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Section 1. Accordions

 y = sin x
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 y = sin x

 

y = sin _
x
1

not continuous at 0
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f(x) = xsin1
x

f  is continuous at  0
even though there are
nearly vertical slopes
as you approach 0.
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y = sin_
x
1



g(x) = x2sin

Here  lim

1_
x

h → 0
___
  h
g(h) = 0
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g(x) = x2sin 1_
x

So g has a 
derivative at 0,
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g’(0) = lim
h → 0

___
  h
g(h) = 0



g(x) = x sin2 1_
x

g’(0) = 0.
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Still we have nearly 
vertical tangents.



g(x) = x sin2 1_
x

Further, there are sequences <an >  and  <bn >  such that
 
lim  b  -  a  = 0,  but  limn nn→∞

g’(0) = 0.

___________g(b  ) - g(a  )n n
b  -  a

nn

= ∞.n→∞

1g

We have nearly 
vertical tangents.



Section 2. Le Blancmange function
Fix a non-negative integer  n. Given a real number x, let k

be the greatest non-negative integer such that

a(x,n) = 2-nk ≤ x and let  b(x,n) = 2-n(k+1). So  x < b(x,n).

Define fn : R→ [0,1]  by  fn(x) = min{x-a(x,n),b(x,n)-x}.
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Fix a non-negative integer  n. Given a real number x, let k  be the
greatest non-negative integer such that

a(x,n) = 2-nk ≤ x and let  b(x,n) = 2-n(k+1). So  x < b(x,n).

Define fn : R→ [0,1]  by  fn(x) = min{x-a(x,n),b(x,n)-x}.

k = 0
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2d
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    f(x) = ∑fn(x)
n=1

∞

THEOREM 2. There is a function contiunous 
at each real  x  but differentiable at no real  x.

Example:

f0(    ) = f1(    ) =7  ;__
16

7__
16

7__
16

7  ;__
16

f2(    ) =__
16

1  ;__
16

7 f(    ) =__
16

1  .__
16

7
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    f(x) = ∑fn(x)
n=1

∞

≤ ∑2-n
n=1

∞
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Lemma2:  Suppose a function  h : R→R is
differentiable at  x. If an and if bn are such
that ∀n,  an ≤ x ≤ bn,  then

h'(x) = __________
   bn - an

h(bn) - h(an)lim
n→∞
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Section 3. Stretching zero to one.

Cantor's Middle Third Set C is a subset of
[0,1] formed inductively

by deleting middle third open intervals.
Say (1/3,2/3) in step one.
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In step two, remove the middle-thirds of the 
remaining two intervals of step one, they are  
(1/9,2/9)  and  (7/9,8/9).  

In step three, remove the middle thirds of the 
remaining four intervals. 

and so on for infinitely many steps.
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C is very “thin” and a
“spread out” set whose
measure is 0 (since the
sum of the lengths of
intervals removed from
[0,1] is 1.

What we get is C,Cantor’s 
Middle Thirds Set.
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3d

As [0,1] is thick and as
C is a thin subset of [0,1],
the following is surprising:

There is a continuous
function from C onto [0,1].

THEOREM 3.



THEOREM 3. There is a continuous
function from C onto [0,1].

The points of  C are the points equal to the sums of
infinite series of form

where s(n) ∈{0,1}.∑2s(n)3
n=1

-n∞
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n=1

-nF( ∑2s(n)3  ) = ∑s(n)2
n=1

∞

Example. The two geometric series 
show  F(1/3)=F(2/3)=1/2.

-n ∞

defines a continuous surjective function 
whose domain is C and whose range is [0,1]. 
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Stretch the two halves of step 1 until they join at 1/2.
Now stretch the two halves of each pair of step 2
Until they join at 1/4 and 3/4…
Each point is mo ved t  o the sum of an infinite series.

Picturing the proof.
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Section 4. Advancing Dimension

N    ↔    N2

 

2n-1(2m-1)    ↔     <m,n>
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Theorem4. There is a continuous function from
[0,1] onto the square.

We’ll cheat and do it with the triangle.
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An java animated version of a different Space
Filling Curve can be found at
http://www.geom.uiuc.edu/~dpvc/CVM/1998/01/vsfcf/arti

cle/sect2/brief_history.html

4e



Section 5. An addition for the irrationals

By an addition for those objects  X∈[0,∞)  we
mean a continuous function  s : X×X → X
(write  x+y  instead of  s(<x,y>))  such that for  x+y
the following three rules hold:

(1).  x+y = y+x   (the commutative law)  and
(2).  (x+y)+z = x+(y+z)   (the associative law).

With sets like Q, the set of positive rationals, the 
addition inherited from the reals R works,   but 
with the set  P  of positive irrationals it does not 
work:  (3+√2 )+(3-√2) = 6.
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THEOREM5.
The set  P of positive irrationals has an addition.

Our aim is to consider another object which has an addition
And also “looks like” P.

Continued fraction
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Given an irrational  x,  the sequence  <an>
is computed as follows:

Let  G(x)  denote the greatest integer  ≤ x.  Let  a0 = G(x).

If  a0,,,an  have been found as below,  let  an+1 = G(1/r).
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Continuing in this fashion we get a sequence
which converges to  x. Often the result is
denoted by

 

However, here we denote it by  CF(x) = < a0, a1, a2,a3,…>.
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We let <2> denote the constant < 2, 2, 2, 2,…>.
Note  <2> = CF(1+ √2) since

Hint: A quick way to prove the above is to solve for  x in  x = 2+ __
x
1 or  x - 2x - 1 = 0.2
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Prove  <1> = CF(         )  and  <1,2> = CF(         )
  

1+ 5

2
 

  

2+ 3

2
 

We add two continued fractions “pointwise,” so
<1>+<1,2> =<2,3>  or <2,3,2,3,2,3,2,3,…>.

Here are the first few terms for  π, <3,7,15,1,…>.
No wonder your grade school teacher told you
π= 3 +    .  The first four terms of  CF(π), <3,7,15,1>
approximate π to 5 decimals.

__
7
1

Here are Euler’s first few terms for  e,
<2,1,2,1,1,4,1,1,6,1,1,8,1,1,10,1,1,12,….>
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Lemma. Two irrationals  x and y  are "close" as real
numbers iff the "first few" partial continued fractions of
CF(x)  and  CF(y)  are identical.

For example  <2,2,2,2,2,1,1,1,…> and <2>  are close,
but  <2,2,2,2,2,2,2,2,2,91,5,5,…> and <2> are closer.

Here is the “addition:”   We define  x⊕y = z if  
CF(z) = CF(x) + CF(y).
Then the lemma shows  ⊕  is continuous.
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1+ 5

2
!

1+ 5

2
=1+ 2  

However, strange things happen:
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1. How many derivatives has

g(x) = x sin2 _
x
1

2. Prove that each number in [0,2] is the 
sum of two members of the Cantor set.

p1

Problems



Problems

3. Prove there is no distance non-increasing function 
whose domain is a closed interval in  N and whose 

range is the unit square [0,1] × [0,1] .

4. Determine

  
2!

2 + 3

2
 

p2










