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ABSTRACT. These are the notes from a tutorial on topology presented for the students
attending the fifth conference for African Americans in the mathematical sciences. A historical
and intuitive approach to highlights of the subject of compact topological spaces are
presented.

PREFACE.
I was invited to present a one hour tutorial on Topology for students attending the fifth

annual Conference for African American Researchers in the Mathematical Sciences held June
22-26, 1999 at the University of Michigan - Ann Arbor. This five part paper is my notes for
the lecture.

When organizer William Massey heard the title "Compact!" of this lecture, he said
jokingly, "I hope you will not try to convince us that the finite subcover business is natural."
Well, I do not believe it is natural nor do I believe it is intuitive; on the other hand, I believe
Topology was invented, in part, to focus upon a few ideas, one of which is compactness and
which, in its turn, was invented to expand what we know about finite sets. In this tutorial, I
will switch between the intuitive and the accurate, between historical motivations, modern
interest and recent results.

What is the importance of compactness?  It is used in the definition of the integral; it
shows that in linear programming optimal solutions exist on vertices of the feasible set; given
a continuous function f from a compact set  K to itself, there is an x∈K and an infinte

sequence <ni> of integers such that 
i→∞
lim f

ni (x) = x .  So what is this property "compact?"

1. the beginnings

The ech Mathematician Bernard Bolzano did a number of remarkable things very early.
In particular, in 1817, he extracted numbers from the notion of sequence [Kline1972], and
gave an early formulation of finite and infinite sets [Cantor1883, Jarnik1981]. In the 1830's
he showed that a function continuous on a closed interval is bounded, proved that a bounded
sequence has a limit point [Bolzano1841, Jarnik1981], and gave the first example of a
continuous nowhere differentiable function (usually attributed to Weierstrass 30 years later).
The proof of these essentially led to the Bolzano-Weierstrass Theorem [Taylor1982]:

1.1. THEOREM. Every infinite bounded subset of reals has a limit point.

A key to this theorem is an axiom implying that the real line has "no holes except at infinity":
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Call the set B. If B contains an infinite increasing sequence, then the least upper bound
of the sequence is a limit point. The infinite decreasing sequence case is analogous. By a
partitioning B, we see that a bounded set without monotone infinite sequences must be finite.

Before the 19th century, folks already knew that "small" polynomials attained their
maxima and minima on closed intervals, but the Bolzano-Weierstrass Theorem led to what
turns out to be one of the chief motivations for studying compactness, Weierstrass' theorem
[Taylor 1982]:

1.2. THEOREM. Each function continuous on a closed subset of a closed interval attains its
maximum.

The essence is that the continuous image of a closed and bounded set is closed and
bounded. Today we know Theorem2 to be true for real-valued functions continuous on any
compact space; however, theorems 1.1 and 1.2 suggest an intuitive definition:

1.3. DEFINITION. COMPACT = "NO HOLES": This should be interpreted intuitively.
The "proofs" we give in 1.4 are intuitive and need either to be fleshed out with the
definition given in 1.5 or the one in 5.1.

1.4. EXERCISES.
1.  We recognize two possible kinds of holes - holes at infinity and holes nearby.

a.   Loosely, compactness requires a kind of boundedness. ∞ is a hole of the non-negative

integers ω = {0,1,2,3,4 ...}, so ω is not compact. When the hole at ∞ is put in –

considering ∞ as a point, the new object ω+1 has no holes.
b.   Compactness, loosely, requires a special kind of "closeness." 0 is a hole of the

"convergent" sequence  and the sequence, without its limit, is
not compact. With its limit, it is compact. More generally, if (0,1] with its usual open
sets is declared closed in some topology on the line, then [0,1] is not compact in that
topology.

2.  Intutitively, "hole" implies some kind of an unending process without resolution. So
intutively, finite sets are compact.

3. Suppose * is a hole of a closed subset F of a compact space X. As a there is stuff of F
"close to" *, there is stuff of X "close to" *. But X is compact and * must be a point of X.
Since F is a closed subset of X, it contains all points of X close to it. So, a closed subset of
a compact set must be compact.

4.  A far away hole: The space ω1 of all countable ordinal numbers has no holes approachable

by a countable sequence, yet is not compact.  ω1+1 is the same object with the hole

added.

