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Abstract. We give some remarks on two closely related issues as stated in
the title. In particular we show that a Montesinos knot is SU(2)-simple if and
only if it is a 2-bridge knot, extending a result of Zentner for 3-tangle summand
pretzel knots. We conjecture with some evidence that an SU(2)-cyclic rational
homology 3-sphere is an L-space.

For a knotK in S3, MK will be its exterior and μ a meridian slope ofK. Up to a
choice of an orientation for μ and a choice of the base point for π1(MK), we may also
consider μ as an element of π1(MK). A representation ρ : π1(MK)→SU(2) is called
trace free if the trace of ρ(μ) is zero (which is obviously well defined). An SU(2)-
representation of π1(MK) is called binary dihedral if its image is isomorphic to a
binary dihedral group. Note that every binary dihedral representation of π1(MK)
is trace free [K, Proof of Theorem 10]. A knot K is called SU(2)-simple if every
irreducible trace free SU(2)-representation of π1(MK) is binary dihedral.
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Figure 1. A Montesinos link K(e; q1/p1, q2/p2, ..., qn/pn).

A Montesinos link is usually denoted by K(e; q1/p1, q2/p2, ..., qn/pn) where
qi/pi represents a rational tangle, |pi| > 1 and (qi, pi) = 1 for all i (see Figure
1). By combining the e twists in the figure with one of the tangles, we may assume
that e = 0, and we will simply write a Montesinos link as K(q1/p1, · · · , qn/pn)
and sometimes we refer it as a cyclic tangle sum of n rational tangles. When
qi = 1, i = 1, ..., n, we get a pretzel link. In [Z1] it was shown that every pretzel
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knot K(1/p, 1/q, 1/r), p, q, r pairwise coprime, is not SU(2)-simple. In this pa-
per we extend this result to all Montesinos knots of at least three rational tangle
summands.

Theorem 1. Every Montesinos knot K(q1/p1, · · · , qn/pn), where n ≥ 3 and
|pi| > 1 for all i = 1, ..., n, is not SU(2)-simple.

For any SU(2)-representation ρ : π1(MK)→SU(2), let ρ̄ : π1(MK)→PSU(2) be
the induced PSU(2)-representation. If ρ : π1(MK)→SU(2) is a trace free repre-
sentation, then ρ(μ) is an order 4 matrix and ρ(μ2) = −I, where I is the identity
matrix of SU(2). So ρ̄ : π1(MK)→PSU(2) factors through the quotient group
π1(MK)/〈μ2〉, where 〈μ2〉 denotes the normal subgroup of π1(MK) generated by
μ2. Let Σ2(K) denote the double branched cover of (S3,K), then π1(Σ2(K)) is
an index two subgroup of π1(MK)/〈μ2〉. It is known that a trace free irreducible
representation ρ : π1(MK)→SU(2) is binary dihedral if and only if the restriction of
ρ̄ on π1(Σ2(K)) has nontrivial cyclic image [K, Section I.E]. For any 2-bridge knot
K, Σ2(K) is a lens space and so every irreducible trace free SU(2)-representation
of π1(MK) is binary dihedral, that is, every 2-bridge knot is SU(2)-simple. As a
Montesinos knot is a 2-bridge knot if and only if it has lass than three rational
tangle summands, we have

Corollary 2. A Montesinos knot is SU(2)-simple if and only if it is a 2-bridge
knot.

By [KM, Corollary 7.17], every nontrivial knot in S3 has an irreducible trace
free SU(2)-representation. It follows that if the double branched cover of a non-
trivial knot K is a homology 3-sphere, i.e. if the knot determinant |ΔK(−1)| = 1
where ΔK(t) is the Alexander polynomial of K, then K is not SU(2)-simple.

