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Dynamics on the Irrationals.

Scott W. Williams

§0.  Introduction.   §1.  A homeomorph of P.   §2.  A new system on P.   §3.  More

homeomorphs of P.   §4.  Constructing points in Π.   §5.  Recurrent points in [Π;σ].

§6.  Systems with all points recurrent.  §7.  Multiple Recurrence.

§1.  Introduction.

We present here work which is, in part, expository with proofs,1

exercises (2.4, 2.6, 4.3, and 7.6), and, in part, contains new results (3.1,

5.4, amd 7.7) so we ought to begin with some background:  Dynamics
travels a line of history from as far back as Newton, as a notion for
his laws of motion, especially, as concerns the law of gravity, for
which he developed the Calculus.  Prior to the twentieth century, a
dynamical system meant a motion whose parameters  are functions
of time and satsfy a system of differential equations.  Eighteenth and
Nineteenth century analysts used various analytical manipulations
(including infinte series) to cause the differential equations to reveal
information.  However, 100 years ago Poincaré, using a proofs
fortelling modern topology, shifted our attention from particular
solutions to the relationships between all possible solutions and, in
some cases, he used his methods to prove the existence of periodic
solutions.  In 1927, G.D. Birkhoff's work signifcantly justified
Poincare's global approach by proving that in any dynamical system
on a compact space has a solution stable in the sense of Poisson.  In
our terminolgy it is stated as each system on a compact space has a
recurrent point.

                                    
. AMS Subject Classification (1991):  54H20, 54E50.  Key words:  dynamical
system, recurrence, almost-periodic, irrationals
1 Some of the material represents joint work with Jan Pelant of the Czech
Academy of Sciences and represents a simplified version of results in [15].
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In the area of multiple systems, the first result came in with a
little heralded paper by P. Erdös and A. H. Stone [7b].  However, H.
Furstenburg, B. Weiss, and others did, in the late 1960's for multiple
systems, what Birkhoff did for simple systems.

The primary results we exhibit here are:

3.1.  Suppose  [X,f]  is a system on a separable complete metrizable space  (X,d).  Then

there is a system  [P,g]  and a homomorphism  h : [P,g] → [X,f].

5.2.  Suppose  x∈Π.  x  is recurrent in  [Π;σ]  iff there is a street  S  such that  x = αS.

5.3.  If  { Bz : z∈N}  is finite,  then  x  is almost-periodic in  [Π;σ].

5.4.  There is an almost periodic-point  x  such that if  (Fz : z∈N)  is a street with

x = α(Fz : n∈N).  Then  { Fz : z∈I}  is infinite.

6.3.  There is a homeomorphism  f: P → P  such that  [P;f]  is a minimal system, and no

point of  P  is almost-periodic in  [P;f].

6.4.  There is a continuous function  f : P → P  such that each point in  P  is recurrent in

[P;f],  but  [P;f]  has no minimal sets.

7.7.  There is a continuous function  f: P → P  such that  [P,f]  is minimal,  but no point

of  P  is multiply recurrent in  [P;{f,f2}].

7.9.   There are commuting continuous functions  f,g : P → P  such that  [P,{f,g}]  is

minimal,  ∀p∈P,  OCf(p)ÈOCg(p) = {p}.

0.1.  In general, the objects considered here are pairs [X;f],  called a
discrete dynamical system, where X is a metric space and f : X → X  is

a continuous function.2  Our particular attention will focus upon the
case when  X  is the topological space  P  of all irrationals in the real
line.  All the definitions below are standard (see [1], [6], [10], [11],
and [16]).

0.2.  Fix a system  [X;f], let  f1
 = f, and for each  n∈N (= the set of

positive integers) let  fn+1 
 = ffn.  The orbit  of a point  x∈X  is the set

{fn(x) : n∈N},  denoted by  Orbf(x)  (or  Orb(x)  when no confusion

results).  The orbit closure  of a point  x∈X  is the set  cl(Orb(x)),
denoted by  OCf(x)  (or  OC(x)  when no confusion results).

                                    
2 It is common, but not necessary, to require  f to be a homeomorphism, and I
assure you all the material here have analogous resultsand harder proofs, in
the homeomorphism case [15].
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0.3.  Suppose  x∈X.  In  [X;f],

1). x  is said to be fixed  provided  f(x) = x.

2).  x  is said to be periodic  provided  ∃ m∈N  such that  fm(x) = x.  (of
period  m∈N, if  m  is the first such integer).

3).  A point  x∈X  is said to be almost-periodic  (also known as

uniformly recurrent  [8]) in  [X;f]  provided that for each

neighborhood  U  of  x,  {n∈N : fn(x)∈U} ≠ ∅  is relatively dense in
N;  i.e., provided ∃ k = k(U)∈N  such that  ∀m∈N,

{n∈N : km ≤ n < (k+1)m,  fn(x)∈U} ≠ ∅.
4).  A point  x∈X  is said to be recurrent  in  [X;f]  provided  x∈OC(x)

(or equivalently, when  X  is a metric space,  there is an

increasing sequence  <kn>  in  N  such that  limn→∞ fkn(x) = x).

5).  A set  MçX  is said to be minimal  in  [X;f]  provided it is a
minimal element in the partially ordered, by  ç,  set of all non-
empty closed sets  AçX  such that  f(A)çA,  or equivalently,
∀x∈M,  OC(x) = M.

There are more interesting points we could study here (see exercise
2.6 and [1], [2], [6], [8], [9], [11], [14], [16], and [18]).

0.4.  If  X  is minimal in  [X;f],  then  [X;f]  is said to be a minimal
system.   A system  [X;f]  is said to be a transitive system. when there
is a point  x∈X  such that  X = OC(x).

0.5.  In dynamics, the basic property preserving properties between
two systems are called homomorphisms.  Specifically, suppose  [X,f]
and [Y,g]  are systems.  h  is a homomorphism  from  [Y,g]  to  [X,f]
(write  h : [Y,g] → [X,f])  if  h : Y → X  is a continuous surjection

satisfying  gh = hf.  It is very easy to show a homomorphism takes
fixed (periodic, almost-periodic, recurrent) points to fixed
(respectively, periodic, almost-periodic, recurrent) points, and that
the composition of two homomorphisms is a homomorphism.
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0.6.  In the final section of this paper, we will consider multiple
systems  [X;f], where  f  is a commuting family of continuous func-
tions  f : X → X;  i.e.,  ∀f,g∈f,  fg = gf ).  Given a multiple system  [X;f],

let  <f> = {f1f2
...fk : <f1,f2,...,fk> is a finite sequence in f}.

0.7.  For   x∈X,  we set  OCf(x) = cl{fx : f∈<f>}.  A minimal  set in a

multiple system  [X;f]  is minimal with respect to the condition:  All
non-empty closed sets  AçX   such that  ∀f∈f,  fAçA.

0.8.  x∈X  is said to be jointly recurrent (almost-periodic)  in the
multiple system  [X;f]  provided  ∀f∈f,  x is recurrent (almost-

periodic) in  [X;f].  In the case  f  is finite,   x  is said to be multiply
recurrent  [8] in  [X;f]  provided that for each neighborhood  U  of  x

∃ n∈N  such that  ∀f∈f,  fnx∈U [8] (this is usually defined for when

f  is finite;  the infinite case is considered in [2] where it is called
uniform multiple recurrence ).

0.9.  Let  P  denote the subspace of irrationals on the real line, and
let  C  denote the Cantor set.  These objects are often considered
bizarre, however, they occupy a place fundamental to dynamics, both
in theory and example.  Our primary goal in this paper is to present
examples on  P.  The chief method is by the way of constructing
"simple" systems on objects topologically the same (i.e.,
homeomorphic to) as  P.

10. Notation.  C,  N,  and  P  are all as above,   Q,  R, and  Z denote,
respectively, the space of rationals, the reals, and the integers.  We
also use  ω  to denote the non-negative integers.  card (X)  denotes the

cardinality of a set X.