1.5. DEFINITION. 1. A filter is a family Φ of non-empty sets of X which satisfy the

condition: If A,B∈Φ, then there is a C∈Φ contained in A∩B.
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2.  Here is a correct definition of "close to": A filter Φ converges to (clusters at) the point x

provided each neighborhood of x contains (intersects) a member of Φ.
Next is a 1950’s definition of compactness closely related to the very first study of

compact spaces [Vietoris1921]. Its virtues are ease in proving technical results. Its faults are
in the shift from points to sets.
3.  Here is a correct definition of compact: A space is said to be compact provided each filter

consisting of closed sets is contained in a converent filter; or equivalently, each filter
consisting of closed sets clusters at some point.

2. A SPECIAL EXAMPLE

There are some special compact sets: the convergent sequence and its limit, the unit
interval and its products, and the unit circle. These tend to dominate how we think of
compact objects. However, the Cantor set is a fundamentally important compact object many
people believe to be an aberration - it is not. Here's one reason why [Urysohn 1914]:

2.1. THEOREM. Each compact metric space is the continuous image of the Cantor set.

THE CANTOR (MIDDLE-THIRDS) SET is the set of all real numbers the sum of an

infinite series of the form 
2i n

3n
n=1

∞

∑ , where each in = 0 or 1. Note that if each in = 1 (=0), then

the sum is 1 (0).
Another construction of the Cantor Middle-Thirds Set proceeds recursively via removing
various intervals from [0,1]:

Step1: From [0,1]

remove the middle-third open interval 
1

3
,
2

3
 
 

 
  - we get a closed set, picture

C1:

From both parts of

C1:

remove the middle-third open interval - what's left is a closed set, picture

C2: 

Again from each of the four parts of
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C2: 
remove the middle thirds open interval - picture

C3:

And continue .…  The Cantor set is the intersection  C = ∩n∈N Cn.  As an intersection of
closed sets in the compact [0,1] it is closed subset and hence compact.  Noticing that the
adjacent pairs in C can be mapped in an order preserving manner onto the rationals in (0,1).
We see the C can be also be “pictured” by considering [0,1] and replacing each rational
number in (0,1) by two adjacent points. Indeed that picture gives impetus to a special case of
Theorem2.1 - [0,1] is the continuous image of C {just send adjacent points to one}.

Cantor set

[0,1]

Concerning the Cantor set, one must be careful with intuition.  First it is very thin,

because the sum of the lengths of the deleted intervals is 
1

3n
n =1

∞
∑ =1 ; i.e., its measure is

zero.  On the other hand it has the same size as the entire interval [0,1].  This is strengthened
by the problem which appears in W. Rudin's textbook, and on some Ph.D. Qualifying Exams:

2.2. EXERCISE. Each real in the interval [0,2] is the sum of two members of the Cantor set:
For 0≤b≤2. Consider the graph Lb of the intersection of line x+y=b with subsets of the

square  [0,1]2.  Indeed, each Cn
2∩Lb is a non-empty closed set identical to some Ck. Thus,

1.5(3) shows C2∩Lb = ∩n∈N Cn
2∩Lb ≠ ∅.  So there are  x and y in C such that x+y=b.

Recently, the great topologist Mary Ellen Rudin [Rudin 1999] solved an outstanding
problem generalizing 2.1, which asked for a kind of "triangular inequality" extension of metric
known as "monotonically normal." She proved "sufficient" in:

2.3. THEOREM. In order for a compact space X to be the continuous image of a compact
linear ordered space it is necessary and sufficient that for each pair consisting of a point x∈X
and its neighborhood G, there exists an open set  Gx  satisfying two conditions:

1. x∈Gx ⊆ G.    2. If  Gx ∩ Hy ≠ ∅, then either y∈G or x∈H.

A pre-print of Rudin's paper is available at the web site TOPOLOGY ATLAS
http://at.yorku.ca/topology/ {The "trianguar inequality" comment is motivated by observing
that in a metric space when B is the open ball about x of radius r, we may take Bx to be the

open ball about x of radius 
r

3
. Then the triangular inequality proves condition (2)}
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3. FUNCTIONAL SEPARATION

Disjoint or non-intersecting closed sets one of which is compact in a (Hausdorff) topological
space can be expanded to disjoint open sets - this is called separating them.  On the other
hand, the distance, in the plane, between the disjoint closed sets, graphs of y=0 and xy=1 is

0. Neither of these sets is compact and ∞ is necessary for this process.

Suppose H and K are disjoint closed sets of a space X. If we can not expand these two to
disjoint open sets then there must be some kind of "hole" present.  Recall ω and ω+1 from

1.4(1). and ω1 and ω1+1 from 1.4(4). Consider the Tychonov Plank, the space X is the

product ω1+1× ω+1  with the upper right hand corner removed; i.e., ω1+1× ω+1\{<∞,∞>}.