A 3-manifold Y is called SU(2)-cyclic (resp. PSU(2)-cyclic) if every SU(2)-
representation (resp. PSU(2)-representation) of π1(Y ) has cyclic image. In general
PSU(2)-cyclic is a stronger condition than SU(2)-cyclic, that is, PSU(2)-cyclic
implies SU(2)-cyclic but not the other way around. Since Σ2(K) is an Z2-homology
3-sphere [R, Cor 3 of 8D], every PSU(2)-representation of π1(Σ2(K)) lifts to an
SU(2)-representation [BZ, Page 752] and thus Σ2(K) is SU(2)-cyclic if and only if
it is PSU(2)-cyclic. So if Σ2(K) is SU(2)-cyclic, then K is an SU(2)-simple knot.
The following question concerns the converse.

Question 3. Is there an SU(2)-simple knot K in S3 whose double branched
cover Σ2(K) is not SU(2)-cyclic (that is, the double branched cover Σ2(K) has
irreducible PSU(2)-representations but none of them extend to MK)?

One may consider an SU(2)-cyclic 3-manifold as an SU(2)-representation L-
space. The following conjecture suggests that for a rational homology 3-sphere
being SU(2)-cyclic is more restrictive than being a usual L-space in the Heegaard
Floer homology sense.

Conjecture 4. If a rational homology 3-sphere is SU(2)-cyclic, then it is an
L-space.

Certainly the converse of Conjecture 4 does not hold; there are many L-spaces
which are not SU(2)-cyclic. For instance, the double branched covers of all alter-
nating Montesinos knots of at least three tangle summands are not SU(2)-cyclic
but are L-spaces.
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Here are some evidences for the conjecture. Let K1 = T (p1, q1) and K2 =
T (p2, q2) be two torus knots in S3, and let M1 and M2 be their exteriors. Let
Y (T (p1, q1), T (p2, q2)) be the graph manifold obtained by gluing M1 and M2 along
their boundary tori by an orientation reversing homeomorphism h : ∂M1→∂M2

which identifies the meridian slope in ∂M1 to the Seifert fiber slope in ∂M2 and
identifies the Seifert fiber slope in ∂M1 with the meridian slope in ∂M2. By [Mot,
Proposition 5] Y (T (p1, q2), T (P2, q2)) has only cyclic PSL2(C)-representations. (Al-
though it was assumed in [Mot] that all p1, q1, p2, q2 are positive, the same ar-
gument with obvious modification works without this assumption). Therefore
Y (T (p1, q1), T (p2, q2)) is SU(2)-cyclic.

Proposition 5. Y (T (p1, q1), T (p2, q2)) is an L-space.

Proof. We prove this assertion by applying [HW, Theorem 1.6]. By that
theorem, we just need to verify that h(L◦

M1
) ∪ L◦

M2

∼= Q ∪ {1/0}, where L0
Mi

is the
interior of the set of L-space filling slopes of Mi, i = 1, 2. Note that a general torus
knot can be expressed as T (p, q) with (p, q) = 1 and |p|, q ≥ 2. By [OS, Corollary
1.4]

(1) L0(Mi) = { slopes in the open interval (piqi − pi − qi,∞), if pi > 0,
slopes in the open interval (−∞, piqi − pi + qi), if pi < 0.

Let μi, λi be the meridian and longitude of Ki. Note that piqi is the Seifert fiber
slope in ∂Mi. We have h(μ1) = μp2q2

2 λ2 and h(μp1q1
1 λ1) = μ2. Hence for a general

slope m/n in ∂M1, where m,n are relative prime,

h(μm
1 λn

1 ) = h(μm−p1q1n
1 (μp1q2

1 λ1)
n) = (μp2q2

2 λ2)
m−p1q1nμn

2

= μ
p2q2(m−p1q1n)+n
2 λm−p1q1n

2 .

Now suppose a/b is a slope in ∂M2, where a, b are relatively prime. Choose n =
a−p2q2b and m = p1q1(a−p2q2b)+b, then m,n are relatively prime, h(m/n) = a/b,
and

(2)
m

n
= p1q1 +

b

a− p2q2b
= p1q1 +

1
a
b − p2q2

.

