

OR Continuous from *what* to WHAT?!?

Medgar Evers College 071206

Section 1. Accordions

y = sin x

$$y = sin \frac{1}{x}$$

not continuous at 0

$$y = sin\frac{1}{x}$$

$$f(x) = x sin \frac{1}{x}$$

f is continuous at 0 even though there are nearly vertical slopes as you approach 0.

$$g(x) = x^2 \sin \frac{1}{x}$$

Here
$$\lim_{h \to 0} \frac{g(h)}{h} = 0$$

$$g(x) = x^2 \sin \frac{1}{x}$$

So g has a derivative at 0,

$$g'(0) = \lim_{h \to 0} \frac{g(h)}{h} = 0$$

$$g(x) = x^2 \sin \frac{1}{x}$$

g'(0) = 0.

Still we have nearly vertical tangents.

Further, there are sequences $\langle a_n \rangle$ and $\langle b_n \rangle$ such that

$$\lim_{n \to \infty} b_n - a_n = 0, \text{ but } \lim_{n \to \infty} \frac{g(b_n) - g(a_n)}{b_n - a_n} = \infty.$$

Section 2. Le Blancmange function

Fix a non-negative integer n. Given a real number x, let k be the greatest non-negative integer such that

 $a_{(x,n)} = 2^{-n}k \le x$ and let $b_{(x,n)} = 2^{-n}(k+1)$. So $x \le b_{(x,n)}$.

Define $f_n : \mathbb{R} \to [0,1]$ by $f_n(x) = \min\{x - a_{(x,n)}, b_{(x,n)} - x\}$.

Fix a non-negative integer n. Given a real number x, let k be the greatest non-negative integer such that

 $a_{(x,n)} = 2^{-n}k \le x$ and let $b_{(x,n)} = 2^{-n}(k+1)$. So $x < b_{(x,n)}$.

Define $f_n : \mathbb{R} \rightarrow [0,1]$ by $f_n(x) = \min\{x - a_{(x,n)}, b_{(x,n)} - x\}$.

2b

THEOREM 2. There is a function continuous at each real x but differentiable at **no** real x.

$$f(x) = \sum_{n=1}^{\infty} f_n(x)$$

Example:

$$f_0(\frac{7}{16}) = \frac{7}{16}; \quad f_1(\frac{7}{16}) = \frac{7}{16}; \quad f_2(\frac{7}{16}) = \frac{1}{16}; \quad f(\frac{7}{16}) = \frac{1}{16}$$

2g

Lemma2: Suppose a function $h : \mathbb{R} \rightarrow \mathbb{R}$ is differentiable at x. If a_n and if b_n are such that $\forall n, a_n \le x \le b_n$, then

Section 3. Stretching zero to one.

Cantor's Middle Third Set C is a subset of [0,1] formed inductively

by deleting middle third open intervals. Say (1/3, 2/3) in step one. In step two, remove the middle-thirds of the remaining two intervals of step one, they are $(1/_9, 2/_9)$ and $(7/_9, 8/_9)$.

In step three, remove the middle thirds of the remaining four intervals.

and so on for infinitely many steps.

What we get is **C**,*Cantor's Middle Thirds Set*.

C is very "thin" and a "spread out" set whose measure is 0 (since the sum of the lengths of intervals removed from [0,1] is 1.

Cantor's Middle Thirds set

As [0,1] is thick and as **C** is a thin subset of [0,1], the following is surprising:

THEOREM 3.

There is a continuous function from **C** onto [0,1].

Cantor's Middle Thirds set

THEOREM 3. There is a continuous function from **C** onto [0,1].

The points of **C** are the points equal to the sums of infinite series of form

$$\sum_{n=1}^{\infty} 2s(n)3^{-n} \text{ where } s(n) \in \{0,1\}.$$

$$F(\sum_{n=1}^{\infty} 2s(n)3^{-n}) = \sum_{n=1}^{\infty} s(n)2^{-n}$$

defines a continuous surjective function whose domain is **C** and whose range is [0,1].

Example. The two geometric series show F(1/3)=F(2/3)=1/2.

Picturing the proof.

Stretch the two halves of step 1 until they join at 1/2.

Now stretch the two halves of each pair of step 2 Until they join at 1/4 and 3/4...

