually abelian, H is not abelian, so
one finds a noncommuting pair a, b ∈ A′. By the “strong Tits alternative” for pure
mapping classes described at the end of 2.1, 〈a, b〉 contains a free group. Then the
main lemma gives two independent elements of A′-length bounded above by 3p,
thus A-length bounded by 3p · (2[G : H] − 1). It is straightforward to check that
one may use

w = 3p · (2[Mod(S) : Γ(S)]− 1) and r = (log 3)/w

for Theorem 1.1. �

The main lemma compiles three separate results. For case (a), we turn to work
of Fujiwara regarding group actions which are “acylindrical,” a property Bowditch
defined and proved for the Mod(S)-action on C(S) [Bo]. The statement we need
follows from Theorem 3.1(2) in [F]:
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Theorem 3.2 (Pseudo-Anosovs). There exists a power p0 depending only on S
with the following property: let a be a pseudo-Anosov mapping class and b any
mapping class such that 〈a, b〉 contains F2. Then for any k > p0, 〈ak, bakb−1〉 is a
rank-2 free group.

To obtain case (b), we observe that a result of Hamidi-Tehrani in [H], concerning
Dehn twists where all powers have the same sign, extends to the statement we need
if one uses Lemma 2.1 to estimate intersection numbers after Dehn twisting, instead
of the sharper inequality available in the same-sign case. We repeat the details here
because they mirror our proof for case (c).

Proposition 3.3 (Dehn twists). Suppose two Dehn twists a and b do not commute.
Then for any p ≥ 4, 〈ap, bp〉 is a free group.

Proof. Assume a = T k1α1
T k2α2
· · ·T kn

αn
and b = T l1β1

T l2β2
· · ·T lmβm

, where α = {αi} and
β = {βi} are multicurves, and the ki and lj are nonzero powers. Since a and b do not
commute, α intersects β; by restricting attention to a subsurface we may further
assume that i(α, βj) and i(αi, β) are nonzero for all i, j. Under the additional
assumption that |ki| ≥ 4 and |lj | ≥ 4 for all i, j, we prove that 〈a, b〉 is free; this is
slightly more general than the proposition stated above.

Recall C0(S) represents curves on S. We want to apply the ping-pong lemma.
Define ping-pong sets as follows:

Xa = {γ ∈ C0(S) : i(γ, α) < i(γ, β)}
Xb = {γ ∈ C0(S) : i(γ, β) < i(γ, α)}

It is clear Xa∩Xb = ∅, and our assumptions ensure that Xa and Xb are nonempty.
It remains to check that for all k ∈ Z − {0}, ak(Xb) ⊂ Xa and bk(Xa) ⊂ Xb.
Suppose γ ∈ Xa. Applying Lemma 2.1,

i(bk(γ), α) ≥
∑
j

(|lj | − 2)i(γ, βj)i(α, βj)− i(γ, α)

>
∑
j

(|lj | − 2)i(γ, βj)i(α, βj)− i(γ, β)

=
∑
j

((|lj | − 2)i(α, βj)− 1)i(γ, βj)

≥
∑
j

((4− 2)(1)− 1)i(γ, βj)

= i(γ, β) = i(bk(γ), bk(β))

= i(bk(γ), β)

Thus bk(Xa) ⊂ Xb. By symmetry, ak(Xb) ⊂ Xa. �

Notice that, in the preceding proof, a and b fix multicurves α and β respectively,
b takes curves which predominantly intersect β to curves which predominantly
intersect α, and a does the opposite, so ping-pong proves 〈a, b〉 free. For case (c),
we consider a and b acting as pseudo-Anosovs on proper subsurfaces A and B
respectively. We find a similar set-up for ping-pong: a and b fix the multicurves ∂A
and ∂B respectively, b takes curves which intersect ∂B many times in the subsurface
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A to curves which intersect ∂A many times in the subsurface B, and a does the
opposite. This idea leads to:

Proposition 3.4 (Relative pseudo-Anosovs). There exists a constant p1 depend-
ing only on S such that the following holds: suppose a and b are pure mapping
classes, a is relatively pseudo-Anosov, and 〈a, b〉 is irreducible. Then either 〈ak, bk〉,
〈ak, bkakb−k〉, or 〈bk, akbka−k〉 is a rank-two free group for any k > p1.