Case 1. p1 > 0 and p2 > 0.
For any a/b /∈ L0(M2), i.e. either a/b = 1/0 or a/b is finite and a/b ≤ p2q2 −

p2 − q2 by (1), choose correspondingly in ∂M1 the slope m/n = p1q1 or as in (2)
which yields m/n ≥ p1q1 +

1
−p2−q2

> p1q1 − 1. So in either case m/n ∈ L0(M1) by

(1) and h(m/n) = a/b, which means h(L◦
M1

) ∪ L◦
M2

∼= Q ∪ {1/0} in this case.
Case 2. p1 > 0 and p2 < 0.
For any a/b /∈ L0(M2), we may assume that a/b is finite and so a/b ≥ p2q2 −

p2 + q2 by (1). So a
b − p2q2 is positive. Choose the slope m/n in ∂M1 as in (2)

which yields m/n > p1q1 in this case. So m/n ∈ L0(M1) by (1) and h(m/n) = a/b.
Thus h(L◦

M1
) ∪ L◦

M2

∼= Q ∪ {1/0} holds in this case.
Case 3. p1 < 0 and p2 > 0.
This case is really Case 2 if we switch K1 and K2.
Case 4. p1 < 0 and p2 < 0.
For any a/b /∈ L0(M2), again we may assume a/b is finite and so a/b ≥ p2q2 −

p2 + q2 by (1). Choose the slope m/n in ∂M1 as in (2) which yields m/n ≤ p1q1 +
1

−p2+q2
< p1q1+1. So m/n ∈ L0(M1), h(m/n) = a/b and we have h(L◦

M1
)∪L◦

M2

∼=
Q ∪ {1/0}.
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The proof of Proposition 5 is now completed. �

It was shown in [Z2] that if p1q1p2q2 − 1 is odd, then Y (T (p1, q1), T (p2, q2)) is
the double branched cover of an alternating knot in S3, so Y (T (p1, q1), T (p2, q2))
is an L-space and the knot in S3 is an SU(2)-simple knot (and is an arborescent
knot) but is not a 2-bridge knot.

Remark 6. It is pointed out by Steven Sivek and the referee that Proposition 5
actually follows from [Z2]; the proof of the result of [Z2] cited above generalizes im-
mediately to give the conclusion that Y (T (p1, q1), T (p2, q2)) is the double branched
cover of an alternating link in S3 and thus is an L-space. Proving Proposition 5
this way gives a little more information for free, because branched double covers of
alternating links are known to be L-spaces in pretty much every version of Floer
homology including monopole Floer homology and (framed) instanton homology.
By contrast, the proof using [HW] does not apply in instanton homology.

There are also examples of hyperbolic rational homology 3-spheres which are
SU(2)-cyclic [C]. These examples are also double branched covers of alternating
knots in S3 and thus are L-spaces. These alternating knots are thus SU(2)-simple
but are not arborescent.

Conjecture 4 can be equivalently stated as: if an rational homology 3-sphere
is not an L-space, then it has an irreducible SU(2)-representation. There are ev-
idences supporting the conjecture from this point of view. For instances Dehn
surgery on any nontrivial knot in S3 with any slope in the interval (−1, 1) yields a
manifold which is not an L-space [OS] and is not SU(2)-cyclic either [KM].

Steven Sivek and the referee provide the following remark with further evidence
for Conjecture 4.

Remark 7. A rational homology 3-sphere Y which is SU(2)-cyclic is conjec-
turally an instanton homology L-space (meaning I#(Y ) has rank |H1(Y )|). On the

other hand I#(Y ) is conjecturally isomorphic to ̂HF (Y ). It was shown in [BS, The-
orem 4.6] that if Y is a SU(2)-cyclic rational homology 3-sphere whose fundamental
group is cyclically finite, then Y is an instanton homology L-space. Here the notion
of cyclically finite was first defined in [BN] meaning that as ρ ranges over reducible
representations of π1(Y )→SU(2), all of the finite cyclic covers of Y corresponding
to subgroups ker(ad(ρ)) � π1(Y ) are rational homology 3-spheres.