Each point is moved to the sum of an infinite series.

Section 4. Advancing Dimension

$\mathsf{N} \leftrightarrow \mathsf{N}^2$

2ⁿ⁻¹(2m-1) ←

<m,n>

	1	2	3	4
1	1	2	4	8
2	3	6	12	24
3	5	10	20	40
4	7	14	28	56

	1	2	3	4
1	<1,1>	<1,2>	<1,3>	<1,4>
2	<2,1>	<2,2>	<2,3>	<2,4>
3	<3,1>	<3,2>	<3,3>	<3,4>
4	<4,1>			

Theorem4. There is a continuous function from [0,1] onto the square.

We'll cheat and do it with the triangle.

4c

An java animated version of a different Space Filling Curve can be found at

http://www.geom.uiuc.edu/~dpvc/CVM/1998/01/vsfcf/arti cle/sect2/brief_history.html

Section 5. An addition for the irrationals

By an *addition* for those objects $X \in [0,\infty)$ we mean a continuous function $s : X \times X \rightarrow X$ (write x+y instead of $s(\langle x,y \rangle)$) such that for x+y the following three rules hold:

(1). x+y = y+x (the commutative law) and (2). (x+y)+z = x+(y+z) (the associative law).

With sets like Q, the set of positive rationals, the addition inherited from the reals R works, but with the set P of positive irrationals it does not work: $(3+\sqrt{2})+(3-\sqrt{2})=6$.

THEOREM5.

The set **P** of positive irrationals has an addition.

Our aim is to consider another object which has an addition And also "looks like" **P**.

Continued fraction

Given an irrational x, the sequence <a_n> is computed as follows:

Let G(x) denote the greatest integer $\leq x$. Let $a_0 = G(x)$.

If $a_{0,n}a_n$ have been found as below, let $a_{n+1} = G(1/r)$.

Continuing in this fashion we get a sequence which converges to x. Often the result is denoted by

However, here we denote it by $CF(x) = \langle a_0, a_1, a_2, a_3, \dots \rangle$.

We let $\leq 2 >$ denote the constant $\leq 2, 2, 2, 2, \ldots >$. Note $\leq 2 > = CF(1 + \sqrt{2})$ since

Hint: A quick way to prove the above is to solve for x in $x = 2 + \frac{1}{x}$ or $x^2 - 2x - 1 = 0$.

5e

Prove <1> = CF(
$$\frac{1+\sqrt{5}}{2}$$
) and <1,2> = CF($\frac{2+\sqrt{3}}{2}$)

We add two continued fractions "pointwise," so $<\underline{1}>+<\underline{1,2}>=<\underline{2,3}>$ or <2,3,2,3,2,3,2,3,...>.

Here are the first few terms for π , <3,7,15,1,...>. No wonder your grade school teacher told you $\pi = 3 + \frac{1}{7}$. The first four terms of CF(π), <3,7,15,1> approximate π to 5 decimals.

Here are Euler's first few terms for e, <2,1,2,1,1,4,1,1,6,1,1,8,1,1,10,1,1,12,....>

Lemma. Two irrationals x and y are "close" as real numbers iff the "first few" partial continued fractions of CF(x) and CF(y) are identical.

For example <2,2,2,2,2,1,1,1,...> and <<u>2</u>> are close, but <2,2,2,2,2,2,2,2,2,91,5,5,...> and <<u>2</u>> are closer.

Here is the "addition:" We define $x \oplus y = z$ if CF(z) = CF(x) + CF(y). Then the lemma shows \oplus is continuous. However, strange things happen:

 $\frac{1+\sqrt{5}}{2} \oplus \frac{1+\sqrt{5}}{2} = 1+\sqrt{2}$

Problems

1. How many derivatives has

$$g(x) = x^2 \sin \frac{1}{x}$$

2. Prove that each number in [0,2] is the sum of two members of the Cantor set.

Problems

3. Prove there is no distance non-increasing function whose domain is a closed interval in **N** and whose

range is the unit square $[0,1] \times [0,1]$.

4. Determine
$$\sqrt{2} \oplus \frac{2 + \sqrt{3}}{2}$$

BUFFALO SPACEPORT OF THE FUTURE

BUFFALO SPACEPORT OF THE FUTURE