Proof. The first possibility, 〈ak, bk〉 ∼= F2, happens when a and b have overlapping
pseudo-Anosov components; we prove this before addressing the general situation.

Let A and B be overlapping pseudo-Anosov components of a and b respectively,
which means that ∂A projects nontrivially to B, as ∂B does to A. Let Σ be the
finite set of topological types of essential subsurfaces of S with ξ ≥ 4 (i.e. all
possible pseudo-Anosov components, including S itself) and for any S′ ∈ Σ let
c(S′) be the constant from Theorem 2.4. Set

p1 = max[{14/c(S′) : S′ ∈ Σ} ∪ {2}].
We use the ping-pong lemma to show that for any k > p1, 〈ak, bk〉 is a free group.

Define ping-pong sets as follows:

Xa = {γ ∈ C0(S) : πA(γ) 6= ∅, πB(γ) 6= ∅,dA(γ, ∂B) ≥ 10}
Xb = {γ ∈ C0(S) : πA(γ) 6= ∅, πB(γ) 6= ∅,dB(γ, ∂A) ≥ 10}

Lemma 2.5 guarantees Xa ∩Xb = ∅. Suppose γ ∈ Xa and m ∈ Z− ∅. Applying
the same lemma,

dA(γ, ∂B) ≥ 10 =⇒ dB(γ, ∂A) ≤ 4.
We chose p1 so that, applying Theorem 2.4,

dB(γ, bmk(γ)) ≥ c(B) · |mk| ≥ c(B) · p1 ≥ c(B) · 14/c(B) = 14.

The triangle inequality gives

dB(bmk(γ), ∂A) ≥ dB(γ, bmk(γ))− dB(γ, ∂A) ≥ 14− 4 = 10.

Thus bmk(Xa) ⊂ Xb. To show that Xb is nonempty, apply Theorem 2.4 to show
bk(∂A) ∈ Xb. A symmetric argument shows Xa is nonempty and amk(Xb) ⊂ Xa.
Thus Lemma 2.6 shows that 〈ak, bk〉 is free.

Now suppose a and b are as in the theorem. Choose a pseudo-Anosov component
A of a. Irreducibility of 〈a, b〉 implies ∂A cannot be fixed by b, so one of the following
cases applies:

• Case 1: Suppose b is pseudo-Anosov. Observe that for k > p1 > 1/c(S),
dS(∂A, bk(∂A)) > 1. This means bk(∂A) and ∂A intersect, which guar-
antees A and bkA are overlapping pseudo-Anosov components of a and
bkab−k. Thus 〈ak, bkakb−k〉 ∼= F2.

• Case 2: Suppose b is reducible and ∂A lives in the closure of the union of
identity components of b. Then b restricted to this union is a Dehn twist.
Applying Lemma 2.1, we see that for k > p1 > 2, i(bk(∂A), ∂A) is positive.
Again, A and bkA are overlapping pseudo-Anosov components of a and
bkab−k, so 〈ak, bkakb−k〉 ∼= F2.

• Case 3: Suppose b is reducible and ∂A projects nontrivially to some pseudo-
Anosov component B of b. Irreducibility of 〈a, b〉 implies ∂B cannot be fixed
by a.
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– If ∂B lives in the closure of the union of identity components of a,
we are in Case 2 with the roles of a and b reversed. For any k > p1,
〈bk, akbka−k〉 ∼= F2.

– Otherwise ∂B projects to some pseudo-Anosov component A′ of a,
equal to or disjoint from A. Either A and B overlap or A is nested in
B, in which case B cannot nest in A′, so B and A′ overlap. In any
case we obtain overlapping pseudo-Anosov components of a and b, so
for k > p1, 〈ak, bk〉 ∼= F2. �

Proof of Main Lemma. The reduction to cases (a), (b), and (c) follows from
Theorem 2.2. While cases (a) and (b) correspond to Theorem 3.2 and Proposition
3.3 respectively, case (c) is not identical to Proposition 3.4, because 〈a, b〉 may be
reducible. Nevertheless, Theorem 2.3 gives a subsurface R such that 〈a|R, b|R〉 is
irreducible and contains F2. By construction, the constant p1 of Proposition 3.4
works if we replace S with one of its subsurfaces. However, the same need not hold
for the constant p0 of Theorem 3.2, which we must apply if both a|R and b|R are
pseudo-Anosov. To remedy this, let p2 = max{p0(S′) : S′ ∈ Σ}, where, as in the
proof of Proposition 3.4, Σ represents subsurfaces of S. Then for the constant in
the Main Lemma, we may choose any p > max{4, p1, p2}. �

Proof of Corollary 1.3. For a reference on random walks, see [Wo]; also, the
author enjoys the exposition in [KV]. For a symmetric set A, let ρ(A) be the
spectral radius for the corresponding simple random walk on 〈A〉, as described in
the introduction. Part of Theorem 10.3 in [Wo], specialized to simple random walks,
gives the following equivalence: ρ(A) is strictly less than 1 if and only if there exists
κ(A) > 0 such that, for all finitely supported functions f : 〈A〉 → C,∑

x∈〈A〉

f(x)2 ≤ κ(A)
∑

x∈〈A〉,g∈A

(f(x)− f(xg))2/2.

One may think of the sum on the right as the sum of squares of differences over
edges in the Cayley graph determined by A. For the forward implication, one may
choose κ ≥ (1− ρ)−1; backwards, one knows ρ ≤ 1− κ−1 (note this corrects a typo
in the proof in [Wo]).

Suppose A is as in the hypothesis: A ⊂ Mod(S), |A| < k, and 〈A〉 is not virtually
abelian. Theorem 1.1 gives two elements u, v ∈ 〈A〉 with A-length less than w such
that u and v freely generate F2. Let T be the symmetric set {u, v, u−1, v−1}. Then
ρ(T ) =

√
3/2, since this is the simple random walk on standard generators of F2,

already calculated in [Ke]. From ρ(T ) one obtains κ(T ), and, because cosets of 〈T 〉
are for this purpose indistinguishable from 〈T 〉,∑

x∈〈A〉

f(x)2 ≤ κ(T )
∑

x∈〈A〉,t∈T

(f(x)− f(xt))2/2

for any finitely supported function f : 〈A〉 → C. Furthermore, since the generators
in T are of the form g1 · · · gd, gi ∈ A, d ≤ w, the triangle inequality implies that for
any x ∈ 〈A〉, t ∈ T , there exists y ∈ 〈A〉, g ∈ A such that

(f(x)− f(xt))2 ≤ w2(f(y)− f(yg))2.

In the Cayley graph, the pair (y, yg) corresponds to an edge of the path connecting
x to xt. It is straightforward to count that for a given y ∈ 〈A〉 and g ∈ A, the
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difference f(y)− f(yg) need appear at most w(k− 1)w−1 times in the upper bound
for some f(x)− f(xt), x ∈ 〈A〉, t ∈ T . Therefore one has∑

x∈〈A〉

f(x)2 ≤ κ(T )w3(k − 1)w−1
∑

x∈〈A〉,g∈A

(f(x)− f(xg))2/2.

Thus

ρ(A) ≤ 1− 1−
√

3/2
w3(k − 1)w−1

.

The right hand side defines f(k). �

4. Slow-growing groups

Here we prove Theorem 1.2, that the constants in Theorem 1.1 necessarily de-
pend on the choice of surface. It suffices to find subgroups of mapping class groups
with arbitrarily small minimal growth rates. In [GH], Grigorchuk and de la Harpe
construct a sequence of groups Gn with the property that h(Gn) → 0 as n → ∞.
Following a construction suggested by Emmanuel Breuillard, one may represent
these groups in mapping class groups. In fact, the method shows that finite ex-
tensions of mapping class subgroups are themselves mapping class subgroups. Let
B be the non-empty boundary of a surface S, Homeo+(S,B) denote the group of
orientation-preserving homeomorphisms of S fixing B pointwise, and Mod(S,B) be
Homeo+(S,B) modulo equivalence by isotopy keeping B fixed throughout.

Proposition 4.1. If a finitely generated group G has a finite index subgroup H
isomorphic to a subgroup of Mod(S,B), then G embeds in the mapping class group
of a connected surface.

Proof. Throughout, we consider H as a subgroup of both Mod(S,B) and G. By
passing to a finite index subgroup, we may assume H is normal in G. Ultimately
we embed G in the mapping class group of a surface S∗ modeled on a Cayley graph
of G/H with a copy of S for each vertex, and annuli for edges.