Proof of Theorem 1. Let K = K(q1/p1, · · · , qn/pn) be a Montesinos knot
with n ≥ 3. We need to show that π1(MK) has an irreducible trace free SU(2)-
representation which is not binary dihedral. Here is an outline of how the proof
goes. We show that the double branched cover Σ2(K) has an irreducible PSU(2)-
representation ρ̄0 which can be extended to an PSU(2)-representation ρ̄ of π1(MK)
up to conjugation. This PSU(2)-representation ρ̄ lifts to an SU(2)-representation
ρ of π1(MK) which is automatically trace free. Since ρ̄0 is an irreducible repre-
sentation, ρ is not binary dihedral. The existence of ρ̄0 is provided by [B]. We
first apply some ideas from [Mat] to show that ρ̄0 extends to a unique PSL2(C)-
representation ρ̄ of π1(MK). Then we further show that this ρ̄ is conjugate to an
PSU(2)-representation by applying some results from [HP][CD].

Now we give the details of the proof. For a finitely generated group Γ, R̄(Γ) =
Hom(Γ, PSL2(C)) denotes the PSL2(C) representation variety of Γ and X̄(Γ) the
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PSL2(C) character variety of Γ. Let t : R̄(Γ)→X̄(Γ) be the map which sends a rep-
resentation ρ̄ to its character χρ̄. We shall write an element in PSL2(C) as Ā which
is the image of an element A in SL2(C) under the quotient map SL2(C)→PSL2(C)
and for convenience we sometimes call elements in PSL2(C) as matrices. For any
Ā ∈ PSL2(C) define tr2(Ā) = (trace(A))2 which is obviously well defined. Recall
that the character χρ̄ of an PSL2(C)-representation ρ̄ is the function χρ̄ : Γ→C

defined by χρ̄(γ) = tr2(ρ̄(γ)).
A character χρ̄ is real if χρ̄(γ) ∈ R for all γ ∈ Γ. If we consider X̄(Γ) as an

algebraic subset in Cn (for some n), then real characters of X̄(Γ) correspond to real
points of X̄(Γ), i.e. points of X̄(Γ)∩Rn. If σ : Cn→Cn (for each n ≥ 1) denotes the
operation of coordinatewise taking complex conjugation, then any complex affine
algebraic set Y in Cn defined over Q is invariant under σ and the set of real points
of Y is precisely the fixed point set of σ in Y . Note that R̄(Γ) and X̄(Γ) are both
algebraic sets defined over Q and that the map t : R̄(Γ)→X̄(Γ) is an algebraic map
defined over Q, we thus have the following commutative diagram of maps:

R̄(Γ)
σ−→ R̄(Γ)

↓t ↓t
X̄(Γ)

σ−→ X̄(Γ).

It follows that σ(χρ̄) = χσ(ρ̄).

Recall that a representation ρ̄ ∈ R̄(Γ) is called irreducible if the image of ρ̄
cannot be conjugated into the set {Ā; A upper triangular} ([BZ, Definition on
page 752]). Two irreducible representations in R̄(Γ) are conjugate if and only if
they have the same character (This property is proved in [BZ, the second paragraph
on page 753]).

If W is a compact manifold, R̄(W ) and X̄(W ) denote R̄(π1W ) and X̄(π1W )
respectively.

Let K = K(q1/p1, · · · , qn/pn) and M = MK. We may assume that all pi are

positive (by changing the sign of qi if necessary). Let p : M̃→M be the 2-fold cyclic
covering and let μ̃ = p−1(μ) which is a connected simple closed essential curve in

∂M̃ which double covers μ. Then p∗ : π1(M̃)→π1(M) is an injection and we may

consider π1(M̃) as an index two normal subgroup of π1(M), in which μ̃ = μ2. Dehn

filling M̃(μ̃) of M̃ with the slope μ̃ is the double branched cover Σ2(K) of (S3,K).