Given a space  X  and a set  I,  we use Logic's notation  IX  to

denote all functions from  I  to  X.  ΠIX  denotes the Tychonov
product of  I  many copies of  X.  Π  will be used to denote the Baire
space of all sequences <x(n)>  of positive integers with the metric
d(x,y) = 2−(n−1),  if  n  is the least integer such that  xn  ≠ yn .
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cl  and  int  denote, respectively, the closure and interior
operators in a space  X.  C,  N,  P,  Q,  R, and  Z  all possess natural
linear orders and we use  [a,b]  and  (a,b), respectively, to denote
closed and open intervals.

A zero-dimensional  space is a space with a base of clopen  (≡
simultaneously open and closed) sets.  A space X is separable
provided it has a countable dense set; i.e., there is a countable subset
of X whose closure is X.  A space is completely metrizable  provided
it is homeomorphic to a complete metric space.  A space is nowhere-
locally compact  provided no non-empty open set has comnpact
closure.

The domain and range of a function  f  are denoted, repectively,
by  dom  and  rng.  HENCEFORTH, we use  fx  instead of  f(x)  for the
image of a point unless some confusion would result.

§1.  A homeomorph of P.

1.1. The usual topology on P.  A basic nhbd of a point  x  has form
(x−ε,x+ε)  (in  P  of course),  where  ε > 0.  In  R there is a rational

between any pair of irrationals.  Hence, we have alternate basic
nhbds of form  (a,b)ÈP,  where  a  and  b  are rationals.  When  p  is
a rational  (p,∞ )ÈP = [p,∞ )ÈP.  Thus,  (p,∞ )ÈP  is both open and
closed in  P.  Similarly,  (−∞ ,p)ÈP  is both open and closed in  P.  As

each point in  P  has a nhbd base of clopen sets in  P,  P  is a zero-
dimensional space.

1.2. The usual topology on Π.  When we identify sequences of

integers with elements of  NN,  the set of all functions from  N  to
itself.  The topology on  Π  is the same as the Tychonov product

topology on  ΠNN,  the Tychonov product of countably many copies
of the positive integers, when the integers are given the (discrete)

metric  d(n,m) = 


0  i f   n  = m
1  i f   n  ℵ m   .  Please observe that the topology

of  Π  is given by the complete(!) metric  d(x,y) = 0  if  x = y,
otherwise  d(x,y) = 2−k,  where  k  is the first integer  n  such that
x(n) ≠ y(n).
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When  FçN  is finite,  and when  B : F → N  is a function,
{y∈Π : ∀n∈F, y(n) = B(n)}  is an open set in  Π;  further, the set of all

such sets forms a base for the topology of  Π.  Therefore, a basic
nhbd of  x∈Π  has the form  {y∈Π : ∀n ≥ m, y|[1,m] = x|[1,m]},  where

m  varies in  N.

Usually, topology is applied to subjects such as Algebra, Analysis,
or Number Theory.  The next result is seventy years old and reverses
this process.  It was one of the most beuatiful results I saw in my
graduate topology course at Lehigh University in 1965.  Some of its
most notable corollaries are that  P  is homeomorphic to  P × P  (the

double irrationals in the plane),  and that  P  has a group operation
which makes it  a topological group.

1.3. Theorem [7].  P  and  Π  are homeomorphic.

Sketch of Proof.  Consider continued fractions; that is objects of the

form  1

x(1)+
1

x(2)+
1

x(3)+ . ..  

    .3 , 4   They define a unique real using the

limit of the fractions  1
x(1)   ,  

1

x(1)+
1

x(2)

   ,  
1

x(1)+
1

x(2)+
1

x(3)

  ,  ... .  The

function   f(x) = 
1

x(1)+
1

x(2)+
1

x(3)+ . ..  

     defines a homeomorphism

between  Π  and  (0,1)ÈP.  It is easy to see that  P  and  (0,1)ÈP  are

homeomorphic. //

                                    
3 There is are several variances on this idea, some allow a non-negative
integer x(0) to be added to the above continued fraction. This defines a
homeomorphism from (0,∞ )ÈP to P, but adds considerable formulaic
considerations to a few of the results in this paper.
4 Note that when ∀n, x(n) = 1, the resulting continued fraction yields 2   −1.
While the Fibbonacci sequence, starting with the second term yields the
golden rule −1.  Using finite induction it is easy to prove that the continued
fraction is a root of a quadratic equation iff the sequence <x(m)> is constant
after some m.
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When  FçN  is finite iff it is a compact subset of  N.  Thus,

Tychonov Product Theorem shows that when  F  is finite,  ΠNF  is a

compact subset of  ΠNN.  When  F  is finite with at least two points,

it can shown that  ΠNF  is homoemorphic to the Cantor middle thirds
set  C.

§2.  A system on  P.  Applying 1.3, we define a function from  P  to
itself by defining it on  Π!  σ : Π → Π  is defined by  (σx)(n) = x(n+1)
(so for example, the sequence σ<1,2,3,4, ...> = <2,3,4,5, ...>).

For  m∈N,  σ−1(y|[1,m]) = {x∈Π : ∀n∈[2,m+1], x(n) = y(n−1)},
which, according to 1.2, is open.  Therefore,  σ  is a continuous

function called the shift map  (on  Π). 5  In this paper, all examples in
this paper will concern the system  [Π;σ],  and its subsystems.

The first study of the dynamics of (a variant of)  [Π;σ]  appears in

[15],  but when  FçN  is finite, and in particular when  F  has just

two elements  e.g.,  0-1 sequences),  the systems  [ΠNF;σ]  have been

studied for more than 40 years (see [8], [12] and [13] for more).
They are called symbolic dynamical systems  or symbolic cascades.

The next lemma follows directly from the definitions.

2.1. Lemma.  For  x∈Π,  the following are true in  [Π;σ]:
1).  x  is a fixed point iff  ∀n∈N,  x(n) = x(1).
2).  x  is a periodic point iff  ∃ m∈N  such that  ∀n∈N,  x(n+m) = x(n)

iff  ∃ m∈N  such that  ∀k∈N,  x|[km+1,(k+1)m] = x|[1,m]  as

sequences.
3).  x  is almost-periodic iff  ∀u∈N,  ∃ k = ku∈N  such that  ∀m∈N,

{n∈N : km ≤ n < (k+1)m, σnx|[1,u] = x|[1,u]} ≠ ∅
iff  ∀u∈N,  ∃ k = ku∈N  such that  ∀m∈N,

{n∈N : km ≤ n < km+k, x|[n+1,n+u] = x|[1,u]} ≠ ∅  as sequences.

4).  x  is recurrent in iff  ∀u∈N,  ∃ a ≥ u  such that  σax|[1,u] = x|[1,u]  iff
∀u∈N,  ∃ a ≥ u  such that  x|[a+1,a+u] = x|[1,u]  as sequences.         //

                                    
5 The reader should know there is another notion of "shift" on P, it adds 1 to
each irrational and has no interesting dynamics.
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Most fundamental to our constructions is the unique element in
Π, denoted by  α,  given by

2.2. α(n) = k+1 if  k  is the largest integer such that  2k  divides  n.

Then  α  is the sequence

<1,2,1,3,1,2,1,4,1,2,1,3,1,2,1,5,1,2,1,3,1,2,1,4,1,2,1,3,1,2,1,6 ...>.

The next lemma has a straight-forward induction proof.

2.3. Lemma.  Suppose  m,k∈N.  Then the following hold:

1).  If  n < 2m,  then  α(k2m+n) = α(n).
2).  If  k ≤ i < j ≤ k+m,  then  min{α(i) , α(j)} ≤ 1+log2m.              //

2.4. EXERCISE.  Define points  x,y∈Π.  x(n) = n  ∀n∈N;  y(n) = k  if

n = 2k  and  1  otherwise.
1).  Prove that  x  and  y  are not recurrent.
2).  Prove that  OC(x)  is countably infinite.
3).  Prove that  OC(y)  contains the fixed point  <1,1,1,...>.
4).  Prove or disprove  OC(y)  is countably infinite.