Before constructing S∗, let us address two technical issues. First: we need
a group of homeomorphisms associated to H, which will let us define S∗ as a
quotient. Let FA be the free group on A, where A = {g1, g2, ...gm} is a finite
generating set for G. Let H̄ be the pre-image of H under the canonical map
r : FA → G; observe FA/H̄ and G/H are isomorphic finite groups. As a subgroup
of a free group, H̄ is also a free group, and so the map r : H̄ → H lifts to
r̃ : H̄ → Homeo+(S,B). Second: without loss of generality we assume that (1)
B has at least 2m components, and (2) only the identity in H fixes all curves on
S (i.e., no element of H is a Dehn twist about components of B). We can ensure
this by replacing S with a larger surface whose mapping class group also contains
H [PR].

Now we build S∗. To each generator gi associate a pair of boundary com-
ponents B+

i and B−i , and fix orientation-reversing homeomorphisms bi : B+
i →

B−i . Let S′ be the quotient of the disjoint union FA × S by the equivalence
(k, x) ∼ (kh−1, r̃(h)(x)) for all h in H̄. One obtains a copy of S for each coset gH̄,
corresponding to each vertex of the Cayley graph of FA/H̄. Let B′ be the image
of FA × B in S′. For a connected surface, obtain S∗ by identifying components of
B′ as specified by the edges of the Cayley graph: [(k, x)] ∼ [(kgi, bi(x))] for all gi
and x ∈ B+

i .
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The action of FA on FA × S by g · (k, x) = (gk, x) descends to an action on
S∗ that gives a homomorphism p : FA → Homeo+(S∗). Let q be the quotient
q : Homeo+(S∗) → Mod(S∗). Define a homomorphism φ : G → Mod(S∗) by
φ(g) = qpr−1(g). Although r is not injective, φ is well-defined if, for any two words
w and v representing the same element in G, qp(wv−1) is the identity e. Notice
wv−1 represents the identity, so it is in H̄, thus

p(wv−1) · [(k, x)] = [(wv−1k, x)] = [(k, r̃(k−1wv−1k)(x))]

Since r maps k−1wv−1k to the identity, the lift r̃ maps it to a homeomorphism
isotopic to the identity on S, thus on components of S′, and thus on S∗ (because
all homeomorphisms and isotopies fix B′, the boundary identifications are no ob-
struction). Hence p(wv−1) is isotopic to the identity, so qp(wv−1) = e.

Finally, we show that φ is injective. Suppose φ(g) = e and choose w ∈ r−1(g).
Because qp(w) = e, p(w) is isotopic to the identity. In particular, p(w) fixes the
subsurface of S∗ corresponding to the component [{e} × S] of S′. Therefore w
represents an element of H. Furthermore, p(w) fixes the isotopy classes of all curves
on that subsurface. Then by condition (2) on H described above, w represents the
identity, so g = r(w) = e. �

Proof of Theorem 1.2. As remarked above, we only need to show that the slow-
growing groups Gn are subgroups of mapping class groups. Proposition 4.1 applies
because each Gn has a finite-index subgroup Hn isomorphic to the direct product
of 2n finitely generated free groups [GH]. The Hn may be realized as mapping class
subgroups using pairs of Dehn twists on disjoint subsurfaces of S2n minus 2n+1

disks: mapping classes supported on disjoint subsurfaces commute, and a pair of
properly chosen Dehn twists generates the rank two free group, which contains all
other finitely generated free groups. �

Remark. Recall that the constant w(S) of Theorem 1.1 grows linearly with both
the constant p(S) from Lemma 3.1 and with [Mod(S) : Γ(S)], where Γ(S) are the
mapping classes acting trivially on homology with Z/3Z coefficients. The argument
above takes advantage of only the latter factor. This is because, where G, H, and
S∗ are as in the proof, one may check G ∩ Γ(S∗) < H. For Gn, the corresponding
subgroups Hn have large growth; the minimal growth rates of Gn still approach zero
because [Gn : Hn] grows large. By construction, the constant p(S) from Lemma 3.1
does not decrease with genus, but one might ask whether it necessarily increases.
The answer is yes if there exists a sequence of surfaces Sn and groups Γn < Γ(Sn)
such that h(Γn)→ 0 as n→∞.
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