The covering involution τ on M̃ extends to one on M̃(μ̃) which we still denote

by τ . Montesinos proved in [Mont1][Mont2] that M̃(μ̃) admits a Seifert fibering
invariant under the covering involution τ , the base orbifold of the Seifert fibred
space is S2(p1, ..., pn) which is the 2-sphere with n cone points of orders p1, ..., pn,
and τ descends down to an involution τ̄ on S2(p1, ..., pn) which is a reflection in a
circle passing through all the cone points (see Figure 2).

We denote the orbifold fundamental group of S2(p1, ..., pn) by Δ(p1, ..., pn)
which has the following presentation:

Δ(p1, ..., pn) = 〈a1, ..., an; api

i = 1, i = 1, ..., n, a1a2 · · · an = 1〉.

Geometrically the element ai is represented by the loop b−1
i−1bi shown in Figure 2

(b0 is the trivial loop). Note that there is a quotient homomorphism from π1(M̃(μ̃))
onto Δ(p1, ..., pn).

It was shown in [Mat, Section 3.3] that when n = 3 any irreducible PSL2(C)-

representation of π1(M̃) which factors through π1(M̃(μ̃)) has a unique extension to
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π1(M). Note that this extended representation can be lifted to a trace free SL2(C)-
representation of π1(M). We shall slightly extend this result to the following

τ
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n
b b

b

b
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n-1

x0

_
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ccc c

Figure 2. The orbifold S2(p1, · · · , pn), its involution τ̄ and the
generating set b1, ..., bn−1 for Δ(p1, ..., pn), where x0 is the base
point and c1, ..., cn are cone points of orders p1, ..., pn respectively.

Proposition 8. Let δ be the composition of the three quotient homomorphisms

π1(˜M)→π1(˜M(μ̃))→Δ(p1, p2, ..., pn)→Δ(p1, p2, p3).

Let φ : Δ(p1, p2, p3)→PSL2(C) be any irreducible representation. Then ρ̄0 = φ ◦ δ
has a unique extension to π1(MK).

Proof. The proof for uniqueness is verbatim as that given in [Mat] on page
38-39. We need to note that as K(q1/p1, · · · , qn/pn) is a knot at most one of pi’s
is even. So [Mat, Lemma 2.4.9] still applies to our current case, i.e. the center of
the image group of ρ̄0 is the trivial group.

Claim 9. There will be an extension ρ̄ if and only if there is Ā ∈ PSL2(C)
such that Ā2 = Ī (where I is the identity matrix of SL2(C)) and Āρ̄0(β)Ā

−1 =

ρ̄0(μβμ
−1) for all β ∈ π1(M̃).

Again this claim can be proved verbatim as that of [Mat, Claim 3.3.2].
So to finish the proof of Proposition 8, we just need to find an Ā ∈ PSL2(C)

with the properties stated in Claim 9, which is what we are going to do in the rest
of the proof of Proposition 8. Recall that M̃(μ̃) is the Dehn filling of M̃ with a
solid torus N whose meridian slope is identified with the slope μ̃. The core circle
of N is the fixed point set of τ in M̃(μ̃). Let D be a meridian disk of N such that
the fixed point of τ in D (the center point of D) is disjoint from the singular fibers

of the Seifert fibred space M̃(μ̃). Choose a point x̃ in ∂D and let x̃0 be the center
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point of D. Then arguing as on [Mat, Page 40] we have the following commutative
diagram:

π1(M̃, x̃) −→ π1(M̃(μ̃), x̃) −→π1(M̃(μ̃), x̃0) −→ Δ(p1, ...., pn)

↓(·)μ ↓τ̄∗ ↓τ̄∗

π1(M̃, x̃) −→ π1(M̃(μ̃), x̃) −→π1(M̃(μ̃), x̃0) −→ Δ(p1, ...., pn)

where (·)μ : π1(M̃, x̃)→π1(M̃, x̃) corresponds to the conjugation action by μ, i.e.
(β)μ = μβμ−1 and Δ(p1, ..., pn) is the orbifold fundamental group of S2(p1, ..., pn)
whose base point is the image x0 of the point x̃0 under the quotient map

M̃(μ̃)→S2(p1, ..., pn).