2.5. Example.  There is an almost-periodic point in  [Π;σ]  which is

not periodic.
\\.  The point is  α.  For  u∈N,  let  k = 2i,  where  i = min{j : u ≤ 2j}.
Then 2.1(3) and 2.3(1) prove  α  is almost periodic.  Notice that 2.1(2)

shows that any periodic point in  [Π;σ]  has finite range.  However,

α(2m) = m+1,  and so  α  is not periodic.                   //

2.6. EXERCISE.  Define  x∈Π  by  x(1) = 1  and if  2n−1
 < m ≤ 2n,  then

z(m)=2−z(m−2n−1),  so  z = <1,2,2,1,2,1,1,2,2,1,1,2,1,2,2,1,...>.

1).  Prove that  z  is almost-periodic.
2).  Construct a point  p∈OC(α)\Orb(α)  (we shall see in 4.5 that

OC(α)\Orb(α)  is uncountable). Hint. Consider  y = <2,1,4,1,2,1,3,1,2,1,6,1,2,

1,3,1,2,1,4,1,2,1,3,1,2,1,5,1,2,1,3,1,2,1,4,1,2,1,3,1,2,1,8,...>.
3).  A point  x∈Π  is said to be non-wandering  in  [Π;σ]  provided

∀n,m∈N,  ∃ y∈Π  with  x|[1,m] = y|[1,m] = y|[n+1,n+m]  considered
as sequences.  Prove that each point of  [Π;σ]  is non-wandering.
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The following result is well-known (with the same proof) in the

case of the systems  [ΠNF;σ]  when  FçN  is finite.

2.7. Proposition.  [Π;σ]  is a transitive system.
\\.  Given  n∈N,  the set  sn  of all sequences of length  n  is the

same as the set of all  n-tuples consisting of elements of  N.  In most
elementary Anaylsis classes it is proved that  sn  is countable.  Since

countable unions of countable sets is countable, the set  s  of all
finite sequences in  N  is countable.  Let  {Sn : n∈N}  list the elements

of  s.  Define a point  x∈Π,  recursively, by starting with  S1  and
adjoining the sequence  S2  at its end.  If we have the first  m
sequences adjoined in this manner,  then adjoin  Sm+1  at the end.  x

will be the point constructed in this fashion.  Given any point  y∈Π
and  u∈N,  then  y|[1,u]  can be considered as a finite sequence.  Thus,
we may find  a∈N  such that  x|[a+1,a+u] = y|[1,u].  Clearly,  y∈OC(x).
Therefore,  [Π;σ]  is transitive.                            //

2.8. Example.  There is a recurrent point in  [Π;σ]  which is not

almost-periodic.
Proof.  The point we use is the point  x  in the proof of 2.7.  Notice
that there are arbitrarily long constant finite sequences of the form
1+x(1).  So for any  k∈N,  we may find  a,b∈N  such that  b > k  and
∀n∈[a,a+b],  x(n) ≠ x(1).  Therefore,  x  is not almost-periodic.       //

§3.  More homeomorphs of P.  We will build new dynamical
systems on  P  using two major tools:  The first is a theorem, 3.2,
considerably expanding 1.3 and some "technology" expanding the
essential idea in the proof of 2.7.

The first theorem of this section is completely new and shows
why  P  is so important to Topological Dynamics.  It says, "Any odd
behavior of a discrete dynamical system on a separable complete
metrizable space should be reflected by a system on  P."
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3.1. Theorem.  Suppose  [X,f]  is a system on a separable complete
metrizable space  (X,d).  Then there is a system  [P,g]  and a
homomorphism  h : [P,g] → [X,f]. 13

\\.  ∀n∈N,  and  ∀r∈[1,n]N,   we will define, recursively, an open set

Gr  in  X,  and, if  n > 1,  and an  r*∈[1,n−1]N  all subject to the

following six conditions:

1).  {Gr  : r∈[1,1]N}  is an open cover of  X.

2).  If  n > 1  and if  r∈[1,n−1]N,  then  Gr  = Ë{Gs : s∈[1,n]N, r = s|[1,n−1]}.

3).  If  n > 1,  then the diameter  δ(Gr)  of  Gr  ,  is at most  
δ(Gr|[1,n−1])

2    .

4).  If  n > 1  and if  r∈[1,n]N,  then  cl(Gr)çGr|[1,n−1] .

5).  If  n > 1  and if  r∈[1,n]N,  then  f(Gr)çGr*  .

6).  If  n > 2  and if  r∈[1,n]N,  then  Gr|[1,n−1] *  = Gr*|[1,n−2]  .

Since  X  is Lindelöf,  there is a countable open cover  r  of  X  by
sets of diameter  1.  Allowing repeats (in the case  r  is finite),  let
{Rm : m∈N}  index  r.  ∀r∈[1,1]N,  define  Gr  = Rr(1) .  Thus, for  n = 1,

the conditions (1)-(6) are satisfied.
Suppose  m > 1  and  ∀n < m,  ∀r∈[1,n]N,  we have defined  Gr  ,  and

if  n > 1,  we have defined  Gr*   to  satisfy the conditions (1)-(6).  Fix

r∈[1,m−1]N.  ∀x∈Gr  ,  (2) finds  t(x)∈[1,m−1]N  such that  f(x)∈Gt(x) .  So
choose an open nhbd  UxçGr  of  x  such that  f(Ux)çGt(x) .  In the
case,  m > 2,  then,  by recursion and (5),  f(Gr)çGr*  .  Again using (2),

Gr*  = Ë{Gs : s∈[1,m−1]N, r* = s|[1,m−1]}.  So if  n > 2,  we may choose  t(x)

such that  r* = t(x)|[1,m−2].  Now choose an open ball  B(x,εx)

centered at  x  with  B(x,εx)çUx .  As  X  is separable metric,  each

subspace of  X  is Lindelöf.  Thus, we may choose a countable subset

{Vk : k∈N}  of  {B(x,
εx
2   ) : x∈Gr}  covering  Gr  .  ∀t∈[1,m]N,  with

r = t|[1,m−1],  let  Gt = Vt(m)  .  Clearly, the conditions (1)-(6) are

satisfied.

                                    
13 The analgous result for compact metric spaces and the Cantor set is well-
known and can be proved similarly
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We may now assume all the construction of the sets  Gr  and

functions  r*  are defined  ∀n∈N,  and  ∀r∈[1,n]N,   ∀r*∈[1,n−1]N.
Suppose  π∈Π.  According to (2) and (3),  {cl(Gπ|[1,n]) : n∈N}  is a

descending family of closed sets with diameters converging to  0.
Since  X  is complete, there is a unique element  xπ∈Èn∈N cl(Gπ|[1,n]).

Define a function  h : Π → X  by  h(π) = xπ .  Notice that given  x∈X,  (1)

and (2) inductively define  π∈Π  such that  x∈Èn∈N Gπ|[1,n]  .  Thus,  h

is surjective.
We show  h  is continuous.  Suppose  π∈Π  and  h(π) = x∈X.  By (4),

Èn∈N cl(Gπ|[1,n]) = Èn∈N Gπ|[1,n]  .  So (3) shows  {Gπ|[1,n]  : n∈N}  is a

nhbd base at  x.  Hence,  h(θ) = xθ∈Gπ|[1,n]  implies  ∃ m > n  such that

Gθ|[1,m]çGπ|[1,n]  .  Thus,   h({σ∈Π : σ|[1,n] = θ|[1,n]})çGπ|[1,n]  .