The closed sets are the top A = ω1×{∞} and the right hand side B={∞}× ω.

{Key to the proof is that the hole at the end of A (see 1.4.5) is so far away that any open set
containing B contains countable sequences converging to A; i.e., limit points belonging to A.
Thus, there can be no disjoint open sets containing A and B.}

Even stronger (superficially) than "expansion of disjoint closed sets to disjoint open sets" is
Urysohn’s "separation of closed sets by a continuous function."

3.1. THEOREM. If A and B are disjoint closed subsets of a compact space X there is a
continuous f:X→[0,1] such that f(A)=0 and f(B)=1.

Let us return to products: Fréchet was the first to define a finite product of topological
spaces [Fréchet1910]. That the product of two compact spaces are compact is intuitively
clear: A "hole" in the product of X and Y ought to imply it in a factor. Induction shows "two
factors" can be replaced by "finitely many factors." But what about "infinitely many?"
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Tietze’s product topology

In 1923 Tietze first gave for the general definition of the product of spaces, a topology, now
called the box topology, on a product of infinitely many spaces to be that which is generated
by the product of open sets [Tietze1923] (pictured above). This definition is the "right" way
to define product in many areas of mathematics (example, coordinate wise addition in
Algebra). However, even the product of countably many two element sets is not compact.

the product of two element sets

Further , an important old and major unsolved problem [Williams1984] in topology asks,

Does the product (with the box topology) of countably many copies of [0,1] satisfy the
conclusion of Theorem 3.1 ?
The answer to large products is "NO!" in general; i.e., there are disjoint closed subsets A and
B  of the product ∏ of uncountably many copies of [0,1] for which no continuous function

f: ∏ → [0,1] satisfies both f(A)=0 and f(B)=1 [Lawrence1994].
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Clearly, Tietze’s topology is not good for proving theorems about infinite products (e.g., the
preservation of compactness, connectedness, metric etc.), and thus we use a product
topology [Tychonov1930] which, like compactness, extends finite delicately - the topology
is generated by a product of open sets which, only finitely often, may be different from the
entire factor:

Tychonov product topology

This guarantees that a hole in the product must come from a hole in at least one factor and the
standard:

3.2. THEOREM. The product of arbitrarily many compact spaces is compact.

The product of countably many two element spaces is topologically the same as the Cantor
set.

4. THE UNIVERSE IN A BOX

Given its derivation from the study of continuity, topology concerns itself with things
which are close together while disregarding those which are far apart. Thus, it should be no
surprise that we can bound the metric of a space while keeping the topology unaffected by
changing the metric to the minimum of 1 and the old distance between two points. In this
metric space with a fixed closed set F - the distance d(x,F) between a point x and F forms a
continuous function from X → [0,1] with value 0 on F.

In general, a reasonable axiom for separating points and closed sets in a space X is: given a
closed set F⊆X and x∈X\F there is a continuous g:X → [0,1] such that g(x)=1 and g(F)=0.

Using the set F, of all continuous f:X → [0,1], as an index, we build the space P as the
product of F many copies of [0,1]. The space P is compact and a copy of the space X "sits"
in P.
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When a "copy" of X sits in P we say X is embedded in P. The above embedding is
denoted by ev, for evaluation, and is defined so that the f’th coordinate of ev(x) in the
product is f(x).

This tells us when we can consider our space as part of a compact universe:

4.1. THEOREM. In order for a space X to be contained (or embedded) in a compact space it
is necessary and sufficient that for each pair consisting of a closed set F⊆X and x∈X\F there

is a continuous f:X → [0,1] such that f(x)=0 and f(F)=1.

4.2. DEFINITION. Suppose a space  X  is contained (embedded) in a compact space K. Its
closure (the set of all points in or close to X)  is compact (see 1.3). This closure of a copy of
X in a compact space is called a compactification of X. We think of a compactification as
filling in the holes of X because we are allowing certain non-convergent filters in X to
converge "outside of X."