Figure 2 shows the generating set b1, ..., bn−1 of the orbifold fundamental group
Δ(p1, ..., pn) of S

2(p1, ..., pn). In fact we have

a1 = b1, a2 = b−1
1 b2, a3 = b−1

2 b3, · · · , an−1 = b−1
n−2bn−1, an = b−1

n−1

and conversely

b1 = a1, b2 = a1a2, b3 = a1a2a3, · · · , bn−1 = a1a2 · · · an−1, bn−1 = a−1
n .

Obviously from Figure 2 the induced isomorphism τ̄∗ : Δ(p1, ..., pn)→Δ(p1, ..., pn)
sends bi to b−1

i , i = 1, ..., n− 1. So we have

τ̄∗(a1) = a−1
1 , τ̄∗(a2) = b1b

−1
2 = a1a

−1
2 a−1

1 , τ̄∗(a3) = b2b
−1
3 = a1a2a

−1
3 a−1

2 a−1
1 ,

· · · , τ̄∗(an−1) = bn−2b
−1
n−1 = a1a2 · · · an−2a

−1
n−1a

−1
n−2 · · · a−1

2 a−1
1 , τ̄∗(an) = τ̄∗(b

−1
n−1) =

bn−1 = a−1
n .

Since the quotient homomorphism

Δ(p1, · · · , pn) = 〈a1, ..., an; api

i = 1, i = 1, ..., n, a1a2 · · · an = 1〉
−→Δ(p1, p2, p3) = 〈ā1, ā2, ā3; āpi

i = 1, i = 1, 2, 3, ā1ā2ā3 = 1〉
sends ai to āi, i = 1, 2, 3, and send ai to 1, i = 4, ..., n. we see that τ̄∗ de-
scents to an isomorphism τ̄# : Δ(p1, p2, p3)→Δ(p1, p2, p3) such that τ̄#(ā1) = ā−1

1 ,

τ̄#(ā2) = ā1ā
−1
2 ā−1

1 , τ̄#(ā3) = ā1ā2ā
−1
3 ā−1

2 ā−1
1 and we have the following commu-

tative diagram:

π1(M̃) −→ π1(M̃(μ̃)) −→ Δ(p1, ...., pn) −→ Δ(p1, p2, p3)
φ−→ PSL2(C)

↓(·)μ ↓τ∗ ↓τ̄∗ ↓τ̄#

π1(M̃) −→ π1(M̃(μ̃)) −→ Δ(p1, ...., pn) −→ Δ(p1, p2, p3)
φ−→ PSL2(C)

So τ̄#(ā1ā2) = ā−1
2 ā−1

1 = (ā1ā2)
−1. Since Δ(p1, p2, p3) is generated by ā1, ā2,

we see by applying [BZ, Lemma 3.1] that φ and φ ◦ τ̄# have the same PSL2(C)

character. (In fact if φ(ā1) = Ā1 and φ(ā2) = Ā2, then φ(ā1ā2) = Ā1Ā2 = A1A2,

(φ ◦ τ̄#)(ā1) = (Ā1)
−1 = A−1

1 , (φ ◦ τ̄#)(ā2) = Ā1(Ā2)
−1(Ā1)

−1 = A1A
−1
2 A−1

1

and (φ ◦ τ̄#)(ā1ā2) = (Ā2)
−1(Ā1)

−1 = (A1A2)−1. Now let F2 be the free group
on two generators ξ1 and ξ2. Let ρ1 and ρ2 be the SL2(C) representations of
F2 defined by ρ1(ξi) = Ai, i = 1, 2, and ρ2(ξ1) = A−1