Therefore,  h  is continuous.
Now consider  π∈Π.  According to (3), (4), (5), and (6),  there is a

unique  π*∈Π such that  ∀n∈N,  π*|[1,n] = (π|[1,n])*.  So we may define
a function   g : Π → Π  by  g(π) = π*.  Let  θ∈Π  have  θ*|[1,m] = π*|[1,m].
Clearly,  g({σ∈Π : σ|[1,m+1] = θ|[1,m+1]})ç{τ∈Π : τ|[1,m] = π*|[1,m]}).

Therefore,  h  is continuous.
Fix  π∈Π.  Then  fh(π) = f(xπ)∈Èn∈N Gπ*|[1,n]  = {xπ* }.  However,

hg(π) = xπ*  .  Therefore,  h  is a homomorphism.                    //

3.2. Corollary [17].  A space  X  is homeomorphic to  P  iff it is a
separable zero-dimensional completely metrizable nowhere-locally
compact space.
\\.      Only if   .  Recall  Q  is the set of rational numbers.  Fix  p∈P,  and let
Q = {p+q : q∈Q}.  Between each pair of reals is a member of  Q,  so
given  r,s∈P,  ∃ q∈Q  such that  q  is between  r−p  and  s−p.  But  p+q

is between  r  and  s;  thus,  Q  witnesses that  P,  and any
homeomorphs, is separable.  As any open set of  P  contains a
sequence converging to a missing rational, each compact set in  P
has empty interior;  hence,  P  is nowhere-locally compact.  P  is not
complete, but  N  and hence,  Π  is - see any standard topology text;
e.g., [7].  Thus,  P,  and any homeomorphs, is completely metrizable.
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If   .  Assume  X  is a separable zero-dimensional nowhere locally
compact complete metric space.  Then  X  has a base  c  consisting of
clopen sets. Given  C∈r,  C  is complete since it is closed in  X.  C  is

not compact since it is open and all compact sets in  X  have empty
interior.  However,  C  is Lindelöf;  hence, it is the union a countably
infinite family of pairwise disjoint clopen subset  s(C)çc  of sets
with diameter at most half the diameter of  C.  Thus, within the proof
of 3.1, we can require an extra condition:

7).  If  r,s∈[1,n]N,  r ≠ s,  and if  r = s|[1,dom (r)−1] = s|[1,dom (s)−1],  then
GsÈGt = ∅ .

Thus, the function  h : Π → X  is an injection.  Given  r∈[1,n]N.  Then (7)

also implies  h({π∈Π : π|[1,n] = r}) = Gr  .  Therefore,  h  is a

homeomorphism.                                //

3.3. Lemma.  A closed subset  A  of  Π  is compact iff it is bounded in
the pointwise product partial order.
Proof.     If   .  Suppose  A  is a bounded closed subset  A  of  Π;  i.e,  there
is  f∈Π  such that  AçK = Πn∈N[1,f(n)].  As  K  is the product of finite

sets,  K  is compact.  Since  A  is a closed subset of  K, it is compact.
Only if   .  Suppose  K  is a compact set in  Π.  For  m∈N,  K  projects

on to the mth-coordinate as a compact,  and hence finite subset of  N
with maximum  f(n).  As  KçΠn∈N[1,f(n)],  A  is bounded.            //

Here is the tool we spoke about at the beginning of this section.

3.4. Theorem.  A  non-empty closed subspace  X  of  Π  is homeo-
morphic to  P  iff each non-empty open set of  X  is unbounded in the
pointwise product partial order.
\\.  Since, from 3.2,  X  is nowhere-locally compact, 3.3 immediately
implies the properties above.  Conversely, suppose  XçΠ  has the
properties above.  Clearly, each subspace of  Π  is zero-dimensional
separable metric, so   X  is.  3.3 shows  X  is nowhere locally compact
iff each of its non-empty open subsets are unbounded.  Therefore, 3.2

applies to prove the result.       //
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§4.  Constructing points in  Π.  Here we introduce our second tool
used to build and discuss points in  Π,  we need some special notions
about finite sequences in  N.  A block  will be a finite function with
domain  dom B  an (a possibly empty) interval in  N,   and range  rng B
a subset of  N.  All blocks will be assumed to have as domain an
initial segment of  N  unlesss otherwise stated.  If the block  B has
(non-) empty domain, we write  B = ∅   (B ≠ ∅).  The length

B = card (dom B).  If  B ≠ ∅  is a block, if  a ≤ b∈N,  and if  dom B = [a,b],

then by a tail  (a head ) of  B,  we mean any block of the form  B|[c,b]
(respectively,  B|[a,c] ), where  a ≤ c ≤ b.

4.1. A partial order on blocks.  Suppose  A  and  B  are blocks.  We
will say  A  is a copy  of  B  and write  A ≡ B  provided the following
two conditions are satisfied:

4.1(1).  A  = B  and
4.1(2).  œ z∈N  such that  ∀n∈dom A,  A(n) = B(n+z).

So  ≡  is an equivalence relation on the set of all blocks.  We will also
need a partial order on the equivalence classes:  Let us agree that  A
is in   B  and write  A ≤ B  provided there is an interval  Içdom B

such that  A ≡ B|I.
We can expand these ideas to points in  Π.  For  x.∈Π,  we say  A

is a block in  x  and we write  A ≤ x  provided there is an interval

IçN  such that  A ≡ x|I.  Suppose  B  is a block and  IçN  is an
interval.  We say that  x|I  is a maximal tail  of  B  in  x  provided  x|I
is a tail of  B  and for each interval  J◊ I,  x|J ≤  B.

4.2. A finitary operation on classes of blocks:   Now suppose  I
and  J  are finite intervals in  N,  f  is a function with  dom f = I  and
rng f = J. Further, suppose  (Bz : z∈J)  is a sequence of blocks.  Let us

agree that f(Bz : z∈I)  or  (Bfz : z∈J),  will denote the unique (up to the

equivalence  ≡ ) block obtained by allowing  ∀z, min I  ≤ z < max I,  Bfz
to be immediately followed by  Bf(z+1).  When  f : [a,b] → [a,b]  is the

identity function, we also let  Ba∧Ba+1∧. . .∧Bb  denote  f(Bz : z∈[1,n]).
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4.3. EXERCISE.  Suppose  n∈N  and  (Bz : z < 2n)  is a family of blocks.

Prove that  α(Bz : z < 2n) = ∑
k=1

n

2n−k Bk   .

4.4. Lemma.  For  x∈Π,  OC(x)  is homeomorphic to  P  provided that
for each block  A  in  x,  there is a  m∈N  such that

L  = {rng C : C = m and A∧C is a block in x}  is infinite.
\\.  Given  a < b∈N  let  Ga,b = {y∈Ob(x) : y|[1,b−a] ≡ x|[a,b]}.  Then  Ga,b
is open in  OC(x)  and each open set in  OC(x)  contains a  Ga,b   for

suitable  a < b∈N.
Let  c = {blocks C : C = m and A∧C is a block in x}.  Since  L  is in-

finite,  there is a first  k ≤ m  such that  {C(k) : C∈c}  is unbounded.
As  ∀C∈c, C = m,  {C|[1,k) : C∈c}  is finite.  Without loss of generality,
we may assume that  card ({C|[1,k) : C∈c}) = 1  and  ∀C∈c,  C = C|[1,k].
Suppose  C∈c,    Let  A = x|[u,v]  and  w = v+k.  Then  Gu,wçGu,v  .  But

if  A  = x|[a,b],  then  Gu,v  = Ga,b  and  {y(b-a+k) : y∈Ga,b }  is unbound-
ed.  Hence,  Ga,b  is unbounded.  According to 3.4,  OC(x)  is homeo-

morphic to  P.                   //

4.5. Corollary.  For  x∈Π,  OC(α)  is homeomorphic to  P.

\\.  According to 2.3(1),  ∀m∈N,  α|[1,2m) ≡ α|[2m,2m+1).  Since

α(2m+1) = m,  the hypothesis of 4.4 is satisfied.                   //

A street  is a sequence  S = (Bz : z∈N)  of blocks indexed by  N  and

such that  ∀z∈N,  Bz ≠ ∅.  An infinitary operation on streets:  Suppose

x∈Π.  and  S = (Bz : z∈N)   is a street.  Then

4.6.  xS  denotes the unique element  y  of  Π  such that if  m∈N,

if  f = x|[1,m),  and if  s = ∑
z = 1

m−1

 Bfz   ,  then  y|[1,s] = f(Bz : z∈[1,m)).
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4.7.  Lemma.  Suppose  S = (Bz : z∈N)  is a street,  f∈NN  is an in-

creasing function, and  k∈N  has
I  = {z∈N : k ≤ Bz , Bz(k) ≥ f(z)}

infinite.  Then  OC(αS)  is homeomorphic to  P.
\\.   Suppose  A  is a block in  x = αS.  Let  i∈I  be such that

A  ≤ α(Bw : w∈[1,2i)),  say   A = x|[a,b]  for  1 ≤ a ≤ b < s = ∑
w≤2

i

Bα(w)   .