4.3. EXERCISES. 1.  [0,1] is a compactficiation of (0,1) and hence the reals.
2. The map t→<cos2πt,sin2πt> : (0,1)  → unit circle establishes that the unit circle is also a

compactficiation of (0,1) copy of [0,1] with end points identified; i.e., [0,1] and the unit
circle, are both compactifications of (0,1) and the reals. Another compactification of (0,1)
is the figure 8.

3. There is no continuous function f : [0,1] → [-1,1] such that ∀x, 0<x≤1, f(x)=sin(1/x); i.e.,

sin(1/x) : (0,1]  → [-1,1] has no extension to [0,1]. But by identifying (0,1] with a copy,

its graph G in the plane (map each x  → <x,sin(1/x)>), we do see that (0,1] is embedded

into its compacification  K=G∪({0}× [-1,1]) for which there is a continuous function

f : K → [-1,1] which extends sin(1/x), namely, project each <x,y>∈K to y. K is a
compactification of (0,1].

4. Give an example of a compactification K of the integers and continuous function
f : K → {0,1,2} which extends g(n) = n mod3.

From the view of compactifications, whether one takes the universe to be R3, R11,

R∞,or one of its subspaces,  I say, philosophically, that the universe is contained in a box
- for example, the compact space P described in the beginning of this section.

4.4. DEFINITION. Prior to Theorem 4.1 above we have nearly described a construction of
what is called  βX, the Stone- ech compactification of a non-compact space  X. βX is the
closure of the "copy" of X and it is called the "largest" compactification [Willard] of  X
because it is characterized by the property that each continuous function  f  from  X  to a
compact space Y can be extended to a continuous function  βf  from βX to the same compact

space. It is the rule that  βX is big - for example, when  X  is the space of positive integers

βX  has more points in it than there are reals. For the same reason β(0,1] is also quite large.

On the other hand,  βω1 = ω1+1.
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If the universe is contained in a box,  an interesting question to consider is "What is left in the
box, when we remove the universe?"  In other words, what is the nature of βX-X, a research
area with I was involved in the early 1980s.

5. OPEN COVERS

Borel proved the following in his 1894 thesis: A countable covering of a closed interval
by open intervals has a finite subcover [Hildebrandt 1924]. It turns out that Borel's
approach was similar to the approach Heine used to prove in 1872 that a continuous function
on a closed interval was uniformly continuous (actually first proved, but unpublished for 60
years, by Dirichlet in 1852).
In 1898, Lebesgue (and apparently someone named Cousins in 1895) removed "countable"
from the hypothesis of Borel's result.  Thus, we have the generalized theorem, which is now
commonly called the Heine-Borel theorem, and with modern notation, is:

5.1. THEOREM. A subset of  Rn is compact iff it is closed and bounded.

Unfortunately, this notion of "bounded" does not generalize the theorem for metric spaces,
and in topology "metric" need not be present. Vietoris' [Vietoris1921] seems to have first
seriously considered abstract compact spaces and he proved 1.4(3) and proved "expansion of
disjoint closed sets to disjoint open sets" (see the notes before theorem 3.1), but,
independently, Alexandrov and Urysohn [Alexandrov and Urysohn1923] first gave it the
modern definition (though the Russians called the notion "bicompact" for many years):

5.2. DEFINITION. A space X is compact if each covering by open sets contains finitely
many open sets which cover.

5.3. EXAMPLES.  With the sequence < 1
2 , 1

4 , 1
8 ,...> ∪{0}  or with N∪{∞}, we see that an

open set containing 0 (or ∞}) contains all but finitely many of the points. Thus, an open
cover has a finite subcover. To see that [0,1] is compact, use the least upper bound property.

There is an important consequence of compactness which at first appeared to be a
property of completeness. It is now known as the Baire Category Theorem due to Baire
(1889) for the reals and Hausdorff (1914) for complete metric spaces.  It was E. ech
who saw the earlier results were all a consequence of covering properties of certain
subsets of a compact spaces [ ech1937]:

5.4. THEOREM. Suppose {Gn: n∈N} is a countable family of open dense sets in a

compact space. Then the intersection ∩n∈N Gn is dense.

Note that the reals can be embedded as (0,1) into [0,1]. A complete metric space can
be embedded as a such an intersection in a compact space. Using 5.4, Banach gave, in
1931, an elegant proof of the Bolzano 1833 [Jarnik1981]  result usually attributed to
Weierstrass (1852):
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5.5. COROLLARY. There is a continuous nowhere differentiable function from the reals
to the reals.
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