1 , ρ2(ξ2) = A1A
−1
2 A−1

1 .
Then one can easily verify that tr(ρ1(ξ1)) = tr(ρ2(ξ1)), tr(ρ1(ξ2)) = tr(ρ2(ξ2)) and
tr(ρ1(ξ1ξ2)) = tr(ρ2(ξ1ξ2)). So [BZ, Lemma 3.1] applies.) So φ and φ ◦ τ̄# are
conjugate PSL2(C) representations, that is, there is Ā ∈ PSL2(C) with ĀφĀ−1 =
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φ◦ τ̄#. Combining this with the definition of ρ̄0 and the last commutative diagram,

we see that Āρ̄0(β)Ā
−1 = ρ̄0(μβμ

−1) for each β ∈ π1(M̃). The proof of Proposition
8 is now finished. �

Now by [B], every triangle group Δ(p1, p2, p3) has an irreducible SO(3) ∼=
PSU(2)-representation. Therefore there is an irreducible representation ρ̄0 as given
in Proposition 8 with its image contained in PSU(2). So the character χρ̄0

of ρ̄0
is real valued. Let ρ̄ be the unique extension of ρ̄0 to π1(M) as guaranteed by
Proposition 8. The rest of proof is to show that ρ̄ is also a PSU(2)-representation.

Claim 10. The character χρ̄ of ρ̄ is real valued.

Suppose otherwise. Recall that σ : X̄(M)→X̄(M) is the operation of taking
complex conjugation and a character is real valued if and only if it is a fixed point of
σ. So χρ̄ �= σ(χρ̄) = χσ(ρ̄) are two different characters of irreducible representations
and thus ρ̄ and σ(ρ̄) are non-conjugate representations. But χρ̄0

= σ(χρ̄0
) = χσ(ρ̄0)

and ρ̄0 is irreducible. Hence ρ̄0 and σ(ρ̄0) are conjugate representations, that is,
there is B̄ ∈ PSL2(C) such that ρ̄0 = B̄σ(ρ̄0)B̄

−1. Hence ρ̄ and B̄σ(ρ̄)B̄−1 are

non-conjugate representations which have the same restriction on π1(M̃). We get
a contradiction with Proposition 8.

By [HP, Lemma 10.1] an PSL2(C)-character χρ̄ of a finitely generated group is
real valued if and only if the image of ρ̄ can be conjugated into PSU(2) or PGL2(R).
So our current representation ρ̄ can be conjugated into PSU(2) or PGL2(R). If it
can be conjugated into PSU(2), then we are done because this conjugated repre-
sentation lifts to a trace free SU(2)-representation which is not binary dihedral. So
suppose that ρ̄ is conjugate to an PGL2(R)-representation ρ̄′. As noted in [HP]
right after Lemma 10.1, PGL2(R) ⊂ PGL2(C) ∼= PSL2(C) has two components,
the identity component is PSL2(R) and the other component consists of matrices
of determinant −1 (which in PSL2(C) are represented by matrices with entries in
C with zero real part). Considering the action of PSL2(C) on hyperbolic space
H3 by orientation preserving isometries, the group PGL2(R) is the stabilizer of a
total geodesic plane in H3, and an element of PGL2(R) is contained in PSL2(R)
if and only if it preserves the orientation of the plane (cf [JS, Section 2.8]). Since

π1(M̃) is the unique index two normal subgroup of π1(M), π1(M̃) is generated by
elements γ2, γ ∈ π1(M). (To see this assertion holds, it is easy to verify that the
subgroup G of π1(M) generated by squares is a normal subgroup and the quotient
group π1(M)/G is an abelian group in which every element has order two. Since
H1(M) = Z, π1(M)/G has to be the cyclic group of order two.) Therefore the

image of the restriction ρ̄′0 of ρ̄′ on π1(M̃) consists of elements preserving the orien-
tation of the total geodesic plane mentioned above, i.e. the image of ρ̄′0 is contained
in PSL2(R). So the image of ρ̄0 can be conjugated into PSL2(R). But the image of
ρ̄0 is contained in PSU(2). [CD, Lemma 2.10] says that if an PSU(2)-presentation
can be conjugated into an PSL2(R)-representation, then it is a reducible represen-
tation. So our ρ̄0 is a reducible representation. We arrive at a contradiction, which
completes the proof of Theorem 1.
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