∀z∈I  with  z ≥ i,  let  Cz = x|[s−b,s]∧Bz|[1,k].  From 2.3,

{rng Cz : z∈I, A∧Cz  is a block in  x}  is infinite.  For  m = k+s−b,  the

hypothesis of 4.4 is satisfied.  Therefore,  OC(αS)  is homeomorphic to

P.                           //

§5.  Recurrent points in  [Π;σ].

5.1. Lemma.  Suppose  φ  is recurrent in  [Π;σ]  and  S  is a street.
Then  φS  is recurrent in  [Π;σ].
\\.  Let  x = φS.  Fix  m∈N  and let  p > m  such that  x|[1,m]  is a head
of  φ(Bz : z ≤ p).  As  φ  is recurrent, 2.1(4) finds k > p  such that

φ|[k+1,k+p] ≡ φ|[1,p].  Hence,  φ(Bz : k+1 ≤ z ≤ k+p) ≡ φ(Bz : z ≤ p).

Therefore,  x|[1,m]  is a head of  φ(Bz : k+1 ≤ z ≤ k+p).  From 2.1(4),  x  is

recurrent.                                 //

5.2. Theorem.   Suppose  x∈Π.  x  is recurrent in  [Π;σ]  iff there is a
street  S  such that  x = αS.
\\.  The "if" is a consequence of 5.1 once we see  α  is recurrent in
[Π;σ].  But 2.3(1) shows  α  is almost-periodic!

Only if.     Conversely, suppose  x  is recurrent in  [Π;σ].  By induction,
we construct a street  (Bz : z∈N).  Let  B1 = x|{1},  and suppose  m∈N  is

such that  ∀z ≤ m,  the following hold:

1).  Bz  is defined (and hence,  ∀z∈[1,2m),   Bαz  is defined).
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2).  x|[1,s] ≡ f(Bz : z∈[1,2m)),  where  s = ∑
z=1

2m−1

Bαz   ,  and

f = α|[1,2m).
Since  x  is recurrent, we may find a smallest  b > s  such that
x|[1,s] ≡ x|[b+1,b+s].   Now define  Bm+1 = x|[s+1,b].   As it is clear that

we can proceed, in the above fashion, defining  Bz  and exhausting  x,

condition (2) shows  x = α(Bz : z∈N).                          //

Unlike 5.2, for recurrence, I know of no interesting
characterization for almost periodic points in  [Π;σ].  However,

the 5.3 and 5.4 below exhibit what is known at present.

5.3. Theorem.   Suppose  S = (Bz : z∈N)  is a street.

1).  If  { Bz : z∈N}  is finite and if  φ  is almost-periodic in  [Π;σ],  then

φS  is almost-periodic in  [Π;σ].
2).  If  x = φS  is almost-periodic in  [Π;σ]  and if  ∃ m∈N  such that

Z = {z∈N : α(Bw : w∈[1,2m+1))  is not a block in Bz }  is infinite,  then

L  = { Bz : z∈I}  is finite.

\\.   1).  Let  x = φS  and suppose  u∈N  is an upper bound for
{ Bz : z∈N}.  Fix  m∈N  and let  p > m  such that  x|[1,m]  is a head of

φ(Bz : z ≤ p).  As  φ  is almost-periodic, 2.1(3) finds  k = kp∈N  such that

∀q∈N,  {n∈[kq,kq+k) : φ|[n+1,n+p] ≡ φ|[1,p]} ≠ ∅.

Hence,
∀q∈N,  {n∈[kq,(k+1)q) : φ(Bz : n+1 ≤ z ≤ n+p) ≡ φ(Bz : z ≤ p)} ≠ ∅.

Therefore,  ∀q∈N,  {n∈[kuq,(ku+1)q) : φ|[n+1,n+p] ≡ φ|[1,p]} ≠ ∅,
and, according to 2.1(3),  x  is almost-periodic in  [Π;σ].

2).  Suppose  L  is infinite  and  k∈N.  We may choose  z∈Z  such

that  Bz ≥ k+ α(Bw : w∈[1,2m+1)).  But then  Bz  is a block in  x  of

length greater than  k  failing to contain a copy of  α(Bw : w∈[1,2m+1)).

From 2.1(3),  x  is not almost-periodic.           //

5.4. Example.  An almost periodic-point  x  such that if  (Sz : z∈N)  is

a street with  x = α(Sz : n∈N).  Then  { Sz : z∈I}  is infinite.
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\\.    Define  B1 = <1>,  and for  n ≥ 2,  define

1).  Bn  = <n>∧α(Bk : k < 2n)∧<n>..

Let  β = α(Bn  : n∈N).  Then the first few terms of  β  are  <1,2,1,2,1,3,1,2,1,2,

1,3,1,2,1,2,1,4,1,2,1,2,1,3,1,2,1,2,1,3,1,2,1,2,1,4,1,2,1,2,1,3,1,2,1,2,1,3,1,2,1,2,1,5, ...>.

Clearly, 2.2, 4.3, and an elementary finite induction argument shows
the next two statements

2).  If  n > 1,  then  Bn  = 2.3n−1+1  and  α(Bk : k < 2n) = 2.3n−2−1.

3).  ∀n,m∈N,  α(Bk : k < 2n) ≤ β|[m+1,m+4.3n−1−1].

Acording to 2.1(3), (3) shows  β  is almost periodic.
Let  t∈N  and let  (Sz : z∈N)  be a street with  β = α(Sz : z∈N)  and

∀z∈N,  Sz ≤ t.  Choose  m∈N  to be the first integer with  t ≤ 2.3m−1.

Choose  r∈N  to be the first integer with  m∈rng Sr  .  Let

R1 = α(Sz : z < 2r-1),   and  A1 = α(Bn  : n < 2m-1).  Since  m∉rng R1 ,  we

have
4).  R1  is a head of  A1  which is a head of  β.

So (4) shows

5).  A1∧<m>  is a head of  R1∧Sr  which is a head of  β.

From (1),  A1∧<m>∧A1  and  A1∧<m>∧A1∧<m>  are heads of  β.  As

Sr  ≤ t,  (2) shows  <m>  appears in  Sr  but once.  Using 2.3, 4.6, and (4),

we have

6).  R1∧Sr∧R1  is a  head of  A1∧<m>∧A1 .

From (6) there is a second integer  s∈N  with  m∈Ss .  Let

R2 = α(Sz : z < s),   and  A2 = A1∧<m>∧A1∧<m>∧A1.  Clearly,

7).  A1∧<m>∧A1∧<m>  is a head of  R1∧Sr∧R1∧Ss  which is a head of  β.
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Now  (5) and (7) show  A1∧<m>∧A1∧<m>∧A1∧<m>  is a subsequence of

T = R1∧Sr∧R1∧Ss∧R1∧Sr∧R1 .  Since  ∀z ≤ s,  Sz ≤ t  and  rng Sz  is

bounded by  m,  rng Sz  is bounded by  m.  Since  T  is a head of  β,  T

must be a head of  A2 .  Thus,  <m,m,m>  is a subsequence of which

contradicts (1).                                     //

5.5.  Lemma.  Suppose that  S = (Bz : z∈N)  is a street,  y∈OC(αS),  and

suppose  ∃ λ∈N  such that for each block  F  with  F = λ,
{z∈N : F is a head or tail of Bz}  is finite.  If  y  is not recurrent in

[Π;σ]  or if  OC(y) ≠ OC(αS),  then  ∃ h∈Π  such that  ∀z∈N, y|[1,z] ≤ Bhz.

\\.   Let  x = αS.   For simplicity, we will use  α  when we restrict its
domain.  Suppose  m∈N,  we define  h(m).

Since  y∈OC(x),  ∀m∈N,  ∃ k∈N  y|[1,m] = σkx|[1,m],  so we may
choose functions  a,b : N → N  such that
1).  a(m) ≤ b(m),  and
2).  ∀m∈N,  b(m)−a(m)  is minimal with respect to

(y|[1,m]) ≤ α(Bz : a(m) ≤ z ≤ b(m)).

Now,  ∀m∈N,  find  c(m)∈N  and (possibly empty) blocks  H(m)  and

T(m)  such that

3).  H(m)∧(y|[1,m])  is a head of  α(Bz : a(m) ≤ z ≤ c(m)),
4).  T(m)  is a tail of  α(Bz : c(m) ≤ z ≤ b(m)),  and

5).  a(m) ≤ c(m) ≤ b(m)  and
H(m)∧(y|[1,m])∧T(m) ≡ α(Bz : a(m) ≤ z ≤ b(m)).

Notice that the conditions (2) to (5) implies

6).  α(Bz : a(m) < z < b(m)) ≤ (y|[1,m]).

From (6),  œ f,g : N → N  with  ∀m∈N,  (y|[f(m),g(m)]) ≡ Bαc(m) .

According to the hypothesis of this lemma (concerning heads and
tails of  Bz),  we have one of two possibilities:
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7).  either there is an infinite  NçN  such that both  f|N  and  g|N  are
monotone, or

8).  there is an infinite  NçN  such that  (αc)|N  is constant.

Of course if (7) holds, we are done - just set  h(m) = αc(im),  where

the natural indexing of  N  is  {im : m∈N}.  So we assume (8) is true.

From the hypothesis, we have just  two possibilities for the functions
c−a  and  b−c.
CASE1.  For each infinite  IçN,   both rng (c−a)|I  and  rng (b−c)|I  are

unbounded.

CASE2.  There is an infinite  IçN,  such that at least one of rng (c−a)|I
and  rng (b−c)|I  is bounded, while the other is unbounded.

Assume CASE1 holds, and suppose  k∈N  is arbitrary.  As  y∈OC(x),
∃ p∈N  such that  x|[p+1,p+k] = y|[1,k].  Thus,  we may find  k1∈N  such

that

9).  both  x|[1,k]  and   y|[1,k]  are in  α(Bz : z ≤ k1).

Let  I = {m∈N : 2k1
 
+1+1 < c(m)−a(m)}.  Since CASE1 holds,  I  is infinite.

Again applying CASE1 shows  J = {m∈I  : 2k1
 
+1+1 < b(m)−c(m)}  is

infinite.  Now choose  j∈J.  Using (6),  2.3(1) shows

10).  α(Bz : z ≤ k1) ≤ y|[1,j].

Applying (6) to (10), we see  x|[1,k]  and  y|[1,k]  are in  y|[1,j].  It is now
clear that  ∃ q,r∈N  such that  σqy|[1,k] = x|[1,k],  and  σry|[1,k] = y|[1,k].
As  k∈N  is arbitrary, we see, respectively, that  OC(y) = OC(x)  and

so  y  is recurrent.

Assume CASE2  is true - say rng (c−a)|I  is bounded. Then, without

loss of generality, we may assume:
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11).  (c−a)|I  is constant,  ∃ c0∈N  such that  ∀m∈I  c(m) = a(m)+c0 .

From (8), (11),  and 2.3,  ∃ j∈[0,c0]  such that  ∀i∈[0,c0)\{j},

α(c+i)|(IÈ[k,∞ ))  is constant for  k = 1+log2(∑
z=1

c0

Bz  ).  From (3),  j = 0.

So  ∃ b0∈N  such that  ∀m > k,  m∈I,  y|[1,b0] ≡ α(Bz :  a(m) < z ≤ c(m)).
Therefore, there is an increasing  d : I  → N  and an infinite valued
e : I  → N   such that  (y|[−d(m),a0))  is a tail of  Bαce(m)  - a

contradiction.
The proof, in case  rng (b−c)|I   is bounded, is similar.                  //

5.6.  Lemma.  Suppose  S = (Bz : z∈N)  is a street satisfying

#).  for  n < m∈N,  rng BnÈrng Bm = ∅ .

Then  OC(αS) is minimal, and  y∈OC(αS)  iff  y  can be written as

(T∧α(Bz : z < h(1)))∧∧n  > 1 (Bα(h(n))∧α(Bz : z∈[1,h(n)))),
where  h∈Π  is increasing and  T  is a maximal tail of  Bα(h(1))  in  y.

\\.   To see that  [OC(αS);σ]  is minimal, suppose  x∈OC(αS).  As the
Bn's  are pairwise-disjoint, the hypothesis of 5.5 is satisfied.  So if

OC(x) ≠ OC(αS),  then 5.5 finds an  h∈Π  such that  ∀n∈N,

x|[1,n] ≤ Bh(n).  Clearly,  h  is constant,  say h(1) = m.  Choose  n > 2m,

then  n= x|[1,n] ≤ Bm ≤ 2m
 - ridiculous.  So  OC(x) = OC(αS).  Therefore,

[OC(αS);σ]  is minimal.
IF      Just check (see exercise 2.6(2), where T = <2>) that  ∃ k ≥ 0  such that

σk(αS) = (T∧α(Bz : z < h(1)))∧(∧1 <  n  <  m (Bα(h(n))∧α(Bz : z∈[1,h(n)))))∧
∧Bα(h(m))∧α(Bz : z > m).

Only if   .  Suppose  y∈OC(αS).  Then  ∃ a∈Orb(αS)  and  ∃ z,n∈N  with
Bz(n) = a(1) = y(1).  Choose the first  h(1)∈N  such that  α(h(1)) = z.  Let

p = Bz−(n−1)+ α(Bk : k < h(1)).  (#) implies whenever  x∈Orb(αS)  and

x(1) = Bz(n),  we have  x|[1, Bz−(n−1)] = Bz|[n, Bz].  Since we may

assume  a|[1,p] = y|[1,p],  there is a tail  T  of  Bz  which is a head of  y.

WLOG  we may assume  T  is a maximal tail of  Bz  in  y.  Further,  (#)

and 2.3(1)  implies whenever  x∈Orb(αS)  and  T  is a head of  x,  then
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T∧α(Bk : k < h(1))  is a head of  x.  So  T∧α(Bk : k < h(1)) = a|[1,p]   is a

head of  y.
Suppose  m∈N  and  ∀n < m  we have defined  h(n)  so that

h|[1,m)  is an increasing sequence and

*).  H = (T∧α(Bz : z < h(1)))∧∧1 <  n  <  m (Bα(h(n))∧α(Bz : z∈[1,h(n))))

is a head of y.  Let  q = 1+ H.  Then  ∃ b∈Orb(αS)  with  b|[1,q] = y|[1,q].
Find the first  u∈N  with  <b(q)> ≤ Bα(u) .  As  <α(h(m−1))>∧α|[1,h(m−1))

is a block in  α,  2.2, (#), and (*)  imply  u > h(m−1).  Let  h(m) = u.  Since
b∈Orb(αS), we can again apply (#) to show  b(q) = Bα(u)(1).  Now

follow the methods of the previous paragraph to show

(T∧α(Bz : z < h(1)))∧∧1 <  n  ≤ m (Bα(h(n))∧α(Bz : z∈[1,h(n))))

is a head of  y.  Thus, the construction of  h  is completed by
recursion.  y  clearly satisfies the conclusion.             //

§6. Systems on  P  with all points recurrent.   We begin with two
standard and easy to prove results in Topological Dynamics.  Note 6.1

is usually stated for the compact case, but  x  is remains almost-
perodic in  [βX,βf],  where  βX  is the Stone- ech compactification of
X  and  βf  is the extension of  f  to  βX.

6.1.  If  x  is almost-periodic in a system   [X;f],  then  OC(x)  is
minimal in   [X;f]  and each point of  OC(x)  is almost-periodic.

6.2.  If  [X;f]  is a minimal system, then each point of  [X;f]  is
recurrent.

Our first example actually lead to the discovery of  α.  Please contrast
it with 6.1.

6.3. Example.  There is a continuous function  f: P → P  such that

[P;f]  is a minimal system, and no point of  P  is almost-periodic in
[P;f].
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\\.  ∀n∈N,  let  [2n−1,2n−1+n−1]  be also considered a sequence  Bn  in

its natural order.  Let  x = α(Bn : n∈N).  According to 4.7,  OC(x)  is

homemorphic to  P.  5.6 shows  [OC(x);σ]  is minimal.

According to 6.1 it suffices to show that  x  is not almost-periodic.

U = {y∈Π : y(1) = 1}  is a neighborhood of  x.   Of course,  σnx∈U  iff
x(n+1) = 1  iff  z ≠ 1  implies  x(n+1)∉rng Bz .  Fix  m∈N.  ∀z ≥ m,  dom Bz
contains an interval  I  of length  m  such that  1∉rng Bz|I.  Therefore,

2.1(4) shows  x  cannot be almost-periodic.                             //

The next example is an expansion of the idea of proof of 5.4 and
should be contrasted with 6.2.

6.4. Example.  There is a continuous function  f : P → P  such that

each point in  P  is recurrent in  [P;f],  but  [P;f]  has no minimal sets.
\\.  ∀n∈N,  define
In  = {2m−1(2n−1) : m∈N}.  During the remainder of this proof we will

consider blocks as either functions or ordered sequences.  ∀n∈N, let

B
n
1     denote the one-element sequence  <2n−1>,  and define,

recursively
1).  ∀m∈N,  ∀n > 1,  m ≠ 0,

B
n
m   = <2m−1(2n−1)>∧α(B

n+1

z    : z < m)∧<2m−1(2n−1)>.

Here are samples:  B
1
1   = <1>,  B

2
1   = <3>,  B

1
2   = <2,3,2>,  B

3
1   = <5>, B

2
2   = <6,5,6>,

B
1
3   = <4,3,6,5,6,3,4>,  B

4
1   = <7>,  B

3
2   = <10,7,10>,  B

2
3   = <12,5,10,7,10,5,12>,

B
1
4   = <8,3,6,5,6,3,12,5,10,7,10,5,12,3,6,5,6,3,8>.

We claim the following is true:

2).  ∀n,m∈N,  rng B
n
m  ç{2m−1(2k−1) : n ≤ k ≤ n+m}.
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Certainly (2) is true when m = 1.  Fix  n∈N  and suppose (2) is true
∀m,i,  m∈N,  i < n.  If  z < m,  then 2.3(2) shows  αz ≤ log2 m < m.  Hence,

by induction,  rng B
n+1

αz   çË{2m−1(2k−1) : n+1 ≤ k ≤ n+m}.  Because

2m−1(2n−1)  is the only element of  rng B
n
m    not considered by the

induction hypothesis,  rng B
n
m  ç{2m−1(2k−1) : n ≤ k ≤ n+m}.

We claim the following is true:

3).  ∀n ≥ 0,  ∀m,z∈N,  m ≠ z,  no head or tail of  B
n
m    is a head or tail of

B
n
z   .

Suppose  n,m,z∈N,  z < m.  If  k ≠ z,  then  2z−1(2k−1)∉Ik.  So (2)

shows,  2z−1(2n−1)∉rng B
n
m   .  As  <2z−1(2n−1)>  is both a head and a tail

of B
n
z    ,  (3) is true.

∀n∈N,  define  xn  = α(B
n
z    : z∈N).   From 5.2,  xn  is recurrent in

[Π;σ].  Since  ∀m∈N,  m ≤ 2m−1(2n−1) = B
n
m(1)  ,  4.7 proves:

4).  ∀n∈N,  OC(xn)  is homeomorphic to  P.

∀n,p∈N,  let  Gp = {y∈Π : y|(1,p) = α(B
n+1

z    : z < p)}.  Then  {Gp : p∈N}

forms a nhbd base at  xn+1 .  But (1) shows that  ∀p∈N,  ∃ m∈N  such

that  α(B
n+1

z    : z < p) ≤ B
n
m   = xn |I  for some interval  I  of  N.  So  ∃

q∈N

with  σqxn∈GpÈOb(xn). Thus,  xn+1∈OC(xn).  Similarly,  ∀r∈N,

σrxn+1∈OC(xn).  Further,  since  xn(1) = 2n−1∉{2m−1(2k−1) : k > n},  (2)

shows  xn∉OC(xn+1).  Hence, we have:

5).  ∀n∈N,  OC(xn+1)√ OC(xn).

Since  ∀n > 1,  n < 2n−1.  (2) implies that  ∀n > 1,  n < min rng xn.

Hence, the following holds:

6).  ∀k∈N,  Èn  > k  OC(xn) = ∅.
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Now fix  n∈N.  Suppose that  y∈OC(xn)  is not recurrent or satisfies

OC(y) ≠ OC(xn).  According to (3), 5.5 finds an  h∈Π  such that  ∀z∈N,

y|[1,z] ≤ Bhz .  So  ∀m∈N,  y|[1,m+1] ≤ B
n
h(α(m))  .  Applying (1),

y|[1,z] ≤ α(B
n+1

h(α(m))   : 1 ≤ z < h(α(m))).  Hence,  y∈OC(xn+1).  From (6):

7).  ∀y∈OC(x0),  y  is stable, and  ∃ n ≥ 0  such that  OC(y) =  OC(xn).

Finally notice that (5), (7), and 6.1 prove  OC(x0)  contains no mini-

mal sets.  Since (4) shows  OC(x0)  is homeomorphic to  P,  OC(x0)

satisfies our requirements.                           //

§7.  Multiple Recurrence.  In this section we are concerned with
multiple systems - systems comprising of more than one map from a
space to itself.  One of the earliest results on multiple systems is due
to  P. Erdös and A. Stone [7b]:

7.1.  x is recurrent (almost-periodic) in a system  [X;f]  iff  x is jointly
recurrent (almost-periodic) in the system  [X;{fn  : n∈N}].

More recent is the Furstenberg-Weiss theorem [8] (improved in [4]):

7.2.  If  f  is a finite family of commuting maps on a compact metric
space  X,  then  [X;f]  has a multiply recurrent point.

7.3.  Lemma.  The following are true:
1).  x  is multiply recurrent in  [Π,{σ1, ... ,σn}]  iff  ∀m∈N,  ∃ k = km∈N

such that  ∀p ≤ n,  x|[kp+1,kp+m] ≡ x|[1,m]

2).  x  is multiply recurrent in  [Π,{σn  : n∈N}]  iff  ∀m∈N,  ∃ k = km∈N

such that  ∀n∈N,  x|[kn+1,kn+m] ≡ x|[1,m].

3).  If  x  is multiply recurrent in  [Π,{σn  : n∈N}],  then  x  is almost-
periodic in  [Π;σ].

\\.   (1) and (2)  are immediate from the definition.  Notice that (2)

implies that for  m∈N,  we can choose  k > m  in the conclusion;
hence,  ∀n∈N,  x|[1,m] ≤ x|[nk+1,(n+1)k].  So (3) holds.                       //
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7.4.  Theorem.  Suppose  (Bz : z∈N)  is a street and  < Bz : z∈N>  is a

constant sequence.  If  φ  is multiply recurrent in  [Π,{σ1, ... ,σn}]  (in

[Π,{σn  : n∈N}]),  then  φ(Bz : z∈N)  is multiply recurrent in

[Π,{σ1, ... ,σn}]  (in  [Π,{σn  : n∈N}]).

\\.  The proof is analogous to the proof of 5.3(1).                          //

7.5.  Corollary.  Suppose  (Bz : z∈N)  is a street with  < Bz : z∈N>  a

constant sequence.  Then  α(Bz : z∈N)  is multiply recurrent in

[Π,{σn  : n∈N}].

\\.  ∀m∈N,  α|[1,2m-1-1] = α|[n.2m+1,n.2m+2m-1-1] = (σn)2m
α|[1,2m-1-1].

So  α  is multiply recurrent in  [Π,{σn  : n∈N}].  Now use 7.2.             //

To see that 7.5 cannot be reversed try (1) of the next exercise.  (2)

shows that almost-periodic points are not necessary to get points
multiply recurrent in each  [Π,{σ1, ... ,σn}].

7.6. EXERCISE.  1).  Prove  β,  the point defined in 5.4,  is multiply

recurrent in  [Π,{σn  : n∈N}].
2).  Prove that the point  x  defined in 6.3 is,  ∀n∈N,  a multiply

recurrent point in  [P,{f1, ... ,fn}].  Are all of the points in  OC(x)
multiply recurrent?

7.7.  Example.  There is a continuous function  f: P → P  such that
[P,f]  is minimal and  ∀y∈P,  y  is not multiply recurrent in  [P;{f,f2}].
\\.  Let  B1 = <1>.  Define  x = α(Bz : z∈N),  where  Bz  is the constant

function  z  of recursively defined length  ∑
k=1

z−1

2z−k Bk   .  The first

"few" terms of  x  are  <1,2,2,1,3,3,3,3,1,2,2,1,4,4,4,4,4,4,4,4,4,4,4,4,1,2,2,1,3,3,3,3,1,2,2,1,

...>.  Notice that  Bα(n)  =  (Bz : α(z) < n)  (see exercise 4.3).

From 3.2  OC(x)  is homeomorphic to  P.  5.6 shows  [OC(x);σ],  and
hence  [OC(x);{σ,σ2}],  is minimal.

Suppose  y∈OC(x).  According to 5.6,  y  can be written as

((T∧α(Bz : z < h(1)))∧∧n  > 1 (Bα(h(n))∧α(Bz : z∈[1,h(n))))),
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where  h∈Π  is increasing and  T  is a maximal tail of  Bα(h(1))  in  y.

Let  t = T  and suppose  p∈N  satisfies  T ≡ y|[p+1,p+t].  Since the  Bz's

have disjoint ranges,  p > (T∧α(Bz : z < h(1))∧Bα(h(2))).  Suppose

m∈N  is the largest integer such that  p ≥ H,  where  H  is the block

((T∧α(Bz : z < h(1)))∧(∧1 <  n  <  m (Bα(h(n))∧α(Bz : z∈[1,h(n)))))∧
∧Bα(h(m)).

Then  Bα(h(m)) < p+1.  Since  T and  Bα(h(m)+1)  have disjoint ranges,

p+1 < ∑
k=1

m

2m−k Bα(n)    = 2. Bα(h(m)) .  Thus,

(H)+ Bα(h(m)) < 2p+1 ≤ 3. Bα(h(m)) = Bα(h(m)+1) ≤ Bα(h(m+1)) .

So  x(2p+1)∈rng Bα(h(m+1)) .    Since  T and  Bα(h(m)+1)  have disjoint

ranges,  σ(y(p)) = x(p+1) ≠ x(2p+1) = σ2(y(p)).  Therefore,  y  is not

multiply recurrent in  [OC(x);{σ,σ2}].                           //

7.8. CONJECTURES.
1.  Suppose  x  is an almost-periodic point in  [∏,σ]  and suppose

fç{σn  : n∈N}  is finite.  Then  [OC(x),f]  has a multiply recurrent

point.
2.  There is a completely metrizable space  X  and an almost-periodic

point  x  in the system  [X,f]  such that each point of  X  fails to be
multiply recurrent in  [X;f]  for some finite  fç{fn  : n∈N}.

7.9. Example.  There are commuting homeomorphisms  f,g : P → P
such that  [P,{f,g}]  is minimal,  ∀p∈P,  OCf(p)ÈOCg(p) = {p}.
Proof.  Let  P be  OC(α)  in  ∏,  where  α  is defined in 2.2.  4.4 shows

P  is homeomorphic to  P.  From 3.2,  P2  is homeomorphic to  P.  Let
f = σ×id  and  g = id×σ.  Then  f  and  g commute.  From 2.3(a) and 6.2,
[P;σ]  is minimal;  hence,  [P2;{f,g}]  is a minimal multiple system.
Clearly,  ∀(x,y)∈P2,  OCf((x,y)) = P×{y}  and  OCg((x,y)) = {x}×P.  So

OCf((x,y))ÈOCg((x,y)) = {(x,y)}.                                  //



27

REFERENCES:
[1] E. Akin, The General Topology of Dynamical Systems,  Graduate Studies in

Mathematics 1, American Mathematical Society, 1993.
[2] E. Akin, J. Auslander, and K. Berg, When in a transitive map chaotic?,  to appear.
[4] B. Balcar, P. Kalasek, and S. Williams, Multiple Recurrence in dynamical systems,

Comment. Math. Univ. Carolina 28  (1987), 607-612.
[6] R. Ellis, Lectures on Topological Dynamics, W.A. Benjamin, Inc. (1969).
[7] R. Engelking, General Topology, Polish Scientific Publishers (1977).
[7b] P. Erdös and A.H. Stone, Some remarks on almost-periodic transformations ,

Bulletin AMS 51  (1945), 126-130
[8] H. Furstenberg, Recurrence in Ergodic Theory and Combinatorial Number Theory,

Princeton Univ. Press (1981).
[9] S. Glasner and D. Maon, Rigidity in topological dynamics,  Ergodic Theory and

Dynamical Systems 9 (1989), 177-188.
[10] W. Gottschalk, Orbit-closure decompositions and almost periodic properties , Bull.

AMS 50  (1944), 915-919.
[11] W. Gottschalk and G. Hedlund, Topological Dynamics, Amer. Math. Soc.

Colloquium Pub. 36  (1955).
[12]  G. Hedlund, Transformations commuting with the shift , Topological Dynamics,  W.

A. Benjamin  (1966), 259-290.
[13]  G. Hedlund, Endomorphisms and automorphisms of the shift dynamical system,

Math. Systems Theory 3  (1969), 320-375.
[14]  Y. Katznelson and B. Weiss, When all points are recurrent/generic,  Ergodic Theory

and Dynamical Systems I Proceedings, Special Year Maryland 1979-80.
[15] J. Pelant and S. Williams, Examples on recurrence,  Papers on General topology and

Applications, to appear.
[16] K. Petersen, Ergodic Theory, Cambridge University Press (1983).
[17] P. Urysohn, Über die Mächtikeit der zusammenhängenden Mengen,  Math. Ann. 94

(1925), 262-285.
[18] S. Williams, Special points arising from self-maps, General Topology and relations to

Modern Analysis 5  (1988), 629-638.

State University of New York at Buffalo,  Buffalo, N.Y. 14214  U.S.A.

Email:  bonvibre@aol.com (preferably)   or   sww@acsu.buffalo.edu

webpage:   http://www.acsu.buffalo.edu:80/~sww/


